Spaces:
Runtime error
Runtime error
Commit
·
ebc167e
1
Parent(s):
53628ab
Fix
Browse files- app.py +28 -2
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
import os
|
2 |
from typing import List, Tuple
|
3 |
import multiprocessing
|
|
|
4 |
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
import streamlit as st
|
8 |
import torch
|
9 |
from torch import Tensor
|
10 |
-
from decord import VideoReader, cpu
|
11 |
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification
|
12 |
|
13 |
np.random.seed(0)
|
@@ -49,7 +49,27 @@ def load_model(model_name: str):
|
|
49 |
return feature_extractor, model
|
50 |
|
51 |
|
52 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
videoreader = VideoReader(VIDEO_TMP_PATH, num_threads=1, ctx=cpu(0))
|
54 |
|
55 |
# sample 8 frames
|
@@ -58,6 +78,12 @@ def inference(file_path: str):
|
|
58 |
clip_len=8, frame_sample_rate=4, seg_len=len(videoreader)
|
59 |
)
|
60 |
video = videoreader.get_batch(indices).asnumpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
inputs = feature_extractor(list(video), return_tensors="pt")
|
63 |
|
|
|
1 |
import os
|
2 |
from typing import List, Tuple
|
3 |
import multiprocessing
|
4 |
+
import cv2
|
5 |
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
import streamlit as st
|
9 |
import torch
|
10 |
from torch import Tensor
|
|
|
11 |
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification
|
12 |
|
13 |
np.random.seed(0)
|
|
|
49 |
return feature_extractor, model
|
50 |
|
51 |
|
52 |
+
def read_video(file_path: str) -> np.ndarray:
|
53 |
+
cap = cv2.VideoCapture(file_path)
|
54 |
+
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 1000 frames
|
55 |
+
print("Number of frames", length)
|
56 |
+
|
57 |
+
indices = sample_frame_indices(clip_len=8, frame_sample_rate=4, seg_len=length)
|
58 |
+
|
59 |
+
frames: List[np.array] = []
|
60 |
+
for i in indices:
|
61 |
+
cap.set(1, i)
|
62 |
+
ret, frame = cap.read()
|
63 |
+
if not ret:
|
64 |
+
continue
|
65 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
66 |
+
frames.append(frame)
|
67 |
+
return np.array(frames)
|
68 |
+
|
69 |
+
|
70 |
+
def read_video_decord(file_path: str) -> np.ndarray:
|
71 |
+
from decord import VideoReader, cpu
|
72 |
+
|
73 |
videoreader = VideoReader(VIDEO_TMP_PATH, num_threads=1, ctx=cpu(0))
|
74 |
|
75 |
# sample 8 frames
|
|
|
78 |
clip_len=8, frame_sample_rate=4, seg_len=len(videoreader)
|
79 |
)
|
80 |
video = videoreader.get_batch(indices).asnumpy()
|
81 |
+
# print(video.shape) # (8, 720, 1280, 3)
|
82 |
+
return video
|
83 |
+
|
84 |
+
|
85 |
+
def inference(file_path: str):
|
86 |
+
video = read_video(file_path)
|
87 |
|
88 |
inputs = feature_extractor(list(video), return_tensors="pt")
|
89 |
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
streamlit
|
2 |
transformers
|
3 |
torch
|
4 |
-
decord
|
5 |
black
|
|
|
|
1 |
streamlit
|
2 |
transformers
|
3 |
torch
|
4 |
+
# decord
|
5 |
black
|
6 |
+
opencv-python
|