Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
from llama_cpp import Llama
|
2 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
3 |
-
import re
|
4 |
import uvicorn
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
@@ -51,6 +50,7 @@ for config in model_configs:
|
|
51 |
|
52 |
class ChatRequest(BaseModel):
|
53 |
message: str
|
|
|
54 |
|
55 |
def normalize_input(input_text):
|
56 |
return input_text.strip()
|
@@ -66,15 +66,28 @@ def remove_duplicates(text):
|
|
66 |
seen_lines.add(line)
|
67 |
return '\n'.join(unique_lines)
|
68 |
|
69 |
-
def generate_model_response(model, inputs):
|
70 |
try:
|
71 |
if model is None:
|
72 |
-
return
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
except Exception as e:
|
76 |
print(f"Error generating response: {e}")
|
77 |
-
return f"Error: {e}"
|
78 |
|
79 |
app = FastAPI()
|
80 |
origins = ["*"]
|
@@ -90,17 +103,23 @@ app.add_middleware(
|
|
90 |
async def generate(request: ChatRequest):
|
91 |
inputs = normalize_input(request.message)
|
92 |
with ThreadPoolExecutor() as executor:
|
93 |
-
futures = [executor.submit(generate_model_response, model, inputs) for model in models.values()]
|
94 |
responses = [{'model': model_name, 'response': future.result()} for model_name, future in zip(models.keys(), as_completed(futures))]
|
95 |
|
96 |
unique_responses = {}
|
97 |
-
for
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
100 |
|
101 |
formatted_response = ""
|
102 |
-
for model,
|
103 |
-
formatted_response += f"**{model}:**\n
|
|
|
|
|
|
|
104 |
|
105 |
return {"response": formatted_response}
|
106 |
|
|
|
1 |
from llama_cpp import Llama
|
2 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
3 |
import uvicorn
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
50 |
|
51 |
class ChatRequest(BaseModel):
|
52 |
message: str
|
53 |
+
max_tokens_per_part: int = 256
|
54 |
|
55 |
def normalize_input(input_text):
|
56 |
return input_text.strip()
|
|
|
66 |
seen_lines.add(line)
|
67 |
return '\n'.join(unique_lines)
|
68 |
|
69 |
+
def generate_model_response(model, inputs, max_tokens_per_part):
|
70 |
try:
|
71 |
if model is None:
|
72 |
+
return []
|
73 |
+
full_response = ""
|
74 |
+
responses = []
|
75 |
+
tokens_generated = 0
|
76 |
+
while True:
|
77 |
+
response_part = model(inputs, max_tokens=max_tokens_per_part, stop=["\n\n"])
|
78 |
+
text = response_part['choices'][0]['text']
|
79 |
+
if not text.strip():
|
80 |
+
break
|
81 |
+
full_response += text
|
82 |
+
tokens_generated += len(response_part['choices'][0]['token'])
|
83 |
+
responses.append(remove_duplicates(text))
|
84 |
+
if "eos_token" in response_part['choices'][0]['token']:
|
85 |
+
break
|
86 |
+
inputs = ""
|
87 |
+
return responses
|
88 |
except Exception as e:
|
89 |
print(f"Error generating response: {e}")
|
90 |
+
return [f"Error: {e}"]
|
91 |
|
92 |
app = FastAPI()
|
93 |
origins = ["*"]
|
|
|
103 |
async def generate(request: ChatRequest):
|
104 |
inputs = normalize_input(request.message)
|
105 |
with ThreadPoolExecutor() as executor:
|
106 |
+
futures = [executor.submit(generate_model_response, model, inputs, request.max_tokens_per_part) for model in models.values()]
|
107 |
responses = [{'model': model_name, 'response': future.result()} for model_name, future in zip(models.keys(), as_completed(futures))]
|
108 |
|
109 |
unique_responses = {}
|
110 |
+
for response_set in responses:
|
111 |
+
model_name = response_set['model']
|
112 |
+
if model_name not in unique_responses:
|
113 |
+
unique_responses[model_name] = []
|
114 |
+
unique_responses[model_name].extend(response_set['response'])
|
115 |
+
|
116 |
|
117 |
formatted_response = ""
|
118 |
+
for model, response_parts in unique_responses.items():
|
119 |
+
formatted_response += f"**{model}:**\n"
|
120 |
+
for i, part in enumerate(response_parts):
|
121 |
+
formatted_response += f"Part {i+1}:\n{part}\n\n"
|
122 |
+
|
123 |
|
124 |
return {"response": formatted_response}
|
125 |
|