Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
# Import a module
|
2 |
from transformers import AutoModelForSequenceClassification
|
3 |
from transformers import TFAutoModelForSequenceClassification
|
@@ -39,8 +41,11 @@ config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
|
|
39 |
config.label2id = {"NEGATIVE": 0, "NEUTRAL": 1, "POSITIVE": 2}
|
40 |
|
41 |
# creating a function used for gradio app
|
42 |
-
|
|
|
43 |
|
|
|
|
|
44 |
# Create a new dictionary
|
45 |
scores = {}
|
46 |
|
@@ -53,14 +58,22 @@ def sentiment_analysis(text):
|
|
53 |
scores = output[0][0].detach().numpy()
|
54 |
scores = softmax(scores)
|
55 |
|
56 |
-
|
57 |
-
scores =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Return the dictionary as the response content
|
60 |
return scores
|
61 |
|
62 |
|
63 |
-
|
64 |
# Create your interface
|
65 |
demo = gr.Interface(
|
66 |
fn=sentiment_analysis,
|
|
|
1 |
+
|
2 |
+
|
3 |
# Import a module
|
4 |
from transformers import AutoModelForSequenceClassification
|
5 |
from transformers import TFAutoModelForSequenceClassification
|
|
|
41 |
config.label2id = {"NEGATIVE": 0, "NEUTRAL": 1, "POSITIVE": 2}
|
42 |
|
43 |
# creating a function used for gradio app
|
44 |
+
# Creating dictionary
|
45 |
+
dictionary = {}
|
46 |
|
47 |
+
def sentiment_analysis(text):
|
48 |
+
|
49 |
# Create a new dictionary
|
50 |
scores = {}
|
51 |
|
|
|
58 |
scores = output[0][0].detach().numpy()
|
59 |
scores = softmax(scores)
|
60 |
|
61 |
+
# Convert the numpy array into a list
|
62 |
+
scores = scores.tolist()
|
63 |
+
ranking = np.argsort(scores)
|
64 |
+
ranking = ranking[::-1]
|
65 |
+
|
66 |
+
for i in range(len(scores)):
|
67 |
+
l = config.id2label[ranking[i]]
|
68 |
+
s = scores[ranking[i]]
|
69 |
+
|
70 |
+
# Convert the numpy float32 object into a float
|
71 |
+
scores[l] = float(s)
|
72 |
|
73 |
# Return the dictionary as the response content
|
74 |
return scores
|
75 |
|
76 |
|
|
|
77 |
# Create your interface
|
78 |
demo = gr.Interface(
|
79 |
fn=sentiment_analysis,
|