Spaces:
Runtime error
Runtime error
| import os | |
| import json | |
| import gradio as gr | |
| import tempfile | |
| from PIL import Image, ImageDraw, ImageFont | |
| import cv2 | |
| from typing import Tuple, Optional | |
| import torch | |
| from pathlib import Path | |
| import time | |
| import torch | |
| import spaces | |
| import os | |
| from video_highlight_detector import ( | |
| load_model, | |
| BatchedVideoHighlightDetector, | |
| get_video_duration_seconds | |
| ) | |
| def load_examples(json_path: str) -> dict: | |
| with open(json_path, 'r') as f: | |
| return json.load(f) | |
| def format_duration(seconds: int) -> str: | |
| hours = seconds // 3600 | |
| minutes = (seconds % 3600) // 60 | |
| secs = seconds % 60 | |
| if hours > 0: | |
| return f"{hours}:{minutes:02d}:{secs:02d}" | |
| return f"{minutes}:{secs:02d}" | |
| # def add_watermark(video_path: str, output_path: str): | |
| # watermark_text = "π€ SmolVLM2 Highlight" | |
| # command = f"""ffmpeg -i {video_path} -vf \ | |
| # "drawtext=text='{watermark_text}':fontcolor=white:fontsize=24:box=1:[email protected]:\ | |
| # boxborderw=5:x=w-tw-10:y=h-th-10" \ | |
| # -codec:a copy {output_path}""" | |
| # os.system(command) | |
| def add_watermark(video_path: str, output_path: str): | |
| watermark_text = "π€ SmolVLM2 Highlight" | |
| command = f"""ffmpeg -i {video_path} -vf \ | |
| "drawtext=text='{watermark_text}':fontfile=NotoColorEmoji.ttf:\ | |
| fontcolor=white:fontsize=24:box=1:[email protected]:\ | |
| boxborderw=5:x=w-tw-10:y=h-th-10" \ | |
| -codec:a copy {output_path}""" | |
| os.system(command) | |
| def process_video( | |
| video_path: str, | |
| progress = gr.Progress() | |
| ) -> Tuple[str, str, str, str]: | |
| try: | |
| duration = get_video_duration_seconds(video_path) | |
| if duration > 1200: # 20 minutes | |
| return None, None, None, "Video must be shorter than 20 minutes" | |
| progress(0.1, desc="Loading model...") | |
| model, processor = load_model() | |
| detector = BatchedVideoHighlightDetector(model, processor, batch_size=32) | |
| progress(0.2, desc="Analyzing video content...") | |
| video_description = detector.analyze_video_content(video_path) | |
| progress(0.3, desc="Determining highlight types...") | |
| highlight_types = detector.determine_highlights(video_description) | |
| progress(0.4, desc="Detecting and extracting highlights...") | |
| with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file: | |
| temp_output = tmp_file.name | |
| detector.create_highlight_video(video_path, temp_output) | |
| progress(0.9, desc="Adding watermark...") | |
| output_path = temp_output.replace('.mp4', '_watermark.mp4') | |
| add_watermark(temp_output, output_path) | |
| os.unlink(temp_output) | |
| video_description = video_description[:500] + "..." if len(video_description) > 500 else video_description | |
| highlight_types = highlight_types[:500] + "..." if len(highlight_types) > 500 else highlight_types | |
| return output_path, video_description, highlight_types, None | |
| except Exception as e: | |
| return None, None, None, f"Error processing video: {str(e)}" | |
| def create_ui(examples_path: str): | |
| examples_data = load_examples(examples_path) | |
| with gr.Blocks() as app: | |
| gr.Markdown("# Video Highlight Generator") | |
| gr.Markdown("Upload a video (max 20 minutes) and get an automated highlight reel!") | |
| with gr.Row(): | |
| gr.Markdown("## Example Results") | |
| with gr.Row(): | |
| for example in examples_data["examples"]: | |
| with gr.Column(): | |
| gr.Video( | |
| value=example["original"]["url"], | |
| label=f"Original ({format_duration(example['original']['duration_seconds'])})", | |
| interactive=False | |
| ) | |
| gr.Markdown(f"### {example['title']}") | |
| with gr.Column(): | |
| gr.Video( | |
| value=example["highlights"]["url"], | |
| label=f"Highlights ({format_duration(example['highlights']['duration_seconds'])})", | |
| interactive=False | |
| ) | |
| with gr.Accordion("Model chain of thought details", open=False): | |
| gr.Markdown(f"#Summary: {example['analysis']['video_description']}") | |
| gr.Markdown(f"#Highlights to search for: {example['analysis']['highlight_types']}") | |
| gr.Markdown("## Try It Yourself!") | |
| with gr.Row(): | |
| input_video = gr.Video( | |
| label="Upload your video (max 20 minutes)", | |
| interactive=True | |
| ) | |
| process_btn = gr.Button("Process Video", variant="primary") | |
| status = gr.Markdown(visible=True) | |
| with gr.Row() as results_row: | |
| with gr.Column(): | |
| video_description = gr.Markdown(visible=False) | |
| with gr.Column(): | |
| highlight_types = gr.Markdown(visible=False) | |
| with gr.Row() as output_row: | |
| output_video = gr.Video(label="Highlight Video", visible=False) | |
| download_btn = gr.Button("Download Highlights", visible=False) | |
| def on_process(video): | |
| if not video: | |
| return { | |
| status: "Please upload a video", | |
| video_description: gr.update(visible=False), | |
| highlight_types: gr.update(visible=False), | |
| output_video: gr.update(visible=False), | |
| download_btn: gr.update(visible=False) | |
| } | |
| status.value = "Processing video..." | |
| output_path, desc, highlights, err = process_video(video) | |
| if err: | |
| return { | |
| status: f"Error: {err}", | |
| video_description: gr.update(visible=False), | |
| highlight_types: gr.update(visible=False), | |
| output_video: gr.update(visible=False), | |
| download_btn: gr.update(visible=False) | |
| } | |
| return { | |
| status: "Processing complete!", | |
| video_description: gr.update(value=desc, visible=True), | |
| highlight_types: gr.update(value=highlights, visible=True), | |
| output_video: gr.update(value=output_path, visible=True), | |
| download_btn: gr.update(visible=True) | |
| } | |
| process_btn.click( | |
| on_process, | |
| inputs=[input_video], | |
| outputs=[status, video_description, highlight_types, output_video, download_btn] | |
| ) | |
| download_btn.click( | |
| lambda x: x, | |
| inputs=[output_video], | |
| outputs=[output_video] | |
| ) | |
| return app | |
| if __name__ == "__main__": | |
| # Initialize CUDA | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| zero = torch.Tensor([0]).to(device) | |
| app = create_ui("video_spec.json") | |
| app.launch() |