Spaces:
Paused
Paused
| import spaces | |
| import gradio as gr | |
| import torch | |
| from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, ControlNetModel, AutoencoderKL | |
| from PIL import Image | |
| import os | |
| import time | |
| from utils.utils import load_cn_model, load_cn_config, load_tagger_model, load_lora_model, resize_image_aspect_ratio, base_generation | |
| from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates | |
| from utils.tagger import modelLoad, analysis | |
| path = os.getcwd() | |
| cn_dir = f"{path}/controlnet" | |
| tagger_dir = f"{path}/tagger" | |
| lora_dir = f"{path}/lora" | |
| os.makedirs(cn_dir, exist_ok=True) | |
| os.makedirs(tagger_dir, exist_ok=True) | |
| os.makedirs(lora_dir, exist_ok=True) | |
| load_cn_model(cn_dir) | |
| load_cn_config(cn_dir) | |
| load_tagger_model(tagger_dir) | |
| load_lora_model(lora_dir) | |
| def load_model(lora_dir, cn_dir): | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True) | |
| pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained( | |
| "cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16 | |
| ) | |
| pipe.load_lora_weights(lora_dir, weight_name="style-lineart_02.safetensors", adapter_name="style-lineart_02") | |
| pipe.set_adapters(["style-lineart_02"], adapter_weights=[1.2]) | |
| pipe.fuse_lora() | |
| pipe = pipe.to(device) | |
| return pipe | |
| def predict(input_image_path, prompt, negative_prompt, controlnet_scale): | |
| pipe = load_model(lora_dir, cn_dir) | |
| input_image_pil = Image.open(input_image_path) | |
| base_size = input_image_pil.size | |
| resize_image = resize_image_aspect_ratio(input_image_pil) | |
| white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB") | |
| generator = torch.manual_seed(0) | |
| last_time = time.time() | |
| prompt = "masterpiece, best quality, monochrome, lineart, white background, " + prompt | |
| execute_tags = ["sketch", "transparent background"] | |
| prompt = execute_prompt(execute_tags, prompt) | |
| prompt = remove_duplicates(prompt) | |
| prompt = remove_color(prompt) | |
| print(prompt) | |
| output_image = pipe( | |
| image=white_base_pil, | |
| control_image=resize_image, | |
| strength=1.0, | |
| prompt=prompt, | |
| negative_prompt = negative_prompt, | |
| controlnet_conditioning_scale=float(controlnet_scale), | |
| generator=generator, | |
| num_inference_steps=30, | |
| eta=1.0, | |
| ).images[0] | |
| print(f"Time taken: {time.time() - last_time}") | |
| output_image = output_image.resize(base_size, Image.LANCZOS) | |
| return output_image | |
| class Img2Img: | |
| def __init__(self): | |
| self.demo = self.layout() | |
| self.post_filter = True | |
| self.tagger_model = None | |
| self.input_image_path = None | |
| def process_prompt_analysis(self, input_image_path): | |
| if self.tagger_model is None: | |
| self.tagger_model = modelLoad(tagger_dir) | |
| tags = analysis(input_image_path, tagger_dir, self.tagger_model) | |
| tags_list = tags | |
| if self.post_filter: | |
| tags_list = remove_color(tags) | |
| return tags_list | |
| def layout(self): | |
| css = """ | |
| #intro{ | |
| max-width: 32rem; | |
| text-align: center; | |
| margin: 0 auto; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| self.input_image_path = gr.Image(label="input_image", type='filepath') | |
| self.prompt = gr.Textbox(label="prompt", lines=3) | |
| self.negative_prompt = gr.Textbox(label="negative_prompt", lines=3, value="lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry") | |
| prompt_analysis_button = gr.Button("prompt_analysis") | |
| self.controlnet_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, label="controlnet_scale") | |
| generate_button = gr.Button("generate") | |
| with gr.Column(): | |
| self.output_image = gr.Image(type="pil", label="output_image") | |
| prompt_analysis_button.click( | |
| self.process_prompt_analysis, | |
| inputs=[self.input_image_path], | |
| outputs=self.prompt | |
| ) | |
| generate_button.click( | |
| fn=predict, | |
| inputs=[self.input_image_path, self.prompt, self.negative_prompt, self.controlnet_scale], | |
| outputs=self.output_image | |
| ) | |
| return demo | |
| img2img = Img2Img() | |
| img2img.demo.launch(share=True) | |