Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer | |
| from transformers.image_utils import load_image | |
| from threading import Thread | |
| import re | |
| import time | |
| import torch | |
| import spaces | |
| #import subprocess | |
| #subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct-250M") | |
| model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct-250M", | |
| torch_dtype=torch.bfloat16, | |
| #_attn_implementation="flash_attention_2" | |
| ).to("cuda") | |
| def model_inference( | |
| input_dict, history | |
| ): | |
| text = input_dict["text"] | |
| print(input_dict["files"]) | |
| if len(input_dict["files"]) > 1: | |
| images = [load_image(image) for image in input_dict["files"]] | |
| elif len(input_dict["files"]) == 1: | |
| images = [load_image(input_dict["files"][0])] | |
| else: | |
| images = [] | |
| if text == "" and not images: | |
| gr.Error("Please input a query and optionally image(s).") | |
| if text == "" and images: | |
| gr.Error("Please input a text query along the image(s).") | |
| resulting_messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "image"} for _ in range(len(images))] + [ | |
| {"type": "text", "text": text} | |
| ] | |
| } | |
| ] | |
| prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) | |
| inputs = processor(text=prompt, images=[images], return_tensors="pt") | |
| inputs = inputs.to('cuda') | |
| generation_args = { | |
| "input_ids": inputs.input_ids, | |
| "pixel_values": inputs.pixel_values, | |
| "attention_mask": inputs.attention_mask, | |
| "num_return_sequences": 1, | |
| "no_repeat_ngram_size": 2, | |
| "max_new_tokens": 500, | |
| "min_new_tokens": 10, | |
| } | |
| # Generate | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_args = dict(inputs, streamer=streamer, max_new_tokens=500) | |
| generated_text = "" | |
| thread = Thread(target=model.generate, kwargs=generation_args) | |
| thread.start() | |
| yield "..." | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| generated_text_without_prompt = buffer#[len(ext_buffer):] | |
| time.sleep(0.01) | |
| yield buffer | |
| examples=[ | |
| [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | |
| [{"text": "Describe this image.", "files": ["example_images/dogs.jpg"]}], | |
| [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
| [{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}], | |
| [{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], | |
| [{"text": "What does this say?", "files": ["example_images/math.jpg"]}], | |
| [{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}], | |
| [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], | |
| ] | |
| demo = gr.ChatInterface(fn=model_inference, title="SmolVLM-256M: The Smollest VLM ever 💫", | |
| description="Play with [HuggingFaceTB/SmolVLM-Instruct-250M](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct-250M) in this demo. To get started, upload an image and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.", | |
| examples=examples, | |
| textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, | |
| cache_examples=False | |
| ) | |
| demo.launch(debug=True) | |