Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,24 +5,18 @@ import boto3
|
|
| 5 |
from fastapi import FastAPI, HTTPException
|
| 6 |
from fastapi.responses import JSONResponse
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 8 |
-
from huggingface_hub import hf_hub_download
|
| 9 |
import asyncio
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
-
logger.setLevel(logging.INFO)
|
| 14 |
-
console_handler = logging.StreamHandler()
|
| 15 |
-
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
| 16 |
-
console_handler.setFormatter(formatter)
|
| 17 |
-
logger.addHandler(console_handler)
|
| 18 |
|
| 19 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
| 20 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 21 |
AWS_REGION = os.getenv("AWS_REGION")
|
| 22 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
| 23 |
-
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
| 24 |
|
| 25 |
-
MAX_TOKENS = 1024
|
| 26 |
|
| 27 |
s3_client = boto3.client(
|
| 28 |
's3',
|
|
@@ -88,8 +82,9 @@ class S3DirectStream:
|
|
| 88 |
model_files = await self.get_model_file_parts(model_prefix)
|
| 89 |
|
| 90 |
if not model_files:
|
| 91 |
-
|
| 92 |
|
|
|
|
| 93 |
config_stream = await self.stream_from_s3(f"{model_prefix}/config.json")
|
| 94 |
config_data = config_stream.read()
|
| 95 |
|
|
@@ -114,7 +109,7 @@ class S3DirectStream:
|
|
| 114 |
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
|
| 115 |
tokenizer_data = tokenizer_stream.read().decode("utf-8")
|
| 116 |
|
| 117 |
-
tokenizer = AutoTokenizer.from_pretrained(f"
|
| 118 |
return tokenizer
|
| 119 |
except Exception as e:
|
| 120 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
|
@@ -138,22 +133,6 @@ class S3DirectStream:
|
|
| 138 |
except self.s3_client.exceptions.ClientError:
|
| 139 |
return False
|
| 140 |
|
| 141 |
-
async def download_and_upload_to_s3(self, model_prefix, model_name):
|
| 142 |
-
try:
|
| 143 |
-
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN)
|
| 144 |
-
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN)
|
| 145 |
-
|
| 146 |
-
if not await self.file_exists_in_s3(f"{model_prefix}/config.json"):
|
| 147 |
-
with open(config_file, "rb") as file:
|
| 148 |
-
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_prefix}/config.json", Body=file)
|
| 149 |
-
|
| 150 |
-
if not await self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"):
|
| 151 |
-
with open(tokenizer_file, "rb") as file:
|
| 152 |
-
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_prefix}/tokenizer.json", Body=file)
|
| 153 |
-
|
| 154 |
-
except Exception as e:
|
| 155 |
-
raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")
|
| 156 |
-
|
| 157 |
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
| 158 |
tokens = tokenizer.encode(text)
|
| 159 |
chunks = []
|
|
@@ -169,7 +148,7 @@ def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
|
|
| 169 |
input_text = tokenizer.decode(tokens[:max_tokens])
|
| 170 |
output = model.generate(input_ids=tokenizer.encode(input_text, return_tensors="pt").input_ids)
|
| 171 |
generated_text += tokenizer.decode(output[0], skip_special_tokens=True)
|
| 172 |
-
input_text = input_text[len(input_text):]
|
| 173 |
return generated_text
|
| 174 |
|
| 175 |
@app.post("/predict/")
|
|
@@ -184,7 +163,7 @@ async def predict(model_request: dict):
|
|
| 184 |
|
| 185 |
streamer = S3DirectStream(S3_BUCKET_NAME)
|
| 186 |
|
| 187 |
-
await streamer.create_s3_folders(model_name)
|
| 188 |
|
| 189 |
model = await streamer.load_model_from_s3(model_name)
|
| 190 |
tokenizer = await streamer.load_tokenizer_from_s3(model_name)
|
|
@@ -196,22 +175,18 @@ async def predict(model_request: dict):
|
|
| 196 |
|
| 197 |
result = await asyncio.to_thread(nlp_pipeline, input_text)
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
|
|
|
| 201 |
full_result = ""
|
| 202 |
for chunk in chunks:
|
| 203 |
full_result += continue_generation(chunk, model, tokenizer)
|
| 204 |
-
return {"result": full_result}
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
except HTTPException as e:
|
| 209 |
-
logger.error(f"Error al realizar la predicci贸n: {str(e.detail)}")
|
| 210 |
-
return JSONResponse(status_code=e.status_code, content={"detail": str(e.detail)})
|
| 211 |
|
| 212 |
except Exception as e:
|
| 213 |
-
|
| 214 |
-
return JSONResponse(status_code=500, content={"detail": "Error inesperado. Intenta m谩s tarde."})
|
| 215 |
|
| 216 |
if __name__ == "__main__":
|
| 217 |
import uvicorn
|
|
|
|
| 5 |
from fastapi import FastAPI, HTTPException
|
| 6 |
from fastapi.responses import JSONResponse
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
| 8 |
import asyncio
|
| 9 |
+
import concurrent.futures
|
| 10 |
|
| 11 |
+
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
| 15 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 16 |
AWS_REGION = os.getenv("AWS_REGION")
|
| 17 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
|
|
|
| 18 |
|
| 19 |
+
MAX_TOKENS = 1024 # Limite de tokens por fragmento
|
| 20 |
|
| 21 |
s3_client = boto3.client(
|
| 22 |
's3',
|
|
|
|
| 82 |
model_files = await self.get_model_file_parts(model_prefix)
|
| 83 |
|
| 84 |
if not model_files:
|
| 85 |
+
raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.")
|
| 86 |
|
| 87 |
+
# Verificar que existe el archivo config.json
|
| 88 |
config_stream = await self.stream_from_s3(f"{model_prefix}/config.json")
|
| 89 |
config_data = config_stream.read()
|
| 90 |
|
|
|
|
| 109 |
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
|
| 110 |
tokenizer_data = tokenizer_stream.read().decode("utf-8")
|
| 111 |
|
| 112 |
+
tokenizer = AutoTokenizer.from_pretrained(f"{profile}/{model}")
|
| 113 |
return tokenizer
|
| 114 |
except Exception as e:
|
| 115 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
|
|
|
| 133 |
except self.s3_client.exceptions.ClientError:
|
| 134 |
return False
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
| 137 |
tokens = tokenizer.encode(text)
|
| 138 |
chunks = []
|
|
|
|
| 148 |
input_text = tokenizer.decode(tokens[:max_tokens])
|
| 149 |
output = model.generate(input_ids=tokenizer.encode(input_text, return_tensors="pt").input_ids)
|
| 150 |
generated_text += tokenizer.decode(output[0], skip_special_tokens=True)
|
| 151 |
+
input_text = input_text[len(input_text):] # Si la entrada se agot贸, ya no hay m谩s que procesar
|
| 152 |
return generated_text
|
| 153 |
|
| 154 |
@app.post("/predict/")
|
|
|
|
| 163 |
|
| 164 |
streamer = S3DirectStream(S3_BUCKET_NAME)
|
| 165 |
|
| 166 |
+
await streamer.create_s3_folders(model_name) # Crear las carpetas si no existen
|
| 167 |
|
| 168 |
model = await streamer.load_model_from_s3(model_name)
|
| 169 |
tokenizer = await streamer.load_tokenizer_from_s3(model_name)
|
|
|
|
| 175 |
|
| 176 |
result = await asyncio.to_thread(nlp_pipeline, input_text)
|
| 177 |
|
| 178 |
+
chunks = split_text_by_tokens(result, tokenizer)
|
| 179 |
+
|
| 180 |
+
if len(chunks) > 1:
|
| 181 |
full_result = ""
|
| 182 |
for chunk in chunks:
|
| 183 |
full_result += continue_generation(chunk, model, tokenizer)
|
| 184 |
+
return JSONResponse(content={"result": full_result})
|
| 185 |
+
else:
|
| 186 |
+
return JSONResponse(content={"result": result})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
except Exception as e:
|
| 189 |
+
raise HTTPException(status_code=500, detail=f"Error al realizar la predicci贸n: {e}")
|
|
|
|
| 190 |
|
| 191 |
if __name__ == "__main__":
|
| 192 |
import uvicorn
|