Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
-
from fastapi import FastAPI, HTTPException, UploadFile, File,
|
| 4 |
-
from fastapi.responses import StreamingResponse, JSONResponse, FileResponse, HTMLResponse
|
| 5 |
-
from pydantic import BaseModel, validator, Field, root_validator, EmailStr, constr
|
| 6 |
from transformers import (
|
| 7 |
AutoModelForCausalLM,
|
| 8 |
AutoTokenizer,
|
|
@@ -19,90 +19,55 @@ from transformers import (
|
|
| 19 |
AutoModelForTokenClassification,
|
| 20 |
AutoModelForMaskedLM,
|
| 21 |
AutoModelForObjectDetection,
|
| 22 |
-
|
| 23 |
)
|
| 24 |
from io import BytesIO
|
| 25 |
import boto3
|
| 26 |
-
from botocore.exceptions import
|
| 27 |
from huggingface_hub import snapshot_download
|
| 28 |
-
import asyncio
|
| 29 |
import tempfile
|
| 30 |
import hashlib
|
| 31 |
from PIL import Image
|
| 32 |
-
import base64
|
| 33 |
from typing import Optional, List, Union, Dict, Any
|
| 34 |
import uuid
|
| 35 |
-
import
|
| 36 |
-
import
|
| 37 |
-
from
|
| 38 |
-
import
|
| 39 |
-
from
|
| 40 |
from fastapi.staticfiles import StaticFiles
|
| 41 |
from fastapi.templating import Jinja2Templates
|
| 42 |
from fastapi.middleware.gzip import GZipMiddleware
|
| 43 |
-
from transformers import AutoImageProcessor, pipeline
|
| 44 |
from fastapi.security import APIKeyHeader, OAuth2PasswordBearer, OAuth2PasswordRequestForm
|
| 45 |
-
from
|
| 46 |
-
|
| 47 |
-
from fastapi.security import APIKeyHeader, OAuth2PasswordRequestForm
|
| 48 |
-
from passlib.context import CryptContext
|
| 49 |
-
from jose import JWTError, jwt
|
| 50 |
-
from datetime import datetime, timedelta
|
| 51 |
-
from starlette.requests import Request
|
| 52 |
-
import logging
|
| 53 |
-
from pydantic import EmailStr, constr, ValidationError
|
| 54 |
-
from database import insert_user, get_user, delete_user, update_user, create_db_and_table
|
| 55 |
-
from starlette.middleware import Middleware
|
| 56 |
-
from starlette.middleware.base import BaseHTTPMiddleware, RequestResponseEndpoint
|
| 57 |
-
from starlette.types import ASGIApp
|
| 58 |
-
import uvicorn
|
| 59 |
-
from starlette.responses import StreamingResponse
|
| 60 |
-
import logging
|
| 61 |
-
from pydantic import EmailStr, constr, ValidationError
|
| 62 |
-
from database import insert_user, get_user, delete_user, update_user, create_db_and_table, get_all_users
|
| 63 |
-
from starlette.middleware import Middleware
|
| 64 |
-
from starlette.middleware.base import BaseHTTPMiddleware, RequestResponseEndpoint
|
| 65 |
-
from starlette.types import ASGIApp
|
| 66 |
-
import uvicorn
|
| 67 |
-
from starlette.responses import StreamingResponse
|
| 68 |
-
import logging
|
| 69 |
-
from fastapi.exceptions import RequestValidationError
|
| 70 |
-
from fastapi import Request, status, Depends
|
| 71 |
-
from fastapi.security import OAuth2PasswordRequestForm, OAuth2PasswordBearer
|
| 72 |
-
from jose import JWTError, jwt
|
| 73 |
-
from passlib.context import CryptContext
|
| 74 |
-
from datetime import datetime, timedelta
|
| 75 |
-
from pydantic import BaseModel, field_validator, model_validator, Field, EmailStr, constr, ValidationError
|
| 76 |
-
from typing import Optional, List, Union
|
| 77 |
|
| 78 |
-
#setting up logging
|
| 79 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(filename)s - %(lineno)d - %(message)s')
|
| 80 |
logger = logging.getLogger(__name__)
|
| 81 |
|
| 82 |
-
#JWT Settings
|
| 83 |
SECRET_KEY = os.getenv("SECRET_KEY")
|
| 84 |
if not SECRET_KEY:
|
| 85 |
raise ValueError("SECRET_KEY must be set.")
|
| 86 |
ALGORITHM = "HS256"
|
| 87 |
ACCESS_TOKEN_EXPIRE_MINUTES = 30
|
| 88 |
|
| 89 |
-
#Password Hashing
|
| 90 |
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
|
| 91 |
|
| 92 |
-
#Database connection - replace with your database setup
|
| 93 |
-
#Example using SQLite
|
| 94 |
-
import sqlite3
|
| 95 |
conn = sqlite3.connect('users.db')
|
| 96 |
cursor = conn.cursor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
#OAuth2
|
| 99 |
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
| 100 |
-
|
| 101 |
-
#API Key
|
| 102 |
API_KEY = os.getenv("API_KEY")
|
| 103 |
api_key_header = APIKeyHeader(name="X-API-Key")
|
| 104 |
|
| 105 |
-
#Configuration
|
| 106 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
| 107 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 108 |
AWS_REGION = os.getenv("AWS_REGION")
|
|
@@ -115,15 +80,8 @@ TEMPLATES = Jinja2Templates(directory="templates")
|
|
| 115 |
app = FastAPI()
|
| 116 |
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
|
| 117 |
app.add_middleware(GZipMiddleware)
|
|
|
|
| 118 |
|
| 119 |
-
origins = ["*"]
|
| 120 |
-
app.add_middleware(
|
| 121 |
-
CORSMiddleware,
|
| 122 |
-
allow_origins=origins,
|
| 123 |
-
allow_credentials=True,
|
| 124 |
-
allow_methods=["*"],
|
| 125 |
-
allow_headers=["*"],
|
| 126 |
-
)
|
| 127 |
|
| 128 |
class User(BaseModel):
|
| 129 |
username: constr(min_length=3, max_length=50)
|
|
@@ -131,9 +89,9 @@ class User(BaseModel):
|
|
| 131 |
password: constr(min_length=8)
|
| 132 |
|
| 133 |
class GenerateRequest(BaseModel):
|
| 134 |
-
|
| 135 |
-
input_text: Optional[str] = Field(None
|
| 136 |
-
task_type: str = Field(
|
| 137 |
temperature: float = 1.0
|
| 138 |
max_new_tokens: int = 200
|
| 139 |
stream: bool = True
|
|
@@ -149,10 +107,10 @@ class GenerateRequest(BaseModel):
|
|
| 149 |
target_language: Optional[str] = None
|
| 150 |
context: Optional[str] = None
|
| 151 |
audio_file: Optional[UploadFile] = None
|
| 152 |
-
raw_input: Optional[Union[str, bytes]] = None
|
| 153 |
-
masked_text: Optional[str] = None
|
| 154 |
-
mask_image: Optional[UploadFile] = None
|
| 155 |
-
low_res_image: Optional[UploadFile] = None
|
| 156 |
|
| 157 |
@field_validator('task_type')
|
| 158 |
def validate_task_type(cls, value):
|
|
@@ -182,6 +140,7 @@ class GenerateRequest(BaseModel):
|
|
| 182 |
raise ValueError("low_res_image is required for image super-resolution.")
|
| 183 |
return values
|
| 184 |
|
|
|
|
| 185 |
class S3ModelLoader:
|
| 186 |
def __init__(self, bucket_name, aws_access_key_id, aws_secret_access_key, aws_region):
|
| 187 |
self.bucket_name = bucket_name
|
|
@@ -286,40 +245,43 @@ class S3ModelLoader:
|
|
| 286 |
raise ValueError("Unsupported task type")
|
| 287 |
|
| 288 |
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay):
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
for
|
| 315 |
-
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
| 317 |
|
| 318 |
|
| 319 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION)
|
| 320 |
|
| 321 |
def get_model_data(request: GenerateRequest):
|
| 322 |
-
return model_loader.load_model_and_tokenizer(request.
|
| 323 |
|
| 324 |
async def verify_api_key(api_key: str = Depends(api_key_header)):
|
| 325 |
if api_key != API_KEY:
|
|
@@ -327,7 +289,7 @@ async def verify_api_key(api_key: str = Depends(api_key_header)):
|
|
| 327 |
|
| 328 |
|
| 329 |
@app.post("/generate", dependencies=[Depends(verify_api_key)])
|
| 330 |
-
async def generate(request: GenerateRequest, background_tasks: BackgroundTasks, model_data
|
| 331 |
try:
|
| 332 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 333 |
if request.task_type == "text":
|
|
@@ -342,31 +304,31 @@ async def generate(request: GenerateRequest, background_tasks: BackgroundTasks,
|
|
| 342 |
do_sample=request.do_sample,
|
| 343 |
num_return_sequences=request.num_return_sequences,
|
| 344 |
)
|
| 345 |
-
|
| 346 |
-
async for token in stream_text(model, tokenizer, request.input_text, generation_config, request.stop_sequences, device, request.chunk_delay):
|
| 347 |
-
yield f"Token: {token}\n"
|
| 348 |
-
return StreamingResponse(stream_with_tokens(), media_type="text/plain")
|
| 349 |
elif request.task_type in ["image", "audio", "video"]:
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
|
|
|
|
|
|
|
|
|
| 370 |
elif request.task_type == "classification":
|
| 371 |
if request.image_file is None:
|
| 372 |
raise HTTPException(status_code=400, detail="Image file is required for classification.")
|
|
@@ -406,38 +368,39 @@ async def generate(request: GenerateRequest, background_tasks: BackgroundTasks,
|
|
| 406 |
if request.audio_file is None:
|
| 407 |
raise HTTPException(status_code=400, detail="Audio file is required for speech-to-text.")
|
| 408 |
contents = await request.audio_file.read()
|
| 409 |
-
|
| 410 |
try:
|
| 411 |
-
transcription =
|
| 412 |
return JSONResponse({"transcription": transcription})
|
| 413 |
except Exception as e:
|
| 414 |
raise HTTPException(status_code=500, detail=f"Error during speech-to-text: {str(e)}")
|
| 415 |
-
|
| 416 |
elif request.task_type == "text-to-speech":
|
| 417 |
if not request.input_text:
|
| 418 |
raise HTTPException(status_code=400, detail="Input text is required for text-to-speech.")
|
| 419 |
-
|
| 420 |
try:
|
| 421 |
-
audio =
|
| 422 |
file_path = os.path.join(TEMP_DIR, f"{uuid.uuid4()}.wav")
|
| 423 |
audio.save(file_path)
|
| 424 |
background_tasks.add_task(os.remove, file_path)
|
| 425 |
return FileResponse(file_path, media_type="audio/wav")
|
| 426 |
except Exception as e:
|
| 427 |
raise HTTPException(status_code=500, detail=f"Error during text-to-speech: {str(e)}")
|
| 428 |
-
|
| 429 |
elif request.task_type == "image-segmentation":
|
| 430 |
if request.image_file is None:
|
| 431 |
raise HTTPException(status_code=400, detail="Image file is required for image segmentation.")
|
| 432 |
contents = await request.image_file.read()
|
| 433 |
image = Image.open(BytesIO(contents)).convert("RGB")
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
|
|
|
|
|
|
|
|
|
| 441 |
elif request.task_type == "feature-extraction":
|
| 442 |
if request.raw_input is None:
|
| 443 |
raise HTTPException(status_code=400, detail="raw_input is required for feature extraction.")
|
|
@@ -450,7 +413,7 @@ async def generate(request: GenerateRequest, background_tasks: BackgroundTasks,
|
|
| 450 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 451 |
else:
|
| 452 |
raise ValueError("Unsupported raw_input type.")
|
| 453 |
-
features = inputs.pixel_values
|
| 454 |
return JSONResponse({"features": features.tolist()})
|
| 455 |
except Exception as fe:
|
| 456 |
raise HTTPException(status_code=400, detail=f"Error during feature extraction: {fe}")
|
|
@@ -484,70 +447,81 @@ async def generate(request: GenerateRequest, background_tasks: BackgroundTasks,
|
|
| 484 |
image_contents = await request.image_file.read()
|
| 485 |
mask_contents = await request.mask_image.read()
|
| 486 |
image = Image.open(BytesIO(image_contents)).convert("RGB")
|
| 487 |
-
mask = Image.open(BytesIO(mask_contents)).convert("L")
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
|
|
|
|
|
|
|
|
|
| 495 |
elif request.task_type == "image-super-resolution":
|
| 496 |
if request.low_res_image is None:
|
| 497 |
raise HTTPException(status_code=400, detail="low_res_image is required for image super-resolution.")
|
| 498 |
contents = await request.low_res_image.read()
|
| 499 |
image = Image.open(BytesIO(contents)).convert("RGB")
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
|
|
|
|
|
|
|
|
|
| 507 |
elif request.task_type == "object-detection":
|
| 508 |
if request.image_file is None:
|
| 509 |
raise HTTPException(status_code=400, detail="Image file is required for object detection.")
|
| 510 |
contents = await request.image_file.read()
|
| 511 |
image = Image.open(BytesIO(contents)).convert("RGB")
|
| 512 |
-
|
| 513 |
image_processor = model_data["image_processor"]
|
| 514 |
inputs = image_processor(images=image, return_tensors="pt")
|
| 515 |
with torch.no_grad():
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
|
|
|
|
|
|
|
|
|
| 519 |
elif request.task_type == "image-captioning":
|
| 520 |
if request.image_file is None:
|
| 521 |
raise HTTPException(status_code=400, detail="Image file is required for image captioning.")
|
| 522 |
contents = await request.image_file.read()
|
| 523 |
image = Image.open(BytesIO(contents)).convert("RGB")
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
|
|
|
|
|
|
|
|
|
| 527 |
elif request.task_type == "audio-transcription":
|
| 528 |
if request.audio_file is None:
|
| 529 |
raise HTTPException(status_code=400, detail="Audio file is required for audio transcription.")
|
|
|
|
|
|
|
| 530 |
try:
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
try:
|
| 534 |
-
transcription = pipeline(contents, sampling_rate=16000)[0]["text"] # Assuming 16kHz sampling rate
|
| 535 |
-
return JSONResponse({"transcription": transcription})
|
| 536 |
-
except Exception as e:
|
| 537 |
-
raise HTTPException(status_code=500, detail=f"Error during audio transcription (pipeline): {str(e)}")
|
| 538 |
except Exception as e:
|
| 539 |
-
raise HTTPException(status_code=500, detail=f"Error during audio transcription
|
| 540 |
elif request.task_type == "summarization":
|
| 541 |
if request.input_text is None:
|
| 542 |
raise HTTPException(status_code=400, detail="Input text is required for summarization.")
|
| 543 |
model = model_data["model"].to(device)
|
| 544 |
tokenizer = model_data["tokenizer"]
|
| 545 |
-
inputs = tokenizer(request.input_text, return_tensors="pt", truncation=True, max_length=512)
|
| 546 |
with torch.no_grad():
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
|
|
|
|
|
|
| 551 |
else:
|
| 552 |
raise HTTPException(status_code=500, detail=f"Unsupported task type")
|
| 553 |
except Exception as e:
|
|
@@ -563,25 +537,24 @@ async def root(request: Request):
|
|
| 563 |
async def health_check():
|
| 564 |
return {"status": "healthy"}
|
| 565 |
|
| 566 |
-
|
|
|
|
|
|
|
| 567 |
|
| 568 |
@app.post("/token", response_model=Token)
|
| 569 |
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends()):
|
| 570 |
user = authenticate_user(form_data.username, form_data.password)
|
| 571 |
if not user:
|
| 572 |
-
raise HTTPException(
|
| 573 |
-
status_code=status.HTTP_401_UNAUTHORIZED,
|
| 574 |
-
detail="Incorrect username or password",
|
| 575 |
-
headers={"WWW-Authenticate": "Bearer"},
|
| 576 |
-
)
|
| 577 |
access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
|
| 578 |
access_token = create_access_token(data={"sub": user["username"]}, expires_delta=access_token_expires)
|
| 579 |
return {"access_token": access_token, "token_type": "bearer"}
|
| 580 |
|
| 581 |
def authenticate_user(username: str, password: str):
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
|
|
|
| 585 |
return None
|
| 586 |
|
| 587 |
def create_access_token(data: Dict[str, Any], expires_delta: timedelta = None):
|
|
@@ -594,30 +567,22 @@ def create_access_token(data: Dict[str, Any], expires_delta: timedelta = None):
|
|
| 594 |
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
|
| 595 |
return encoded_jwt
|
| 596 |
|
| 597 |
-
class Token(BaseModel):
|
| 598 |
-
access_token: str
|
| 599 |
-
token_type: str
|
| 600 |
-
|
| 601 |
|
| 602 |
@app.get("/users/me")
|
| 603 |
async def read_users_me(current_user: str = Depends(get_current_user)):
|
| 604 |
return {"username": current_user}
|
| 605 |
|
| 606 |
async def get_current_user(token: str = Depends(oauth2_scheme)):
|
| 607 |
-
credentials_exception = HTTPException(
|
| 608 |
-
status_code=status.HTTP_401_UNAUTHORIZED,
|
| 609 |
-
detail="Could not validate credentials",
|
| 610 |
-
headers={"WWW-Authenticate": "Bearer"},
|
| 611 |
-
)
|
| 612 |
try:
|
| 613 |
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
|
| 614 |
username: str = payload.get("sub")
|
| 615 |
if username is None:
|
| 616 |
raise credentials_exception
|
| 617 |
-
token_data = {"username": username, "token": token}
|
| 618 |
except JWTError:
|
| 619 |
raise credentials_exception
|
| 620 |
-
|
|
|
|
| 621 |
if user is None:
|
| 622 |
raise credentials_exception
|
| 623 |
return username
|
|
@@ -627,12 +592,11 @@ async def get_current_user(token: str = Depends(oauth2_scheme)):
|
|
| 627 |
async def create_user(user: User):
|
| 628 |
try:
|
| 629 |
hashed_password = pwd_context.hash(user.password)
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
raise HTTPException(status_code=500, detail="Failed to create user.")
|
| 636 |
except Exception as e:
|
| 637 |
logger.error(f"Error creating user: {e}")
|
| 638 |
raise HTTPException(status_code=500, detail=f"Error creating user: {e}")
|
|
@@ -642,27 +606,20 @@ async def create_user(user: User):
|
|
| 642 |
async def update_user_data(username: str, user: User):
|
| 643 |
try:
|
| 644 |
hashed_password = pwd_context.hash(user.password)
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
return User(**updated_user)
|
| 649 |
-
else:
|
| 650 |
-
raise HTTPException(status_code=404, detail="User not found")
|
| 651 |
-
|
| 652 |
except Exception as e:
|
| 653 |
logger.error(f"Error updating user: {e}")
|
| 654 |
raise HTTPException(status_code=500, detail="Error updating user.")
|
| 655 |
|
| 656 |
|
| 657 |
-
|
| 658 |
@app.delete("/users/{username}", dependencies=[Depends(get_current_user)])
|
| 659 |
async def delete_user_account(username: str):
|
| 660 |
try:
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
else:
|
| 665 |
-
raise HTTPException(status_code=404, detail="User not found")
|
| 666 |
except Exception as e:
|
| 667 |
logger.error(f"Error deleting user: {e}")
|
| 668 |
raise HTTPException(status_code=500, detail="Error deleting user.")
|
|
@@ -670,20 +627,14 @@ async def delete_user_account(username: str):
|
|
| 670 |
|
| 671 |
@app.get("/users", dependencies=[Depends(get_current_user)])
|
| 672 |
async def get_all_users_route():
|
| 673 |
-
|
| 674 |
-
|
|
|
|
| 675 |
|
| 676 |
|
| 677 |
@app.exception_handler(RequestValidationError)
|
| 678 |
async def validation_exception_handler(request: Request, exc: RequestValidationError):
|
| 679 |
-
return JSONResponse(
|
| 680 |
-
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
|
| 681 |
-
content=json.dumps({"detail": exc.errors(), "body": exc.body}),
|
| 682 |
-
)
|
| 683 |
-
|
| 684 |
|
| 685 |
if __name__ == "__main__":
|
| 686 |
-
|
| 687 |
-
create_db_and_table() # Initialize database on startup
|
| 688 |
-
|
| 689 |
uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File, Depends, BackgroundTasks, Request
|
| 4 |
+
from fastapi.responses import StreamingResponse, JSONResponse, FileResponse, HTMLResponse
|
| 5 |
+
from pydantic import BaseModel, validator, Field, root_validator, EmailStr, constr
|
| 6 |
from transformers import (
|
| 7 |
AutoModelForCausalLM,
|
| 8 |
AutoTokenizer,
|
|
|
|
| 19 |
AutoModelForTokenClassification,
|
| 20 |
AutoModelForMaskedLM,
|
| 21 |
AutoModelForObjectDetection,
|
| 22 |
+
AutoImageProcessor,
|
| 23 |
)
|
| 24 |
from io import BytesIO
|
| 25 |
import boto3
|
| 26 |
+
from botocore.exceptions import ClientError
|
| 27 |
from huggingface_hub import snapshot_download
|
|
|
|
| 28 |
import tempfile
|
| 29 |
import hashlib
|
| 30 |
from PIL import Image
|
|
|
|
| 31 |
from typing import Optional, List, Union, Dict, Any
|
| 32 |
import uuid
|
| 33 |
+
import logging
|
| 34 |
+
import sqlite3
|
| 35 |
+
from passlib.context import CryptContext
|
| 36 |
+
from jose import JWTError, jwt
|
| 37 |
+
from datetime import datetime, timedelta
|
| 38 |
from fastapi.staticfiles import StaticFiles
|
| 39 |
from fastapi.templating import Jinja2Templates
|
| 40 |
from fastapi.middleware.gzip import GZipMiddleware
|
|
|
|
| 41 |
from fastapi.security import APIKeyHeader, OAuth2PasswordBearer, OAuth2PasswordRequestForm
|
| 42 |
+
from starlette.middleware.cors import CORSMiddleware
|
| 43 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
|
|
|
| 45 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(filename)s - %(lineno)d - %(message)s')
|
| 46 |
logger = logging.getLogger(__name__)
|
| 47 |
|
|
|
|
| 48 |
SECRET_KEY = os.getenv("SECRET_KEY")
|
| 49 |
if not SECRET_KEY:
|
| 50 |
raise ValueError("SECRET_KEY must be set.")
|
| 51 |
ALGORITHM = "HS256"
|
| 52 |
ACCESS_TOKEN_EXPIRE_MINUTES = 30
|
| 53 |
|
|
|
|
| 54 |
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
|
| 55 |
|
|
|
|
|
|
|
|
|
|
| 56 |
conn = sqlite3.connect('users.db')
|
| 57 |
cursor = conn.cursor()
|
| 58 |
+
cursor.execute('''
|
| 59 |
+
CREATE TABLE IF NOT EXISTS users (
|
| 60 |
+
username TEXT PRIMARY KEY,
|
| 61 |
+
email TEXT UNIQUE,
|
| 62 |
+
hashed_password TEXT
|
| 63 |
+
)
|
| 64 |
+
''')
|
| 65 |
+
conn.commit()
|
| 66 |
|
|
|
|
| 67 |
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
|
|
|
|
|
|
| 68 |
API_KEY = os.getenv("API_KEY")
|
| 69 |
api_key_header = APIKeyHeader(name="X-API-Key")
|
| 70 |
|
|
|
|
| 71 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
| 72 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 73 |
AWS_REGION = os.getenv("AWS_REGION")
|
|
|
|
| 80 |
app = FastAPI()
|
| 81 |
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
|
| 82 |
app.add_middleware(GZipMiddleware)
|
| 83 |
+
app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"])
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
class User(BaseModel):
|
| 87 |
username: constr(min_length=3, max_length=50)
|
|
|
|
| 89 |
password: constr(min_length=8)
|
| 90 |
|
| 91 |
class GenerateRequest(BaseModel):
|
| 92 |
+
model_id: str
|
| 93 |
+
input_text: Optional[str] = Field(None)
|
| 94 |
+
task_type: str = Field(...)
|
| 95 |
temperature: float = 1.0
|
| 96 |
max_new_tokens: int = 200
|
| 97 |
stream: bool = True
|
|
|
|
| 107 |
target_language: Optional[str] = None
|
| 108 |
context: Optional[str] = None
|
| 109 |
audio_file: Optional[UploadFile] = None
|
| 110 |
+
raw_input: Optional[Union[str, bytes]] = None
|
| 111 |
+
masked_text: Optional[str] = None
|
| 112 |
+
mask_image: Optional[UploadFile] = None
|
| 113 |
+
low_res_image: Optional[UploadFile] = None
|
| 114 |
|
| 115 |
@field_validator('task_type')
|
| 116 |
def validate_task_type(cls, value):
|
|
|
|
| 140 |
raise ValueError("low_res_image is required for image super-resolution.")
|
| 141 |
return values
|
| 142 |
|
| 143 |
+
|
| 144 |
class S3ModelLoader:
|
| 145 |
def __init__(self, bucket_name, aws_access_key_id, aws_secret_access_key, aws_region):
|
| 146 |
self.bucket_name = bucket_name
|
|
|
|
| 245 |
raise ValueError("Unsupported task type")
|
| 246 |
|
| 247 |
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay):
|
| 248 |
+
try:
|
| 249 |
+
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True).to(device)
|
| 250 |
+
input_length = encoded_input["input_ids"].shape[1]
|
| 251 |
+
max_length = model.config.max_length
|
| 252 |
+
remaining_tokens = max_length - input_length
|
| 253 |
+
if remaining_tokens <= 0:
|
| 254 |
+
yield ""
|
| 255 |
+
generation_config.max_new_tokens = min(remaining_tokens, generation_config.max_new_tokens)
|
| 256 |
+
def stop_criteria(input_ids, scores):
|
| 257 |
+
decoded_output = tokenizer.decode(input_ids[0][-1], skip_special_tokens=True)
|
| 258 |
+
return decoded_output in stop_sequences
|
| 259 |
+
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
| 260 |
+
outputs = model.generate(
|
| 261 |
+
**encoded_input,
|
| 262 |
+
do_sample=generation_config.do_sample,
|
| 263 |
+
max_new_tokens=generation_config.max_new_tokens,
|
| 264 |
+
temperature=generation_config.temperature,
|
| 265 |
+
top_p=generation_config.top_p,
|
| 266 |
+
top_k=generation_config.top_k,
|
| 267 |
+
repetition_penalty=generation_config.repetition_penalty,
|
| 268 |
+
num_return_sequences=generation_config.num_return_sequences,
|
| 269 |
+
stopping_criteria=stopping_criteria,
|
| 270 |
+
output_scores=True,
|
| 271 |
+
return_dict_in_generate=True
|
| 272 |
+
)
|
| 273 |
+
for output in outputs.sequences:
|
| 274 |
+
for token_id in output:
|
| 275 |
+
token = tokenizer.decode(token_id, skip_special_tokens=True)
|
| 276 |
+
yield token
|
| 277 |
+
except Exception as e:
|
| 278 |
+
yield f"Error during text generation: {e}"
|
| 279 |
|
| 280 |
|
| 281 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION)
|
| 282 |
|
| 283 |
def get_model_data(request: GenerateRequest):
|
| 284 |
+
return model_loader.load_model_and_tokenizer(request.model_id, request.task_type)
|
| 285 |
|
| 286 |
async def verify_api_key(api_key: str = Depends(api_key_header)):
|
| 287 |
if api_key != API_KEY:
|
|
|
|
| 289 |
|
| 290 |
|
| 291 |
@app.post("/generate", dependencies=[Depends(verify_api_key)])
|
| 292 |
+
async def generate(request: GenerateRequest, background_tasks: BackgroundTasks, model_data=Depends(get_model_data)):
|
| 293 |
try:
|
| 294 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 295 |
if request.task_type == "text":
|
|
|
|
| 304 |
do_sample=request.do_sample,
|
| 305 |
num_return_sequences=request.num_return_sequences,
|
| 306 |
)
|
| 307 |
+
return StreamingResponse(stream_text(model, tokenizer, request.input_text, generation_config, request.stop_sequences, device, request.chunk_delay), media_type="text/plain")
|
|
|
|
|
|
|
|
|
|
| 308 |
elif request.task_type in ["image", "audio", "video"]:
|
| 309 |
+
pipeline_func = model_data["pipeline"]
|
| 310 |
+
try:
|
| 311 |
+
result = pipeline_func(request.input_text)
|
| 312 |
+
if request.task_type == "image":
|
| 313 |
+
image = result[0]
|
| 314 |
+
img_byte_arr = BytesIO()
|
| 315 |
+
image.save(img_byte_arr, format="PNG")
|
| 316 |
+
img_byte_arr.seek(0)
|
| 317 |
+
return StreamingResponse(img_byte_arr, media_type="image/png")
|
| 318 |
+
elif request.task_type == "audio":
|
| 319 |
+
audio = result[0]
|
| 320 |
+
audio_byte_arr = BytesIO()
|
| 321 |
+
audio.save(audio_byte_arr, format="wav")
|
| 322 |
+
audio_byte_arr.seek(0)
|
| 323 |
+
return StreamingResponse(audio_byte_arr, media_type="audio/wav")
|
| 324 |
+
elif request.task_type == "video":
|
| 325 |
+
video = result[0]
|
| 326 |
+
video_byte_arr = BytesIO()
|
| 327 |
+
video.save(video_byte_arr, format="mp4")
|
| 328 |
+
video_byte_arr.seek(0)
|
| 329 |
+
return StreamingResponse(video_byte_arr, media_type="video/mp4")
|
| 330 |
+
except Exception as e:
|
| 331 |
+
raise HTTPException(status_code=500, detail=f"Error processing {request.task_type}: {e}")
|
| 332 |
elif request.task_type == "classification":
|
| 333 |
if request.image_file is None:
|
| 334 |
raise HTTPException(status_code=400, detail="Image file is required for classification.")
|
|
|
|
| 368 |
if request.audio_file is None:
|
| 369 |
raise HTTPException(status_code=400, detail="Audio file is required for speech-to-text.")
|
| 370 |
contents = await request.audio_file.read()
|
| 371 |
+
pipeline_func = model_data["pipeline"]
|
| 372 |
try:
|
| 373 |
+
transcription = pipeline_func(contents, sampling_rate=16000)[0]["text"]
|
| 374 |
return JSONResponse({"transcription": transcription})
|
| 375 |
except Exception as e:
|
| 376 |
raise HTTPException(status_code=500, detail=f"Error during speech-to-text: {str(e)}")
|
|
|
|
| 377 |
elif request.task_type == "text-to-speech":
|
| 378 |
if not request.input_text:
|
| 379 |
raise HTTPException(status_code=400, detail="Input text is required for text-to-speech.")
|
| 380 |
+
pipeline_func = model_data["pipeline"]
|
| 381 |
try:
|
| 382 |
+
audio = pipeline_func(request.input_text)[0]
|
| 383 |
file_path = os.path.join(TEMP_DIR, f"{uuid.uuid4()}.wav")
|
| 384 |
audio.save(file_path)
|
| 385 |
background_tasks.add_task(os.remove, file_path)
|
| 386 |
return FileResponse(file_path, media_type="audio/wav")
|
| 387 |
except Exception as e:
|
| 388 |
raise HTTPException(status_code=500, detail=f"Error during text-to-speech: {str(e)}")
|
|
|
|
| 389 |
elif request.task_type == "image-segmentation":
|
| 390 |
if request.image_file is None:
|
| 391 |
raise HTTPException(status_code=400, detail="Image file is required for image segmentation.")
|
| 392 |
contents = await request.image_file.read()
|
| 393 |
image = Image.open(BytesIO(contents)).convert("RGB")
|
| 394 |
+
pipeline_func = model_data["pipeline"]
|
| 395 |
+
try:
|
| 396 |
+
result = pipeline_func(image)
|
| 397 |
+
mask = result[0]['mask']
|
| 398 |
+
mask_byte_arr = BytesIO()
|
| 399 |
+
mask.save(mask_byte_arr, format="PNG")
|
| 400 |
+
mask_byte_arr.seek(0)
|
| 401 |
+
return StreamingResponse(mask_byte_arr, media_type="image/png")
|
| 402 |
+
except Exception as e:
|
| 403 |
+
raise HTTPException(status_code=500, detail=f"Error during image segmentation: {e}")
|
| 404 |
elif request.task_type == "feature-extraction":
|
| 405 |
if request.raw_input is None:
|
| 406 |
raise HTTPException(status_code=400, detail="raw_input is required for feature extraction.")
|
|
|
|
| 413 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 414 |
else:
|
| 415 |
raise ValueError("Unsupported raw_input type.")
|
| 416 |
+
features = inputs.pixel_values
|
| 417 |
return JSONResponse({"features": features.tolist()})
|
| 418 |
except Exception as fe:
|
| 419 |
raise HTTPException(status_code=400, detail=f"Error during feature extraction: {fe}")
|
|
|
|
| 447 |
image_contents = await request.image_file.read()
|
| 448 |
mask_contents = await request.mask_image.read()
|
| 449 |
image = Image.open(BytesIO(image_contents)).convert("RGB")
|
| 450 |
+
mask = Image.open(BytesIO(mask_contents)).convert("L")
|
| 451 |
+
pipeline_func = model_data["pipeline"]
|
| 452 |
+
try:
|
| 453 |
+
result = pipeline_func(image, mask)
|
| 454 |
+
inpainted_image = result[0]
|
| 455 |
+
img_byte_arr = BytesIO()
|
| 456 |
+
inpainted_image.save(img_byte_arr, format="PNG")
|
| 457 |
+
img_byte_arr.seek(0)
|
| 458 |
+
return StreamingResponse(img_byte_arr, media_type="image/png")
|
| 459 |
+
except Exception as e:
|
| 460 |
+
raise HTTPException(status_code=500, detail=f"Error during image inpainting: {e}")
|
| 461 |
elif request.task_type == "image-super-resolution":
|
| 462 |
if request.low_res_image is None:
|
| 463 |
raise HTTPException(status_code=400, detail="low_res_image is required for image super-resolution.")
|
| 464 |
contents = await request.low_res_image.read()
|
| 465 |
image = Image.open(BytesIO(contents)).convert("RGB")
|
| 466 |
+
pipeline_func = model_data["pipeline"]
|
| 467 |
+
try:
|
| 468 |
+
result = pipeline_func(image)
|
| 469 |
+
upscaled_image = result[0]
|
| 470 |
+
img_byte_arr = BytesIO()
|
| 471 |
+
upscaled_image.save(img_byte_arr, format="PNG")
|
| 472 |
+
img_byte_arr.seek(0)
|
| 473 |
+
return StreamingResponse(img_byte_arr, media_type="image/png")
|
| 474 |
+
except Exception as e:
|
| 475 |
+
raise HTTPException(status_code=500, detail=f"Error during image super-resolution: {e}")
|
| 476 |
elif request.task_type == "object-detection":
|
| 477 |
if request.image_file is None:
|
| 478 |
raise HTTPException(status_code=400, detail="Image file is required for object detection.")
|
| 479 |
contents = await request.image_file.read()
|
| 480 |
image = Image.open(BytesIO(contents)).convert("RGB")
|
| 481 |
+
pipeline_func = model_data["pipeline"]
|
| 482 |
image_processor = model_data["image_processor"]
|
| 483 |
inputs = image_processor(images=image, return_tensors="pt")
|
| 484 |
with torch.no_grad():
|
| 485 |
+
try:
|
| 486 |
+
outputs = pipeline_func(image)
|
| 487 |
+
detections = outputs
|
| 488 |
+
return JSONResponse({"detections": detections})
|
| 489 |
+
except Exception as e:
|
| 490 |
+
raise HTTPException(status_code=500, detail=f"Error during object detection: {e}")
|
| 491 |
elif request.task_type == "image-captioning":
|
| 492 |
if request.image_file is None:
|
| 493 |
raise HTTPException(status_code=400, detail="Image file is required for image captioning.")
|
| 494 |
contents = await request.image_file.read()
|
| 495 |
image = Image.open(BytesIO(contents)).convert("RGB")
|
| 496 |
+
pipeline_func = model_data["pipeline"]
|
| 497 |
+
try:
|
| 498 |
+
caption = pipeline_func(image)[0]['generated_text']
|
| 499 |
+
return JSONResponse({"caption": caption})
|
| 500 |
+
except Exception as e:
|
| 501 |
+
raise HTTPException(status_code=500, detail=f"Error during image captioning: {e}")
|
| 502 |
elif request.task_type == "audio-transcription":
|
| 503 |
if request.audio_file is None:
|
| 504 |
raise HTTPException(status_code=400, detail="Audio file is required for audio transcription.")
|
| 505 |
+
contents = await request.audio_file.read()
|
| 506 |
+
pipeline_func = model_data["pipeline"]
|
| 507 |
try:
|
| 508 |
+
transcription = pipeline_func(contents, sampling_rate=16000)[0]["text"]
|
| 509 |
+
return JSONResponse({"transcription": transcription})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
except Exception as e:
|
| 511 |
+
raise HTTPException(status_code=500, detail=f"Error during audio transcription: {str(e)}")
|
| 512 |
elif request.task_type == "summarization":
|
| 513 |
if request.input_text is None:
|
| 514 |
raise HTTPException(status_code=400, detail="Input text is required for summarization.")
|
| 515 |
model = model_data["model"].to(device)
|
| 516 |
tokenizer = model_data["tokenizer"]
|
| 517 |
+
inputs = tokenizer(request.input_text, return_tensors="pt", truncation=True, max_length=512)
|
| 518 |
with torch.no_grad():
|
| 519 |
+
try:
|
| 520 |
+
outputs = model.generate(**inputs)
|
| 521 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 522 |
+
return JSONResponse({"summary": summary})
|
| 523 |
+
except Exception as e:
|
| 524 |
+
raise HTTPException(status_code=500, detail=f"Error during summarization: {e}")
|
| 525 |
else:
|
| 526 |
raise HTTPException(status_code=500, detail=f"Unsupported task type")
|
| 527 |
except Exception as e:
|
|
|
|
| 537 |
async def health_check():
|
| 538 |
return {"status": "healthy"}
|
| 539 |
|
| 540 |
+
class Token(BaseModel):
|
| 541 |
+
access_token: str
|
| 542 |
+
token_type: str
|
| 543 |
|
| 544 |
@app.post("/token", response_model=Token)
|
| 545 |
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends()):
|
| 546 |
user = authenticate_user(form_data.username, form_data.password)
|
| 547 |
if not user:
|
| 548 |
+
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 549 |
access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
|
| 550 |
access_token = create_access_token(data={"sub": user["username"]}, expires_delta=access_token_expires)
|
| 551 |
return {"access_token": access_token, "token_type": "bearer"}
|
| 552 |
|
| 553 |
def authenticate_user(username: str, password: str):
|
| 554 |
+
cursor.execute("SELECT * FROM users WHERE username = ?", (username,))
|
| 555 |
+
user = cursor.fetchone()
|
| 556 |
+
if user and pwd_context.verify(password, user[2]):
|
| 557 |
+
return {"username": username}
|
| 558 |
return None
|
| 559 |
|
| 560 |
def create_access_token(data: Dict[str, Any], expires_delta: timedelta = None):
|
|
|
|
| 567 |
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
|
| 568 |
return encoded_jwt
|
| 569 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
|
| 571 |
@app.get("/users/me")
|
| 572 |
async def read_users_me(current_user: str = Depends(get_current_user)):
|
| 573 |
return {"username": current_user}
|
| 574 |
|
| 575 |
async def get_current_user(token: str = Depends(oauth2_scheme)):
|
| 576 |
+
credentials_exception = HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 577 |
try:
|
| 578 |
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
|
| 579 |
username: str = payload.get("sub")
|
| 580 |
if username is None:
|
| 581 |
raise credentials_exception
|
|
|
|
| 582 |
except JWTError:
|
| 583 |
raise credentials_exception
|
| 584 |
+
cursor.execute("SELECT * FROM users WHERE username = ?", (username,))
|
| 585 |
+
user = cursor.fetchone()
|
| 586 |
if user is None:
|
| 587 |
raise credentials_exception
|
| 588 |
return username
|
|
|
|
| 592 |
async def create_user(user: User):
|
| 593 |
try:
|
| 594 |
hashed_password = pwd_context.hash(user.password)
|
| 595 |
+
cursor.execute("INSERT INTO users (username, email, hashed_password) VALUES (?, ?, ?)", (user.username, user.email, hashed_password))
|
| 596 |
+
conn.commit()
|
| 597 |
+
return user
|
| 598 |
+
except sqlite3.IntegrityError:
|
| 599 |
+
raise HTTPException(status_code=400, detail="Username or email already exists")
|
|
|
|
| 600 |
except Exception as e:
|
| 601 |
logger.error(f"Error creating user: {e}")
|
| 602 |
raise HTTPException(status_code=500, detail=f"Error creating user: {e}")
|
|
|
|
| 606 |
async def update_user_data(username: str, user: User):
|
| 607 |
try:
|
| 608 |
hashed_password = pwd_context.hash(user.password)
|
| 609 |
+
cursor.execute("UPDATE users SET email = ?, hashed_password = ? WHERE username = ?", (user.email, hashed_password, username))
|
| 610 |
+
conn.commit()
|
| 611 |
+
return user
|
|
|
|
|
|
|
|
|
|
|
|
|
| 612 |
except Exception as e:
|
| 613 |
logger.error(f"Error updating user: {e}")
|
| 614 |
raise HTTPException(status_code=500, detail="Error updating user.")
|
| 615 |
|
| 616 |
|
|
|
|
| 617 |
@app.delete("/users/{username}", dependencies=[Depends(get_current_user)])
|
| 618 |
async def delete_user_account(username: str):
|
| 619 |
try:
|
| 620 |
+
cursor.execute("DELETE FROM users WHERE username = ?", (username,))
|
| 621 |
+
conn.commit()
|
| 622 |
+
return JSONResponse({"message": "User deleted successfully."}, status_code=200)
|
|
|
|
|
|
|
| 623 |
except Exception as e:
|
| 624 |
logger.error(f"Error deleting user: {e}")
|
| 625 |
raise HTTPException(status_code=500, detail="Error deleting user.")
|
|
|
|
| 627 |
|
| 628 |
@app.get("/users", dependencies=[Depends(get_current_user)])
|
| 629 |
async def get_all_users_route():
|
| 630 |
+
cursor.execute("SELECT username, email FROM users")
|
| 631 |
+
users = cursor.fetchall()
|
| 632 |
+
return [{"username": user[0], "email": user[1]} for user in users]
|
| 633 |
|
| 634 |
|
| 635 |
@app.exception_handler(RequestValidationError)
|
| 636 |
async def validation_exception_handler(request: Request, exc: RequestValidationError):
|
| 637 |
+
return JSONResponse(status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, content=json.dumps({"detail": exc.errors(), "body": exc.body}))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 638 |
|
| 639 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 640 |
uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=True)
|