FDSRashid's picture
Update app.py
f59ce12 verified
raw
history blame
23.6 kB
import gradio as gr
from pyvis.network import Network
import networkx as nx
import numpy as np
import pandas as pd
import os
from datasets import load_dataset
from datasets import Features
from datasets import Value
from datasets import Dataset
import matplotlib.pyplot as plt
import re
from collections import defaultdict
from huggingface_hub import hf_hub_download
pattern = r'"(.*?)"'
# this pattern captures anything in a double quotes.
Secret_token = os.getenv('HF_token')
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
edge_info = dataset.to_pandas()
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')})
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
narrator_bios = narrator_bios['train'].to_pandas()
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูˆู„ ุงู„ู„ู‡'
narrator_bios.loc[49845, 'Number of Narrations'] = 0
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
narrator_bios.loc[49845, 'Number of Narrations'] = 327512
# 8125 Narrators have no Generation, listed in dataset as None
narrator_bios['Generation'] = narrator_bios['Generation'].replace([None], [-1])
narrator_bios['Generation'] = narrator_bios['Generation'].astype(int)
features = Features({'matn': Value('string'), 'taraf_ID': Value('string'), 'bookid_hadithid': Value('string')})
dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features)
matn_info = dataset['train'].to_pandas()
matn_info = matn_info.drop(97550)
matn_info = matn_info.drop(307206)
matn_info['taraf_ID'] = matn_info['taraf_ID'].replace('KeyAbsent', -1)
matn_info['taraf_ID'] = matn_info['taraf_ID'].astype(int)
# Isnad Info Hadiths column is structured like {"BookNum_HadithNum", ...} for each edge
isnad_info = load_dataset('FDSRashid/hadith_info',token = Secret_token, data_files = 'isnad_info.csv', split = 'train').to_pandas()
isnad_info['Hadiths Cleaned'] = isnad_info['Hadiths'].apply(lambda x: [re.findall(pattern, string)[0].split("_") for string in x[1:-1].split(',')])
# Hadiths Cleaned is a list of lists, each sub-list is Book Id, Hadith ID
taraf_max = np.max(matn_info['taraf_ID'].unique())
isnad_info['Tarafs Cleaned'] = isnad_info['Tarafs'].apply(lambda x: np.array([int(i.strip(' ')) for i in x[1:-1].split(',')]))
cmap = plt.colormaps['cool']
books = load_dataset('FDSRashid/Hadith_info', data_files='Books.csv', token = Secret_token)['train'].to_pandas()
matn_info['Book_ID'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[0]))
matn_info['Hadith Number'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[1]))
matn_info = pd.merge(matn_info, books, on='Book_ID')
from huggingface_hub import hf_hub_download
# Download and read a file
file_path = hf_hub_download(
repo_id="FDSRashid/hadith_info", # read in fast lookup data structure
filename="hadith_lookup.json",
repo_type="dataset",
token=Secret_token,
)
with open(file_path, 'r') as f:
hadith_lookup_dict = json.load(f)
hadith_lookup = defaultdict(list, hadith_lookup_dict)
def value_to_hex(value):
rgba_color = cmap(value)
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255))
def get_node_info(node):
node_info = narrator_bios[narrator_bios['Rawi ID'] == int(node)]
# Extract values with defaults, using `.iloc` if available, otherwise default
student_narrations = node_info['Number of Narrations'].iloc[0] if not node_info.empty else 1
student_gen = node_info['Generation'].iloc[0] if not node_info.empty else -1
student_rank = node_info['Narrator Rank'].iloc[0] if not node_info.empty else 'ูู„ุงู†'
node_name = node_info['Famous Name'].iloc[0] if not node_info.empty else 'ูู„ุงู†'
return node_info,student_narrations,student_gen, student_rank, node_name
def visualize_isnad(taraf_num, yaxis):
# Precompute filtered dataframes
taraf = matn_info[matn_info['taraf_ID'] == taraf_num]
taraf_hadith = taraf['bookid_hadithid'].to_list()
# Precompute hadiths where taraf_num exists
hadith_cleaned = isnad_info['Tarafs Cleaned'].apply(lambda x: taraf_num in x)
isnad_hadith = isnad_info[hadith_cleaned]
lst_hadith = []
for i, hadith_parts in enumerate(taraf_hadith):
# look up hadith for each bookid_hadithid
isnad_hadith1 = isnad_info.iloc[hadith_lookup[taraf_hadith[i]]][['Source', 'Destination']]
# Create graph and find end nodes
G = nx.from_pandas_edgelist(isnad_hadith1, source='Source', target='Destination', create_using=nx.DiGraph())
nodes = [int(n) for n, d in G.out_degree() if d == 0]
if nodes:
# Batch fetch data from narrator_bios for efficiency
bio_data = narrator_bios[narrator_bios['Rawi ID'].isin(nodes)]
for n in nodes:
gen_node = bio_data.loc[bio_data['Rawi ID'] == n, 'Generation'].squeeze()
gen_node = gen_node if pd.notna(gen_node) else -1
name_node = bio_data.loc[bio_data['Rawi ID'] == n, 'Famous Name'].squeeze()
name_node = name_node if pd.notna(name_node) else 'ูู„ุงู†'
# Append result for each node
lst_hadith.append([
taraf.iloc[i]['matn'],
gen_node,
name_node,
taraf.iloc[i]['Book_Name'],
taraf.iloc[i]['Author'],
taraf.iloc[i]['Hadith Number'],
str(n),
i
])
# Convert to DataFrame
df = pd.DataFrame(lst_hadith, columns=['Matn', 'Generation', 'Name', 'Book_Name', 'Author', 'Book Hadith Number', 'End Transmitter ID', 'Hadith Number'])
isnad_hadith['Teacher'] = isnad_hadith['Source'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Student'] = isnad_hadith['Destination'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Teacher'] = isnad_hadith['Teacher'].apply(lambda x: x[0] if len(x)==1 else 'ูู„ุงู†')
isnad_hadith['Student'] = isnad_hadith['Student'].apply(lambda x: x[0] if len(x)==1 else 'ูู„ุงู†')
end_nodes = df['End Transmitter ID'].tolist()
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot')
x_stretch = 4
y_stretch = 4
net = Network(directed =True, select_menu=True, cdn_resources='remote')
for node, pos in isnad_pos.items():
node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node)
if node == '99999':
net.add_node(node, font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 70)
elif node in end_nodes:
end_matn_info = df[df["End Transmitter ID"] == node]
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen} \n Hadith {" ".join(end_matn_info["Hadith Number"].astype("string").tolist())}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50)
else:
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50)
for _, row in isnad_hadith.iterrows():
source = row['Source']
target = row['Destination']
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}")
net.toggle_physics(False)
html = net.generate_html()
html = html.replace("'", "\"")
df = df.rename(columns = {'Generation': 'Gen.', 'Book Hadith Number': 'Hdth Num', 'End Transmitter ID': 'End Narrator ID', 'Hadith Number': 'Index', 'Book_Name': 'Book', 'Name':'Final Narrator'})
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , df.drop('Hdth Num', axis=1)
def visualize_subTaraf(taraf_num, hadith_str, yaxis):
hadith_list = hadith_str.split(',')
hadith_list = [hadith.strip() for hadith in hadith_list]
hadiths = np.array([], dtype=int)
for hadith in hadith_list:
if '-' in hadith:
if hadith.count('-') > 1:
#print('Please use only one Dash mark!')
raise gr.Error('Please use only one Dash mark!')
hadith_multi = hadith.strip().split('-')
if any([not had.isnumeric() for had in hadith_multi]):
#print('Invalid Begining')
raise gr.Error('Invalid Begining')
elif len(hadith_multi) != 2:
#print('Two numbers for a range of Hadith numbers please!')
raise gr.Error('Two numbers for a range of Hadith numbers please!')
hadith_multi = [int(had) for had in hadith_multi]
hadiths = np.append(hadiths, np.arange(hadith_multi[0], hadith_multi[1] +1))
elif hadith.isnumeric():
hadiths = np.append(hadiths, int(hadith))
else:
#print('Invalid Data format!')
raise gr.Error("Invalid Data format!")
hadiths= np.unique(hadiths)
taraf = matn_info[matn_info['taraf_ID'] == taraf_num]
num_hadith = taraf.shape[0]
if np.max(hadiths) > num_hadith:
raise gr.Error(f'Hadith index outside of range. Total Number of Hadith in this Taraf: {num_hadith}')
taraf['Index'] = np.arange(num_hadith)
sub_taraf = taraf[taraf['Index'].isin(hadiths)]
taraf_hadith = sub_taraf['bookid_hadithid'].to_list()
taraf_hadith_split = [i.split('_') for i in taraf_hadith]
hadith_cleaned = isnad_info['Tarafs Cleaned'].apply(lambda x: taraf_num in x)
isnad_hadith = isnad_info[hadith_cleaned]
subtaraf_filter = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split))
isnad_hadith = isnad_hadith[subtaraf_filter]
isnad_hadith['Teacher'] = isnad_hadith['Source'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Student'] = isnad_hadith['Destination'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Teacher'] = isnad_hadith['Teacher'].apply(lambda x: x[0] if len(x)==1 else 'ูู„ุงู†')
isnad_hadith['Student'] = isnad_hadith['Student'].apply(lambda x: x[0] if len(x)==1 else 'ูู„ุงู†')
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot')
x_stretch = 4
y_stretch = 4
net = Network(directed =True, select_menu=True, cdn_resources='remote')
for node, pos in isnad_pos.items():
node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node)
if node == '99999':
net.add_node(node, font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 70)
else:
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50)
for _, row in isnad_hadith.iterrows():
source = row['Source']
target = row['Destination']
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}")
net.toggle_physics(False)
html = net.generate_html()
html = html.replace("'", "\"")
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""", sub_taraf[['matn', 'Book_Name', 'Author', 'Book_ID', 'Hadith Number']]
def taraf_booknum(taraf_num):
taraf = matn_info[matn_info['taraf_ID'] == taraf_num]
num_hadith = taraf.shape[0]
taraf['Index'] = np.arange(num_hadith)
return taraf[['matn', 'Book_ID', 'Hadith Number', 'Book_Name', 'Author', 'Index']]
def visualize_hadith_isnad(df, yaxis):
df['bookid_hadithid'] = df['Book_ID'].astype(str) + '_' + df['Hadith Number'].astype(str)
hadith = matn_info[matn_info['bookid_hadithid'].isin(df['bookid_hadithid'])]
taraf_hadith_split = [i.split('_') for i in hadith['bookid_hadithid'].to_list()]
hadith_cleaned = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split))
isnad_hadith = isnad_info[hadith_cleaned]
isnad_hadith['Teacher'] = isnad_hadith['Source'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Student'] = isnad_hadith['Destination'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Teacher'] = isnad_hadith['Teacher'].apply(lambda x: x[0] if len(x)==1 else 'ูู„ุงู†')
isnad_hadith['Student'] = isnad_hadith['Student'].apply(lambda x: x[0] if len(x)==1 else 'ูู„ุงู†')
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot')
x_stretch = 4
y_stretch = 4
net = Network(directed =True, select_menu=True, cdn_resources='remote')
for node, pos in isnad_pos.items():
node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node)
if node == '99999':
net.add_node(node, font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 70)
else:
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50)
for _, row in isnad_hadith.iterrows():
source = row['Source']
target = row['Destination']
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}")
net.toggle_physics(False)
html = net.generate_html()
html = html.replace("'", "\"")
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , hadith[['matn', 'Book_ID', 'Hadith Number', 'Book_Name', 'Author', 'taraf_ID']]
def visualize_narrator_taraf(taraf_num, narrator, yaxis):
taraf = matn_info[matn_info['taraf_ID'] == taraf_num]
num_hadith = taraf.shape[0]
taraf['Index'] = np.arange(num_hadith)
hadith_cleaned = isnad_info['Tarafs Cleaned'].apply(lambda x: taraf_num in x)
isnad_hadith = isnad_info[hadith_cleaned]
isnad_hadith['Teacher'] = isnad_hadith['Source'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Student'] = isnad_hadith['Destination'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Teacher'] = isnad_hadith['Teacher'].apply(lambda x: x[0] if len(x)==1 else 'ูู„ุงู†')
isnad_hadith['Student'] = isnad_hadith['Student'].apply(lambda x: x[0] if len(x)==1 else 'ูู„ุงู†')
taraf_hadith = taraf['bookid_hadithid'].to_list()
taraf_hadith_split = [i.split('_') for i in taraf_hadith]
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
if narrator not in G.nodes():
raise gr.Error('Narrator not in Isnad of Taraf!')
# nodes = list(G.nodes)
# nodes = [node for node in nodes if node not in list(nx.ancestors(G, narrator)) + list(nx.descendants(G, narrator)) and node !=narrator]
# [G.remove_nodes_from(nodes)]
matns_with_narrator = []
end_node = {}
for i in range(len(taraf_hadith_split)):
isnad_in_hadith1 = isnad_hadith['Hadiths Cleaned'].apply(lambda x: taraf_hadith_split[i] in x )
isnad_hadith1 = isnad_hadith[isnad_in_hadith1]
G1 = nx.from_pandas_edgelist(isnad_hadith1, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
node = [n for n, d in G1.out_degree() if d == 0]
if narrator in list(G1.nodes):
matns_with_narrator.append(taraf_hadith[i])
for n in node:
if n not in list(end_node.keys()):
end_node[n] = []
end_node[n].append(str(i))
matns_with_narrator_split = [i.split('_') for i in matns_with_narrator]
hadith_cleaned = isnad_hadith['Hadiths Cleaned'].apply(lambda x: any(i in x for i in matns_with_narrator_split))
isnad_hadith = isnad_hadith[hadith_cleaned]
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot')
narrator_matn_info = taraf[taraf['bookid_hadithid'].isin(matns_with_narrator)]
num_hadith = narrator_matn_info.shape[0]
narrator_matn_info['Subset Index'] = np.arange(num_hadith)
x_stretch = 4
y_stretch = 4
net = Network(directed =True, select_menu=True, cdn_resources='remote')
for node, pos in isnad_pos.items():
node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node)
if node == '99999':
net.add_node(node, font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 70)
elif node in list(end_node.keys()):
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen} \n Hadiths {", ".join(end_node[node])}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50)
else:
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50)
for edge in G.edges:
row = isnad_hadith[(isnad_hadith['Source'] == edge[0]) & (isnad_hadith['Destination'] == edge[1])].iloc[0]
source = row['Source']
target = row['Destination']
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}")
net.toggle_physics(False)
html = net.generate_html()
html = html.replace("'", "\"")
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , narrator_matn_info[['matn', 'Book_Name', 'Author', 'Book_ID', 'Hadith Number', 'Index', 'Subset Index']]
with gr.Blocks() as demo:
with gr.Tab("Whole Taraf Visualizer"):
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
btn = gr.Button('Submit')
#
btn.click(fn = visualize_isnad, inputs = [taraf_number, Yaxis], outputs = [gr.HTML(), gr.DataFrame(wrap=True, column_widths=[43, 8, 11,11,10,8, 9])])
with gr.Tab("Book and Hadith Number Retriever"):
taraf_num = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
btn_num = gr.Button('Retrieve')
btn_num.click(fn=taraf_booknum, inputs = [taraf_num], outputs= [gr.DataFrame(wrap=True)])
with gr.Tab('Sub Taraf Visualizer'):
taraf_num = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
hadith_str = gr.Textbox(label='Hadith Selection', info='Choose which range of Hadith you would like visualized from the Taraf (eg "1, 2, 4-7")')
btn_sub = gr.Button('Visualize')
btn_sub.click(fn=visualize_subTaraf, inputs = [taraf_num, hadith_str, Yaxis], outputs=[gr.HTML(), gr.DataFrame(wrap=True)])
with gr.Tab('Select Hadith Isnad Visualizer'):
yyaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
hadith_selection = gr.Dataframe(
headers=["Book_ID", "Hadith Number"],
datatype=["number", "number"],
row_count=5,
col_count=(2, "fixed"))
btn_hadith = gr.Button('Visualize')
btn_hadith.click(fn=visualize_hadith_isnad, inputs=[hadith_selection, yyaxis], outputs=[gr.HTML(), gr.DataFrame(wrap=True)])
with gr.Tab('Taraf Narrator Isnad Visualizer'):
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
narr = gr.Textbox(label='Narrator', info='Choose a Narrator (Refer to full isnad from previous tab)')
btn_narr = gr.Button('Visualize')
btn_narr.click(fn=visualize_narrator_taraf, inputs=[taraf_number, narr, Yaxis], outputs=[gr.HTML(), gr.DataFrame(wrap=True)])
demo.launch()