import gradio as gr
from pyvis.network import Network
import networkx as nx
import numpy as np
import pandas as pd
import os
from datasets import load_dataset
from datasets import Features
from datasets import Value
from datasets import Dataset
import matplotlib.pyplot as plt
import re
pattern = r'"(.*?)"'
# this pattern captures anything in a double quotes.
Secret_token = os.getenv('HF_token')
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
edge_info = dataset.to_pandas()
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')})
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
narrator_bios = narrator_bios['train'].to_pandas()
narrator_bios.loc[49845, 'Narrator Rank'] = 'رسول الله'
narrator_bios.loc[49845, 'Number of Narrations'] = 0
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
narrator_bios.loc[49845, 'Number of Narrations'] = 327512
# 8125 Narrators have no Generation, listed in dataset as None
narrator_bios['Generation'] = narrator_bios['Generation'].replace([None], [-1])
narrator_bios['Generation'] = narrator_bios['Generation'].astype(int)
features = Features({'matn': Value('string'), 'taraf_ID': Value('string'), 'bookid_hadithid': Value('string')})
dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features)
matn_info = dataset['train'].to_pandas()
matn_info = matn_info.drop(97550)
matn_info = matn_info.drop(307206)
matn_info['taraf_ID'] = matn_info['taraf_ID'].replace('KeyAbsent', -1)
matn_info['taraf_ID'] = matn_info['taraf_ID'].astype(int)
# Isnad Info Hadiths column is structured like {"BookNum_HadithNum", ...} for each edge
isnad_info = load_dataset('FDSRashid/hadith_info',token = Secret_token, data_files = 'isnad_info.csv', split = 'train').to_pandas()
isnad_info['Hadiths Cleaned'] = isnad_info['Hadiths'].apply(lambda x: [re.findall(pattern, string)[0].split("_") for string in x[1:-1].split(',')])
# Hadiths Cleaned is a list of lists, each sub-list is Book Id, Hadith ID
taraf_max = np.max(matn_info['taraf_ID'].unique())
isnad_info['Tarafs Cleaned'] = isnad_info['Tarafs'].apply(lambda x: np.array([int(i.strip(' ')) for i in x[1:-1].split(',')]))
cmap = plt.colormaps['cool']
books = load_dataset('FDSRashid/Hadith_info', data_files='Books.csv', token = Secret_token)['train'].to_pandas()
matn_info['Book_ID'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[0]))
matn_info['Hadith Number'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[1]))
matn_info = pd.merge(matn_info, books, on='Book_ID')
def value_to_hex(value):
rgba_color = cmap(value)
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255))
#edge_info, matn_info, narrator_bios, isnad_info
def visualize_isnad(taraf_num, yaxis):
taraf_hadith = matn_info[matn_info['taraf_ID'] == taraf_num]['bookid_hadithid'].to_list()
taraf_matns = matn_info[matn_info['taraf_ID'] == taraf_num]['matn'].to_list()
taraf_hadith_split = [i.split('_') for i in taraf_hadith]
taraf_book = matn_info[matn_info['taraf_ID'] == taraf_num]['Book_Name'].to_list()
taraf_author = matn_info[matn_info['taraf_ID'] == taraf_num]['Author'].to_list()
taraf_hadith_number = matn_info[matn_info['taraf_ID'] == taraf_num]['Hadith Number'].to_list()
lst_hadith = []
hadith_cleaned = isnad_info['Tarafs Cleaned'].apply(lambda x: taraf_num in x)
isnad_hadith = isnad_info[hadith_cleaned]
for i in range(len(taraf_hadith_split)):
# This checks each hadith in the Taraf, is that book id hadith id found in each of the edges of isnad_info
#This loop get the end transmitter of each Hadith in the Taraf
isnad_in_hadith1 = isnad_hadith['Hadiths Cleaned'].apply(lambda x: taraf_hadith_split[i] in x )
isnad_hadith1 = isnad_hadith[isnad_in_hadith1][['Source', 'Destination']]
G = nx.from_pandas_edgelist(isnad_hadith1, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
node = [int(n) for n, d in G.out_degree() if d == 0]
for n in node:
gen_node = narrator_bios[narrator_bios['Rawi ID']==n]['Generation'].iloc[0]
name_node = narrator_bios[narrator_bios['Rawi ID']==n]['Famous Name'].iloc[0]
lst_hadith.append([taraf_matns[i], gen_node, name_node, taraf_book[i], taraf_author[i], taraf_hadith_number[i], str(n), str(i)])
df = pd.DataFrame(lst_hadith, columns = ['Matn', 'Generation', 'Name', 'Book_Name', 'Author', 'Book Hadith Number', 'End Transmitter ID', 'Hadith Number'])
#hadith_cleaned = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split) )
isnad_hadith['Teacher'] = isnad_hadith['Source'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Student'] = isnad_hadith['Destination'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Teacher'] = isnad_hadith['Teacher'].apply(lambda x: x[0] if len(x)==1 else 'فلان')
isnad_hadith['Student'] = isnad_hadith['Student'].apply(lambda x: x[0] if len(x)==1 else 'فلان')
end_nodes = df['End Transmitter ID'].tolist()
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot')
x_stretch = 4
y_stretch = 4
net = Network(directed =True)
for node, pos in isnad_pos.items():
node_info = narrator_bios[narrator_bios['Rawi ID'] == int(node)]
student_narrations = node_info['Number of Narrations'].to_list()
if len(student_narrations):
student_narrations = student_narrations[0]
else:
student_narrations = 1
student_gen = node_info['Generation'].to_list()
if len(student_gen):
student_gen = student_gen[0]
else:
student_gen = -1
student_rank = node_info["Narrator Rank"].to_list()
if len(student_rank):
student_rank = student_rank[0]
else:
student_rank = 'فلان'
node_name = node_info['Famous Name'].to_list()
if len(node_name):
node_name = node_name[0]
else:
node_name = 'فلان'
if node == '99999':
net.add_node(node, font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 70)
elif node in end_nodes:
end_matn_info = df[df["End Transmitter ID"] == source]
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen} \n Hadith {" ".join(end_matn_info["Hadith Number"].tolist())}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50)
else:
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50)
for _, row in isnad_hadith.iterrows():
source = row['Source']
target = row['Destination']
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}")
net.toggle_physics(False)
html = net.generate_html()
html = html.replace("'", "\"")
return f"""""" , df
# for _, row in isnad_hadith.iterrows():
# source = row['Source']
# target = row['Destination']
# teacher_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Source'])]
# student_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Destination'])]
# teacher_narrations = teacher_info['Number of Narrations'].to_list()
# if len(teacher_narrations):
# teacher_narrations = teacher_narrations[0]
# else:
# teacher_narrations = row['Hadith Count']
# student_narrations = student_info['Number of Narrations'].to_list()
# if len(student_narrations):
# student_narrations = student_narrations[0]
# else:
# student_narrations = row['Hadith Count']
# teacher_gen = teacher_info['Generation'].to_list()
# if len(teacher_gen):
# teacher_gen = teacher_gen[0]
# else:
# teacher_gen = -1
# student_gen = student_info['Generation'].to_list()
# if len(student_gen):
# student_gen = student_gen[0]
# else:
# student_gen = -1
# teacher_rank = teacher_info["Narrator Rank"].to_list()
# if len(teacher_rank):
# teacher_rank = teacher_rank[0]
# else:
# teacher_rank = 'فلان'
# student_rank = student_info["Narrator Rank"].to_list()
# if len(student_rank):
# student_rank = student_rank[0]
# else:
# student_rank = 'فلان'
# if row['Source'] == '99999':
# net.add_node(source, font = {'size':50, 'color': 'Black'}, color = '#000000', label = f'{row["Teacher"]}')
# elif source in end_nodes:
# end_matn_info = df[df["End Transmitter ID"] == source]
# net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{row["Teacher"]} \n {teacher_rank} \n ID: {row["Source"]} - Gen {teacher_gen} \n Hadith {" ".join(end_matn_info["Hadith Number"].tolist())}')
# else:
# net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{row["Teacher"]} \n {teacher_rank} \n ID: {row["Source"]} - Gen {teacher_gen}')
# if target in end_nodes:
# end_matn_info = df[df["End Transmitter ID"] == target]
# net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{row["Student"]} \n{student_rank} \n ID: {row["Destination"]} - Gen {student_gen} \n Hadith {" ".join(end_matn_info["Hadith Number"].tolist())}')
# else:
# net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{row["Student"]} \n{student_rank} \n ID: {row["Destination"]} - Gen {student_gen}')
# net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}")
# net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200)
# html = net.generate_html()
# html = html.replace("'", "\"")
# return f"""""" , df
def taraf_booknum(taraf_num):
taraf = matn_info[matn_info['taraf_ID'] == taraf_num]
return taraf[['matn', 'Book_ID', 'Hadith Number', 'Book_Name', 'Author']]
def visualize_subTaraf(df, yaxis):
df['bookid_hadithid'] = df['Book_ID'].astype(str) + '_' + df['Hadith Number'].astype(str)
hadith = matn_info[matn_info['bookid_hadithid'].isin(df['bookid_hadithid'])]
taraf_hadith_split = [i.split('_') for i in hadith['bookid_hadithid'].to_list()]
hadith_cleaned = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split))
isnad_hadith = isnad_info[hadith_cleaned]
isnad_hadith['Teacher'] = isnad_hadith['Source'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Student'] = isnad_hadith['Destination'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Teacher'] = isnad_hadith['Teacher'].apply(lambda x: x[0] if len(x)==1 else 'فلان')
isnad_hadith['Student'] = isnad_hadith['Student'].apply(lambda x: x[0] if len(x)==1 else 'فلان')
net = Network(directed =True)
for _, row in isnad_hadith.iterrows():
source = row['Source']
target = row['Destination']
teacher_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Source'])]
student_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Destination'])]
teacher_narrations = teacher_info['Number of Narrations'].to_list()
if len(teacher_narrations):
teacher_narrations = teacher_narrations[0]
else:
teacher_narrations = row['Hadith Count']
student_narrations = student_info['Number of Narrations'].to_list()
if len(student_narrations):
student_narrations = student_narrations[0]
else:
student_narrations = row['Hadith Count']
teacher_gen = teacher_info['Generation'].to_list()
if len(teacher_gen):
teacher_gen = teacher_gen[0]
else:
teacher_gen = -1
student_gen = student_info['Generation'].to_list()
if len(student_gen):
student_gen = student_gen[0]
else:
student_gen = -1
teacher_rank = teacher_info["Narrator Rank"].to_list()
if len(teacher_rank):
teacher_rank = teacher_rank[0]
else:
teacher_rank = 'فلان'
student_rank = student_info["Narrator Rank"].to_list()
if len(student_rank):
student_rank = student_rank[0]
else:
student_rank = 'فلان'
if row['Source'] == '99999':
net.add_node(source, font = {'size':50, 'color': 'Black'}, color = '#000000', label = f'{row["Teacher"]}')
else:
net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{row["Teacher"]} \n {teacher_rank} \n ID: {row["Source"]} - Gen {teacher_gen}')
net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{row["Student"]} \n{student_rank} \n ID: {row["Destination"]} - Gen {student_gen}')
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}")
net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200)
html = net.generate_html()
html = html.replace("'", "\"")
return f""""""
with gr.Blocks() as demo:
with gr.Tab("Whole Taraf Visualizer"):
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
btn = gr.Button('Submit')
btn.click(fn = visualize_isnad, inputs = [taraf_number, Yaxis], outputs = [gr.HTML(), gr.DataFrame(wrap=True)])
with gr.Tab("Book and Hadith Number Retriever"):
taraf_num = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
btn_num = gr.Button('Retrieve')
btn_num.click(fn=taraf_booknum, inputs = [taraf_num], outputs= [gr.DataFrame(wrap=True)])
with gr.Tab('Select Hadith Isnad Visualizer'):
yyaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
hadith_selection = gr.Dataframe(
headers=["Book_ID", "Hadith Number"],
datatype=["number", "number"],
row_count=5,
col_count=(2, "fixed"))
btn_hadith = gr.Button('Visualize')
btn_hadith.click(fn=visualize_subTaraf, inputs=[hadith_selection, yyaxis], outputs=[gr.HTML()])
demo.launch()