Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
from tensorflow import keras
|
| 5 |
+
from tensorflow.keras import layers
|
| 6 |
+
from keras.datasets import mnist
|
| 7 |
+
|
| 8 |
+
# Function to display image, latent representation, and reconstructed image
|
| 9 |
+
def display_reconstruction(index, autoencoder, encoder, x_test):
|
| 10 |
+
original = x_test[index]
|
| 11 |
+
latent_repr = encoder.predict(np.expand_dims(original, 0))[0]
|
| 12 |
+
reconstructed = autoencoder.predict(np.expand_dims(original, 0))[0]
|
| 13 |
+
|
| 14 |
+
fig, axs = plt.subplots(1, 3, figsize=(12, 4))
|
| 15 |
+
|
| 16 |
+
# Display original image
|
| 17 |
+
axs[0].imshow(np.reshape(original, (28, 28)), cmap='gray')
|
| 18 |
+
axs[0].set_title('Original Image')
|
| 19 |
+
|
| 20 |
+
# Display latent representation as a bar chart
|
| 21 |
+
axs[1].bar(range(len(latent_repr)), latent_repr)
|
| 22 |
+
axs[1].set_title('Latent Representation')
|
| 23 |
+
|
| 24 |
+
# Display reconstructed image
|
| 25 |
+
axs[2].imshow(np.reshape(reconstructed, (28, 28)), cmap='gray')
|
| 26 |
+
axs[2].set_title('Reconstructed Image')
|
| 27 |
+
|
| 28 |
+
for ax in axs:
|
| 29 |
+
ax.axis('off')
|
| 30 |
+
|
| 31 |
+
st.pyplot(fig)
|
| 32 |
+
|
| 33 |
+
# Main Streamlit app
|
| 34 |
+
st.title("Autoencoder Training and Visualization")
|
| 35 |
+
|
| 36 |
+
# Button to trigger training
|
| 37 |
+
if st.button("Train Autoencoder"):
|
| 38 |
+
# Load and preprocess data
|
| 39 |
+
(x_train, _), (x_test, _) = mnist.load_data()
|
| 40 |
+
|
| 41 |
+
x_train = x_train.astype('float32') / 255.0
|
| 42 |
+
x_test = x_test.astype('float32') / 255.0
|
| 43 |
+
|
| 44 |
+
x_train = np.reshape(x_train, (-1, 784)) # Flatten to (None, 784)
|
| 45 |
+
x_test = np.reshape(x_test, (-1, 784))
|
| 46 |
+
|
| 47 |
+
# Define autoencoder architecture
|
| 48 |
+
input_img = keras.Input(shape=(784,))
|
| 49 |
+
|
| 50 |
+
encoded = layers.Dense(128, activation='relu')(input_img)
|
| 51 |
+
encoded = layers.Dense(64, activation='relu')(encoded)
|
| 52 |
+
latent_vector = layers.Dense(32, activation='relu')(encoded)
|
| 53 |
+
|
| 54 |
+
decoded = layers.Dense(64, activation='relu')(latent_vector)
|
| 55 |
+
decoded = layers.Dense(128, activation='relu')(decoded)
|
| 56 |
+
decoded = layers.Dense(784, activation='sigmoid')(decoded)
|
| 57 |
+
|
| 58 |
+
autoencoder = keras.Model(input_img, decoded)
|
| 59 |
+
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
|
| 60 |
+
|
| 61 |
+
# Train the autoencoder and display progress
|
| 62 |
+
with st.spinner("Training in progress..."):
|
| 63 |
+
autoencoder.fit(x_train, x_train, epochs=5, batch_size=128, validation_data=(x_test, x_test))
|
| 64 |
+
|
| 65 |
+
# Create encoder model
|
| 66 |
+
encoder = keras.Model(input_img, latent_vector)
|
| 67 |
+
|
| 68 |
+
# Input for image index to display
|
| 69 |
+
test_index = st.number_input("Enter an index (0-9999) to view an image from the test set:", min_value=0, max_value=9999)
|
| 70 |
+
|
| 71 |
+
# Button to display the reconstruction
|
| 72 |
+
if st.button("Display Reconstruction"):
|
| 73 |
+
display_reconstruction(test_index, autoencoder, encoder, x_test)
|