Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from transformers import AutoModel | |
| class TransformerClassifier(nn.Module): | |
| def __init__(self, model_name, output_dim): | |
| super(TransformerClassifier, self).__init__() | |
| self.transformer = AutoModel.from_pretrained(model_name) | |
| # Freeze bottom 3 layers, unfreeze top layers | |
| for name, param in self.transformer.named_parameters(): | |
| if "layer.0" in name or "layer.1" in name or "layer.2" in name: | |
| param.requires_grad = False | |
| self.fc = nn.Linear(self.transformer.config.hidden_size, output_dim) | |
| def forward(self, input_ids, attention_mask): | |
| outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask) | |
| hidden_state = outputs.last_hidden_state # [batch_size, seq_len, hidden_dim] | |
| pooled_output = hidden_state[:, 0] # Use CLS token output | |
| out = self.fc(pooled_output) | |
| return out | |