File size: 7,426 Bytes
0f3978b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5683ad2
0f3978b
 
5bb086c
6dbc9d1
 
 
0f3978b
 
 
 
 
 
 
 
2eaf1c2
0f3978b
 
 
 
 
 
 
2eaf1c2
0f3978b
 
 
2eaf1c2
0f3978b
2eaf1c2
0f3978b
2eaf1c2
0f3978b
2eaf1c2
 
 
0f3978b
7a1f2b3
2eaf1c2
 
0f3978b
2eaf1c2
0f3978b
 
2eaf1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f3978b
 
7a1f2b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f3978b
2eaf1c2
7a1f2b3
 
 
 
 
0f3978b
 
7a1f2b3
2eaf1c2
7a1f2b3
0f3978b
2eaf1c2
7a1f2b3
 
 
 
 
 
0f3978b
2eaf1c2
145b6e0
2eaf1c2
 
d746c59
145b6e0
2eaf1c2
145b6e0
 
 
 
 
 
 
 
 
2eaf1c2
145b6e0
 
 
 
2eaf1c2
145b6e0
2eaf1c2
145b6e0
2eaf1c2
145b6e0
 
 
 
 
 
2eaf1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
import requests
import time
import json
import base64
import os
from PIL import Image
from io import BytesIO

class Prodia:
    def __init__(self, api_key, base=None):
        self.base = base or "https://api.prodia.com/v1"
        self.headers = {
            "X-Prodia-Key": api_key
        }

    def generate(self, params):
        response = self._post(f"{self.base}/sdxl/generate", params)
        return response.json()

    def get_job(self, job_id):
        response = self._get(f"{self.base}/job/{job_id}")
        return response.json()

    def wait(self, job):
        job_result = job

        while job_result['status'] not in ['succeeded', 'failed']:
            time.sleep(0.25)
            job_result = self.get_job(job['job'])

        return job_result

    def list_models(self):
        response = self._get(f"{self.base}/sdxl/models")
        return response.json()

    def list_samplers(self):
        response = self._get(f"{self.base}/sdxl/samplers")
        return response.json()

    def _post(self, url, params):
        headers = {
            **self.headers,
            "Content-Type": "application/json"
        }
        response = requests.post(url, headers=headers, data=json.dumps(params))

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response

    def _get(self, url):
        response = requests.get(url, headers=self.headers)

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response


def image_to_base64(image_path):
    # Open the image with PIL
    with Image.open(image_path) as image:
        # Convert the image to bytes
        buffered = BytesIO()
        image.save(buffered, format="PNG")  # You can change format to PNG if needed

        # Encode the bytes to base64
        img_str = base64.b64encode(buffered.getvalue())

    return img_str.decode('utf-8')  # Convert bytes to string


prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))

def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
    result = prodia_client.generate({
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    })

    job = prodia_client.wait(result)

    return job["imageUrl"]

css = """
/* Overall Styling */
body {
    font-family: 'Arial', sans-serif;
}

.container {
    display: flex;
    flex-direction: column;
    gap: 20px;
}

/* Image Output Area */
#image-output-container {
    border: 2px solid #ccc;
    border-radius: 8px;
    overflow: hidden; 
}

#image-output {
    max-width: 100%;
    height: auto;
}

/* Settings Section */
#settings {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); 
    gap: 20px;
}

.setting-group {
    border: 1px solid #ccc;
    padding: 20px;
    border-radius: 8px;
}

/* Button Styling */
#generate {
    background-color: #007bff; /* Example - use your preferred color */
    color: white;
    padding: 15px 25px;
    border: none;
    border-radius: 5px;
    cursor: pointer;
}

#generate:hover {
    background-color: #0056b3; /* Darker shade on hover */
}

/* Responsive Design - Adjust breakpoints as needed */
@media screen and (max-width: 768px) {
    #settings {
        grid-template-columns: 1fr; 
    }
}
"""

# --- Gradio Interface ---

with gr.Blocks(css=css) as demo:
    state = gr.State(value="Welcome Screen")  # To control the visibility of tabs

    with gr.Tabs() as tabs:
        with gr.TabItem("Welcome Screen"):
            with gr.Row():
                logo = gr.Image(
                    value="http://disneypixaraigenerator.com/wp-content/uploads/2023/12/cropped-android-chrome-512x512-1.png",
                    elem_id="logo",
                    height=200,
                    width=300
                )

            with gr.Row():
                title = gr.Markdown("<h1 style='text-align: center;'>Disney Pixar AI Generator</h1>", elem_id="title")

            with gr.Row():
                start_button = gr.Button("Get Started", variant='primary', elem_id="start-button")

        with gr.TabItem("Main Generation Screen"):
            with gr.Row():
                gr.Markdown("<h1 style='text-align: center;'>Create Your Disney Pixar AI Poster</h1>", elem_id="title")

            with gr.Row(elem_id="image-output-container"):
                image_output = gr.Image(
                    value="https://cdn-uploads.huggingface.co/production/uploads/noauth/XWJyh9DhMGXrzyRJk7SfP.png",
                    label="Generated Image",
                    elem_id="image-output"
                )

            with gr.Row(elem_id="settings"):
                with gr.Column(scale=1, min_width=300, elem_classes="setting-group"):
                    prompt = gr.Textbox(
                        "space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
                        placeholder="Enter your prompt here...", 
                        show_label=False, 
                        lines=3, 
                        elem_id="prompt-input"
                    )
                    negative_prompt = gr.Textbox(
                        placeholder="Enter negative prompts (optional)...", 
                        show_label=False, 
                        lines=3, 
                        value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly"
                    )
                    text_button = gr.Button("Generate", variant='primary', elem_id="generate") 

                with gr.Column(scale=1, min_width=300, elem_classes="setting-group"):
                    model = gr.Dropdown(
                        interactive=True,
                        value="sd_xl_base_1.0.safetensors [be9edd61]", 
                        show_label=True, 
                        label="Model", 
                        choices=prodia_client.list_models()
                    )
                    sampler = gr.Dropdown(
                        value="DPM++ 2M Karras", 
                        show_label=True, 
                        label="Sampling Method", 
                        choices=prodia_client.list_samplers()
                    )
                    steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)

                with gr.Column(scale=1, min_width=300, elem_classes="setting-group"):
                    width = gr.Slider(label="Width", minimum=512, maximum=1536, value=1024, step=8)
                    height = gr.Slider(label="Height", minimum=512, maximum=1536, value=1024, step=8)
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
                    seed = gr.Number(label="Seed", value=-1)

    text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output)
    start_button.click(fn=lambda: "Main Generation Screen", inputs=None, outputs=state)
    state.change(fn=lambda x: gr.update(visible=(x == "Main Generation Screen")), inputs=state, outputs=tabs)

# Launch the Gradio app
demo.launch(max_threads=128)