Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Create app.py
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,251 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
         | 
| 4 | 
            +
            import threading
         | 
| 5 | 
            +
            import queue
         | 
| 6 | 
            +
            import time
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            # Model configuration
         | 
| 9 | 
            +
            model_name = "HelpingAI/Dhanishtha-2.0-preview"
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            # Global variables for model and tokenizer
         | 
| 12 | 
            +
            model = None
         | 
| 13 | 
            +
            tokenizer = None
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            def load_model():
         | 
| 16 | 
            +
                """Load the model and tokenizer"""
         | 
| 17 | 
            +
                global model, tokenizer
         | 
| 18 | 
            +
                
         | 
| 19 | 
            +
                print("Loading tokenizer...")
         | 
| 20 | 
            +
                tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 21 | 
            +
                
         | 
| 22 | 
            +
                print("Loading model...")
         | 
| 23 | 
            +
                model = AutoModelForCausalLM.from_pretrained(
         | 
| 24 | 
            +
                    model_name,
         | 
| 25 | 
            +
                    torch_dtype="auto",
         | 
| 26 | 
            +
                    device_map="auto",
         | 
| 27 | 
            +
                    trust_remote_code=True
         | 
| 28 | 
            +
                )
         | 
| 29 | 
            +
                
         | 
| 30 | 
            +
                print("Model loaded successfully!")
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            class GradioTextStreamer(TextStreamer):
         | 
| 33 | 
            +
                """Custom TextStreamer for Gradio integration"""
         | 
| 34 | 
            +
                def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
         | 
| 35 | 
            +
                    super().__init__(tokenizer, skip_prompt, skip_special_tokens)
         | 
| 36 | 
            +
                    self.text_queue = queue.Queue()
         | 
| 37 | 
            +
                    self.generated_text = ""
         | 
| 38 | 
            +
                    
         | 
| 39 | 
            +
                def on_finalized_text(self, text: str, stream_end: bool = False):
         | 
| 40 | 
            +
                    """Called when text is finalized"""
         | 
| 41 | 
            +
                    self.generated_text += text
         | 
| 42 | 
            +
                    self.text_queue.put(text)
         | 
| 43 | 
            +
                    if stream_end:
         | 
| 44 | 
            +
                        self.text_queue.put(None)
         | 
| 45 | 
            +
                        
         | 
| 46 | 
            +
                def get_generated_text(self):
         | 
| 47 | 
            +
                    """Get all generated text so far"""
         | 
| 48 | 
            +
                    return self.generated_text
         | 
| 49 | 
            +
                    
         | 
| 50 | 
            +
                def reset(self):
         | 
| 51 | 
            +
                    """Reset the streamer"""
         | 
| 52 | 
            +
                    self.generated_text = ""
         | 
| 53 | 
            +
                    # Clear the queue
         | 
| 54 | 
            +
                    while not self.text_queue.empty():
         | 
| 55 | 
            +
                        try:
         | 
| 56 | 
            +
                            self.text_queue.get_nowait()
         | 
| 57 | 
            +
                        except queue.Empty:
         | 
| 58 | 
            +
                            break
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            def generate_response(message, history, max_tokens, temperature, top_p):
         | 
| 61 | 
            +
                """Generate streaming response"""
         | 
| 62 | 
            +
                global model, tokenizer
         | 
| 63 | 
            +
                
         | 
| 64 | 
            +
                if model is None or tokenizer is None:
         | 
| 65 | 
            +
                    yield "Model is still loading. Please wait..."
         | 
| 66 | 
            +
                    return
         | 
| 67 | 
            +
                
         | 
| 68 | 
            +
                # Prepare conversation history
         | 
| 69 | 
            +
                messages = []
         | 
| 70 | 
            +
                for user_msg, assistant_msg in history:
         | 
| 71 | 
            +
                    messages.append({"role": "user", "content": user_msg})
         | 
| 72 | 
            +
                    if assistant_msg:
         | 
| 73 | 
            +
                        messages.append({"role": "assistant", "content": assistant_msg})
         | 
| 74 | 
            +
                
         | 
| 75 | 
            +
                # Add current message
         | 
| 76 | 
            +
                messages.append({"role": "user", "content": message})
         | 
| 77 | 
            +
                
         | 
| 78 | 
            +
                # Apply chat template
         | 
| 79 | 
            +
                text = tokenizer.apply_chat_template(
         | 
| 80 | 
            +
                    messages,
         | 
| 81 | 
            +
                    tokenize=False,
         | 
| 82 | 
            +
                    add_generation_prompt=True
         | 
| 83 | 
            +
                )
         | 
| 84 | 
            +
                
         | 
| 85 | 
            +
                # Tokenize input
         | 
| 86 | 
            +
                model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
         | 
| 87 | 
            +
                
         | 
| 88 | 
            +
                # Create and setup streamer
         | 
| 89 | 
            +
                streamer = GradioTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
         | 
| 90 | 
            +
                streamer.reset()
         | 
| 91 | 
            +
                
         | 
| 92 | 
            +
                # Start generation in a separate thread
         | 
| 93 | 
            +
                generation_kwargs = {
         | 
| 94 | 
            +
                    **model_inputs,
         | 
| 95 | 
            +
                    "max_new_tokens": max_tokens,
         | 
| 96 | 
            +
                    "temperature": temperature,
         | 
| 97 | 
            +
                    "top_p": top_p,
         | 
| 98 | 
            +
                    "do_sample": True,
         | 
| 99 | 
            +
                    "pad_token_id": tokenizer.eos_token_id,
         | 
| 100 | 
            +
                    "streamer": streamer,
         | 
| 101 | 
            +
                    "return_dict_in_generate": True
         | 
| 102 | 
            +
                }
         | 
| 103 | 
            +
                
         | 
| 104 | 
            +
                # Run generation in thread
         | 
| 105 | 
            +
                def generate():
         | 
| 106 | 
            +
                    try:
         | 
| 107 | 
            +
                        with torch.no_grad():
         | 
| 108 | 
            +
                            model.generate(**generation_kwargs)
         | 
| 109 | 
            +
                    except Exception as e:
         | 
| 110 | 
            +
                        streamer.text_queue.put(f"Error: {str(e)}")
         | 
| 111 | 
            +
                        streamer.text_queue.put(None)
         | 
| 112 | 
            +
                
         | 
| 113 | 
            +
                thread = threading.Thread(target=generate)
         | 
| 114 | 
            +
                thread.start()
         | 
| 115 | 
            +
                
         | 
| 116 | 
            +
                # Stream the results
         | 
| 117 | 
            +
                generated_text = ""
         | 
| 118 | 
            +
                while True:
         | 
| 119 | 
            +
                    try:
         | 
| 120 | 
            +
                        new_text = streamer.text_queue.get(timeout=30)
         | 
| 121 | 
            +
                        if new_text is None:
         | 
| 122 | 
            +
                            break
         | 
| 123 | 
            +
                        generated_text += new_text
         | 
| 124 | 
            +
                        yield generated_text
         | 
| 125 | 
            +
                    except queue.Empty:
         | 
| 126 | 
            +
                        break
         | 
| 127 | 
            +
                
         | 
| 128 | 
            +
                thread.join(timeout=1)
         | 
| 129 | 
            +
                
         | 
| 130 | 
            +
                # Final yield with complete text
         | 
| 131 | 
            +
                if generated_text:
         | 
| 132 | 
            +
                    yield generated_text
         | 
| 133 | 
            +
                else:
         | 
| 134 | 
            +
                    yield "No response generated."
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            def chat_interface(message, history, max_tokens, temperature, top_p):
         | 
| 137 | 
            +
                """Main chat interface"""
         | 
| 138 | 
            +
                if not message.strip():
         | 
| 139 | 
            +
                    return history, ""
         | 
| 140 | 
            +
                
         | 
| 141 | 
            +
                # Add user message to history
         | 
| 142 | 
            +
                history.append([message, ""])
         | 
| 143 | 
            +
                
         | 
| 144 | 
            +
                # Generate response
         | 
| 145 | 
            +
                for partial_response in generate_response(message, history[:-1], max_tokens, temperature, top_p):
         | 
| 146 | 
            +
                    history[-1][1] = partial_response
         | 
| 147 | 
            +
                    yield history, ""
         | 
| 148 | 
            +
                
         | 
| 149 | 
            +
                return history, ""
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            # Load model on startup
         | 
| 152 | 
            +
            print("Initializing model...")
         | 
| 153 | 
            +
            load_model()
         | 
| 154 | 
            +
             | 
| 155 | 
            +
            # Create Gradio interface
         | 
| 156 | 
            +
            with gr.Blocks(title="Dhanishtha-2.0-preview Chat", theme=gr.themes.Soft()) as demo:
         | 
| 157 | 
            +
                gr.Markdown(
         | 
| 158 | 
            +
                    """
         | 
| 159 | 
            +
                    # 🤖 Dhanishtha-2.0-preview Chat
         | 
| 160 | 
            +
                    
         | 
| 161 | 
            +
                    Chat with the **HelpingAI/Dhanishtha-2.0-preview** model!
         | 
| 162 | 
            +
                    """
         | 
| 163 | 
            +
                )
         | 
| 164 | 
            +
                
         | 
| 165 | 
            +
                with gr.Row():
         | 
| 166 | 
            +
                    with gr.Column(scale=4):
         | 
| 167 | 
            +
                        chatbot = gr.Chatbot(
         | 
| 168 | 
            +
                            [],
         | 
| 169 | 
            +
                            elem_id="chatbot",
         | 
| 170 | 
            +
                            bubble_full_width=False,
         | 
| 171 | 
            +
                            height=500,
         | 
| 172 | 
            +
                            show_copy_button=True
         | 
| 173 | 
            +
                        )
         | 
| 174 | 
            +
                        
         | 
| 175 | 
            +
                        with gr.Row():
         | 
| 176 | 
            +
                            msg = gr.Textbox(
         | 
| 177 | 
            +
                                container=False,
         | 
| 178 | 
            +
                                placeholder="Type your message here...",
         | 
| 179 | 
            +
                                label="Message",
         | 
| 180 | 
            +
                                autofocus=True,
         | 
| 181 | 
            +
                                scale=7
         | 
| 182 | 
            +
                            )
         | 
| 183 | 
            +
                            send_btn = gr.Button("Send", variant="primary", scale=1)
         | 
| 184 | 
            +
                            
         | 
| 185 | 
            +
                    with gr.Column(scale=1):
         | 
| 186 | 
            +
                        gr.Markdown("### ⚙️ Parameters")
         | 
| 187 | 
            +
                        
         | 
| 188 | 
            +
                        max_tokens = gr.Slider(
         | 
| 189 | 
            +
                            minimum=1,
         | 
| 190 | 
            +
                            maximum=4096,
         | 
| 191 | 
            +
                            value=2048,
         | 
| 192 | 
            +
                            step=1,
         | 
| 193 | 
            +
                            label="Max Tokens",
         | 
| 194 | 
            +
                            info="Maximum number of tokens to generate"
         | 
| 195 | 
            +
                        )
         | 
| 196 | 
            +
                        
         | 
| 197 | 
            +
                        temperature = gr.Slider(
         | 
| 198 | 
            +
                            minimum=0.1,
         | 
| 199 | 
            +
                            maximum=2.0,
         | 
| 200 | 
            +
                            value=0.7,
         | 
| 201 | 
            +
                            step=0.1,
         | 
| 202 | 
            +
                            label="Temperature",
         | 
| 203 | 
            +
                            info="Controls randomness in generation"
         | 
| 204 | 
            +
                        )
         | 
| 205 | 
            +
                        
         | 
| 206 | 
            +
                        top_p = gr.Slider(
         | 
| 207 | 
            +
                            minimum=0.1,
         | 
| 208 | 
            +
                            maximum=1.0,
         | 
| 209 | 
            +
                            value=0.9,
         | 
| 210 | 
            +
                            step=0.05,
         | 
| 211 | 
            +
                            label="Top-p",
         | 
| 212 | 
            +
                            info="Controls diversity of generation"
         | 
| 213 | 
            +
                        )
         | 
| 214 | 
            +
                        
         | 
| 215 | 
            +
                        clear_btn = gr.Button("🗑️ Clear Chat", variant="secondary")
         | 
| 216 | 
            +
                
         | 
| 217 | 
            +
                # Event handlers
         | 
| 218 | 
            +
                msg.submit(
         | 
| 219 | 
            +
                    chat_interface,
         | 
| 220 | 
            +
                    inputs=[msg, chatbot, max_tokens, temperature, top_p],
         | 
| 221 | 
            +
                    outputs=[chatbot, msg],
         | 
| 222 | 
            +
                    concurrency_limit=1
         | 
| 223 | 
            +
                )
         | 
| 224 | 
            +
                
         | 
| 225 | 
            +
                send_btn.click(
         | 
| 226 | 
            +
                    chat_interface,
         | 
| 227 | 
            +
                    inputs=[msg, chatbot, max_tokens, temperature, top_p],
         | 
| 228 | 
            +
                    outputs=[chatbot, msg],
         | 
| 229 | 
            +
                    concurrency_limit=1
         | 
| 230 | 
            +
                )
         | 
| 231 | 
            +
                
         | 
| 232 | 
            +
                clear_btn.click(
         | 
| 233 | 
            +
                    lambda: ([], ""),
         | 
| 234 | 
            +
                    outputs=[chatbot, msg]
         | 
| 235 | 
            +
                )
         | 
| 236 | 
            +
                
         | 
| 237 | 
            +
                # Example prompts
         | 
| 238 | 
            +
                gr.Examples(
         | 
| 239 | 
            +
                    examples=[
         | 
| 240 | 
            +
                        ["Hello! Who are you?"],
         | 
| 241 | 
            +
                        ["Explain quantum computing in simple terms"],
         | 
| 242 | 
            +
                        ["Write a short story about a robot learning to paint"],
         | 
| 243 | 
            +
                        ["What are the benefits of renewable energy?"],
         | 
| 244 | 
            +
                        ["Help me write a Python function to sort a list"]
         | 
| 245 | 
            +
                    ],
         | 
| 246 | 
            +
                    inputs=msg,
         | 
| 247 | 
            +
                    label="💡 Example Prompts"
         | 
| 248 | 
            +
                )
         | 
| 249 | 
            +
             | 
| 250 | 
            +
            if __name__ == "__main__":
         | 
| 251 | 
            +
                demo.queue(max_size=20).launch()
         | 
 
			
