Spaces:
Runtime error
Runtime error
import gradio as gr | |
import joblib | |
import numpy as np | |
import pandas as pd | |
from huggingface_hub import hf_hub_download | |
# Load the trained model and scaler objects from file | |
REPO_ID = "Hemg/marketforecast" # hugging face repo ID | |
MoDEL_FILENAME = "market.joblib" # model file name | |
SCALER_FILENAME ="marketscaler.joblib" # scaler file name | |
model = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=MoDEL_FILENAME)) | |
scaler = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=SCALER_FILENAME)) | |
# model = joblib.load('D:\gradioapp\X.joblib') | |
# scaler = joblib.load('D:\gradioapp\Xx.joblib') | |
# Define the prediction function | |
def predict_enrol(Year, Instagram_Advertising, Facebook_Advertising, Event_Expenses, | |
Internet_Expenses, Facebook_Enroll, Instagram_Enroll, Internet_Enroll, | |
Recommendation, Total_Expenses): | |
# Prepare input data | |
input_data = [[Year, Instagram_Advertising, Facebook_Advertising, Event_Expenses, | |
Internet_Expenses, Facebook_Enroll, Instagram_Enroll, Internet_Enroll, | |
Recommendation, Total_Expenses]] | |
# Get the feature names from the Gradio interface inputs | |
feature_names = ["Year", "Instagram Advertising", "Facebook Advertising", | |
"Event Expenses", "Internet Expenses", "Facebook Enroll", | |
"Instagram Enroll", "Internet Enroll", "Recommendation", | |
"Total Expenses"] | |
# Create a Pandas DataFrame with the input data and feature names | |
input_df = pd.DataFrame(input_data, columns=feature_names) | |
# Scale the input data using the loaded scaler | |
scaled_input = scaler.transform(input_df) | |
# Make predictions using the loaded model | |
prediction = model.predict(scaled_input)[0] | |
return f"Predicted House Price: ${prediction:,.2f}" # Price is our dependent variable | |
# Create the Gradio app | |
iface = gr.Interface( | |
fn=predict_enrol, | |
inputs=[ | |
gr.Number(label="Year"), | |
gr.Number(label="Instagram Advertising"), | |
gr.Number(label="Facebook Advertising"), | |
gr.Number(label="Event Expenses"), | |
gr.Number(label="Internet Expenses"), | |
gr.Number(label="Facebook Enroll"), | |
gr.Number(label="Instagram Enroll"), | |
gr.Number(label="Internet Enroll"), | |
gr.Number(label="Recommendation"), | |
gr.Number(label="Total Enroll"), | |
], | |
outputs="text", | |
title="marketforecast", | |
description="Predict market" | |
) | |
# Run the app | |
if __name__ == "__main__": | |
iface.launch(share=True) |