from transformers import pipeline import gradio as gr import numpy as np def get_sentiment(text): sentiment_pipeline=pipeline('sentiment-analysis') result=sentiment_pipeline(text) output = gr.Textbox(label="Output Box") return result[0]['label'],result[0]['score'] def summraztion(text): summary_pipe = pipeline('summarization',model="cnicu/t5-small-booksum") result=summary_pipe(text) output = gr.Textbox(label="Output Box") return result[0]['summary_text'] def chat_bot(text,histroy): chat_pip=pipeline('text-generation') mes=chat_pip(text) return mes[0]['generated_text'] transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") def transcribe(audio): sr, y = audio y = y.astype(np.float32) y /= np.max(np.abs(y)) return transcriber({"sampling_rate": sr, "raw": y})["text"] Audio = gr.Interface( transcribe, gr.Audio(sources=["microphone"]), "text", ) sentiment_a = gr.Interface(fn=get_sentiment , inputs=gr.Textbox(label="Enter the review ") , outputs=[gr.Textbox(label="sentiment") , gr.Textbox(label="Score")],description='sentiment-analysis') summraztion = gr.Interface(fn=summraztion , inputs=gr.Textbox(label="Enter the text ") , outputs=gr.Textbox(label="summraztion") ,description='summraztion') chatBot=gr.ChatInterface(chat_bot) demo = gr.TabbedInterface([sentiment_a, summraztion,chatBot,Audio], ["Sentiment Analysis", "Summraztion","ChatBot",'Audio']) demo.launch(debug=True)