Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoTokenizer | |
| from inference import load_model, predict | |
| # Load tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
| model, device = load_model("evo_hellaswag.pt") | |
| # Interface logic | |
| def evo_decision(prompt, option1, option2): | |
| result = predict(model, tokenizer, prompt, option1, option2, device) | |
| choice = option1 if result["choice"] == 0 else option2 | |
| score_0 = round(result["scores"][0] * 100, 2) | |
| score_1 = round(result["scores"][1] * 100, 2) | |
| return ( | |
| f"β Evo Suggests: **{choice}**\n\n" | |
| f"π§ Confidence Scores:\n" | |
| f"- Option 1: {score_0}%\n" | |
| f"- Option 2: {score_1}%" | |
| ) | |
| # UI | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 𧬠EvoTransformer β Reasoning API\nAsk Evo a question with 2 choices.") | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="π§ Scenario or Question", placeholder="e.g. You spilled juice on the floor.") | |
| with gr.Row(): | |
| option1 = gr.Textbox(label="Option 1", placeholder="Wipe it with a cloth.") | |
| option2 = gr.Textbox(label="Option 2", placeholder="Ignore and walk away.") | |
| with gr.Row(): | |
| output = gr.Markdown() | |
| with gr.Row(): | |
| btn = gr.Button("Ask Evo") | |
| btn.click(fn=evo_decision, inputs=[prompt, option1, option2], outputs=[output]) | |
| # Launch app | |
| demo.launch() | |