Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# from PyPDF2 import PdfReader | |
# from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# import os | |
# from langchain_google_genai import GoogleGenerativeAIEmbeddings # we will use googe embiddings | |
# import google.generativeai as genai | |
# from langchain_community.vectorstores import FAISS # vectorstore | |
# from langchain_google_genai import ChatGoogleGenerativeAI | |
# from langchain.chains.question_answering import load_qa_chain | |
# from langchain.prompts import PromptTemplate | |
# from dotenv import load_dotenv | |
# load_dotenv() | |
# os.getenv("GOOGLE_API_KEY") | |
# genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
# #read pdf | |
# def get_pdf_text(pdf_doc): | |
# text="" | |
# for pdf in pdf_doc: | |
# pdf_reader = PdfReader(pdf) | |
# for page in pdf_reader.pages: | |
# text+=page.extract_text() | |
# return text | |
# # convert pdf into chunks | |
# def get_text_chunks(text): | |
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
# chunks = text_splitter.split_text(text) | |
# return chunks | |
# #convert into vectors | |
# def get_vector_store(text_chunks): | |
# embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") # embedding model from huggingface and its free | |
# vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
# vector_store.save_local("faiss_index") #im storing it in loca | |
# def get_conversational_chain(): | |
# prompt_template = """ | |
# Answer the question as detailed as possible from the provided context, make sure to provide all details, if the answer is not | |
# availabe in the provided context" , don't provide the wrong answer and say sorry there is no such information about that\n\n | |
# context:\n{context}?\n | |
# Question:\n{question}\n | |
# Answer: | |
# """ | |
# model=ChatGoogleGenerativeAI(model="gemini-pro" , temperature=0.3) | |
# prompt = PromptTemplate(template=prompt_template, input_variables=["context","question"]) | |
# chain = load_qa_chain(model , chain_type="stuff", prompt=prompt) | |
# return chain | |
# def user_input(user_query): | |
# embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") | |
# new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
# docs = new_db.similarity_search(user_query) | |
# chain = get_conversational_chain() | |
# response = chain( | |
# {"input_documents":docs, "question": user_query}, | |
# return_only_outputs=True | |
# ) | |
# print(response) | |
# st.write("reply: ", response["output_text"]) | |
# def main(): | |
# st.set_page_config("Ask your PDFs") | |
# st.header("Chat with your PDFs") | |
# user_question = st.text_input("Ask any question from your PDFs") | |
# if user_question: | |
# user_input(user_question) | |
# with st.sidebar: | |
# st.title("Menu") | |
# pdf_docs = st.file_uploader("Upload your PDF files" , type=['pdf'], accept_multiple_files=True) | |
# if st.button("Submit & Process"): | |
# if pdf_docs: | |
# with st.spinner("Processing..."): | |
# raw_text = get_pdf_text(pdf_docs) | |
# text_chunks = get_text_chunks(raw_text) | |
# get_vector_store(text_chunks) | |
# st.success("Done") | |
# else: | |
# st.warning("Please upload PDF files before processing.") | |
# if __name__ == "__main__": | |
# main() | |
#------------------------- 1 ---------------------------- | |
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import os | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
import google.generativeai as genai | |
from langchain_community.vectorstores import FAISS | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
from dotenv import load_dotenv | |
from datetime import datetime | |
load_dotenv() | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
# Define a conversational chain for answering questions | |
def get_conversational_chain(): | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context. If the answer is not available, say | |
"Sorry, no information is available on this topic in the context".\n\n | |
Context:\n{context}?\n | |
Question:\n{question}\n | |
Answer: | |
""" | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
return chain | |
# Convert pdf text into chunks | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
# Convert chunks into vector embeddings | |
def get_vector_store(text_chunks): | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
vector_store.save_local("faiss_index") | |
# Read pdf function | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() or "" # Handle None returns | |
return text | |
# Function to process user input and return bot response | |
def user_input(user_query): | |
try: | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
docs = new_db.similarity_search(user_query) | |
if not docs: | |
return {"output_text": "Sorry, no relevant documents found."} # Handle case with no results | |
chain = get_conversational_chain() | |
response = chain({"input_documents": docs, "question": user_query}, return_only_outputs=True) | |
return response | |
except Exception as e: | |
return {"output_text": f"Error processing your request: {str(e)}"} | |
# UI layout and styles for the chat interface | |
st.set_page_config(page_title="Ask your PDFs", layout="centered") | |
st.markdown(""" | |
<style> | |
.chat-container { | |
max-width: 600px; | |
margin: 0 auto; | |
} | |
.user-message { | |
background-color: #DCF8C6; | |
padding: 10px; | |
border-radius: 10px; | |
margin-bottom: 5px; | |
text-align: left; | |
} | |
.bot-message { | |
background-color: #E5E5EA; | |
padding: 10px; | |
border-radius: 10px; | |
margin-bottom: 5px; | |
text-align: left; | |
white-space: pre-wrap; | |
} | |
.role { | |
font-weight: bold; | |
margin-top: 10px; | |
} | |
.timestamp { | |
font-size: 12px; | |
color: gray; | |
margin-bottom: 10px; | |
} | |
.fixed-bottom { | |
position: fixed; | |
bottom: 0; | |
left: 0; | |
right: 0; | |
background-color: white; | |
padding: 10px; | |
box-shadow: 0 -2px 5px rgba(0, 0, 0, 0.2); | |
} | |
.chat-history { | |
max-height: 80vh; /* Limit height of chat history */ | |
overflow-y: auto; /* Enable scrolling */ | |
margin-bottom: 60px; /* Space for the input field */ | |
} | |
.header { | |
text-align: center; | |
margin: 20px 0; /* Add margin for spacing */ | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Initialize session state for chat history | |
if 'chat_history' not in st.session_state: | |
st.session_state['chat_history'] = [] | |
# Centered header | |
st.markdown('<h1 class="header">📄 Chat with your PDFs</h1>', unsafe_allow_html=True) | |
# Sidebar for PDF uploads | |
with st.sidebar: | |
st.title("Upload PDFs") | |
pdf_docs = st.file_uploader("Upload your PDF files", type=['pdf'], accept_multiple_files=True) | |
if st.button("Submit & Process"): | |
if pdf_docs: | |
with st.spinner("Processing..."): | |
try: | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
get_vector_store(text_chunks) | |
st.success("Processing complete! You can start asking questions.") | |
except Exception as e: | |
st.error(f"Error processing PDF files: {e}") | |
else: | |
st.warning("Please upload PDF files before processing.") | |
# Display chat history | |
chat_history_container = st.container() | |
with chat_history_container: | |
st.markdown('<div class="chat-history">', unsafe_allow_html=True) # Add scrollable container for chat history | |
for role, text, timestamp in st.session_state['chat_history']: | |
if role == "You": | |
st.markdown(f'<div class="chat-container"><div class="role">You</div><div class="user-message">{text}</div><div class="timestamp">{timestamp}</div></div>', unsafe_allow_html=True) | |
else: | |
st.markdown(f'<div class="chat-container"><div class="role">Bot</div><div class="bot-message">{text}</div><div class="timestamp">{timestamp}</div></div>', unsafe_allow_html=True) | |
st.markdown('</div>', unsafe_allow_html=True) # Close scrollable container | |
# Input field at the bottom for user question | |
input_container = st.container() | |
with input_container: | |
st.markdown('<div class="fixed-bottom">', unsafe_allow_html=True) | |
input_text = st.text_input("Ask your PDF a question:", value="", key="input_text") | |
submit = st.button("Send") | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Handle user input and bot response | |
if submit and input_text: | |
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
st.session_state['chat_history'].append(("You", input_text, now)) | |
# Display placeholder | |
st.session_state['chat_history'].append(("Bot", "Analyzing Input...", now)) | |
# Get response from user_input function | |
response = user_input(input_text) | |
# Get the bot's response | |
bot_response = response.get("output_text", "Sorry, something went wrong.") | |
# Remove the placeholder and add bot response | |
st.session_state['chat_history'][-1] = ("Bot", bot_response, now) # Replace the last placeholder with the actual response | |
# Display the updated chat history again | |
with chat_history_container: | |
st.markdown('<div class="chat-history">', unsafe_allow_html=True) # Add scrollable container for chat history | |
for role, text, timestamp in st.session_state['chat_history']: | |
if role == "You": | |
st.markdown(f'<div class="chat-container"><div class="role">You</div><div class="user-message">{text}</div><div class="timestamp">{timestamp}</div></div>', unsafe_allow_html=True) | |
else: | |
st.markdown(f'<div class="chat-container"><div class="role">Bot</div><div class="bot-message">{text}</div><div class="timestamp">{timestamp}</div></div>', unsafe_allow_html=True) | |
st.markdown('</div>', unsafe_allow_html=True) # Close scrollable container | |