EkhiAzur commited on
Commit
3bbff8c
·
1 Parent(s): 92cbc2e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -7
app.py CHANGED
@@ -1,23 +1,25 @@
1
  import gradio as gr
2
 
3
- from transformers import AutoModel, pipeline, AutoTokenizer
4
 
5
- access_token = "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"
6
 
7
- model = AutoModel.from_pretrained("EkhiAzur/RoBERTA_3", token=access_token)
8
 
9
  tokenizer = AutoTokenizer.from_pretrained(
10
- "ixa-ehu/roberta-eus-euscrawl-large-cased",
 
11
  use_fast=True,
12
  add_prefix_space=True,
13
  )
14
 
15
- classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, max_length=512,
16
  padding=True, truncation=True, batch_size=1)
17
 
18
  def prozesatu(testua):
19
- prediction = prozesatu.classifier([testua])
20
- return f'C1:{prediction["label"]}. Probabilitatea:{prediction["score"]}'
 
21
 
22
  prozesatu.classifier = classifier
23
 
 
1
  import gradio as gr
2
 
3
+ from transformers import AutoModel, pipeline, AutoTokenizer, AutoModelForSequenceClassification
4
 
5
+ access_token = "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"
6
 
7
+ model = AutoModelForSequenceClassification.from_pretrained("EkhiAzur/RoBERTA_3", token=access_token)
8
 
9
  tokenizer = AutoTokenizer.from_pretrained(
10
+ "EkhiAzur/RoBERTA_3",
11
+ token = access_token,
12
  use_fast=True,
13
  add_prefix_space=True,
14
  )
15
 
16
+ classifier = pipeline("text-classification", tokenizer=tokenizer, model=model, max_length=512,
17
  padding=True, truncation=True, batch_size=1)
18
 
19
  def prozesatu(testua):
20
+
21
+ prediction = prozesatu.classifier(testua)[0]
22
+ return 'C1:{}. Probabilitatea:{:.2f}'.format(prediction["label"], round(prediction["score"], 2))
23
 
24
  prozesatu.classifier = classifier
25