Spaces:
Sleeping
Sleeping
| # import requests | |
| # import json | |
| # # Replace with your actual Hugging Face Spaces URL | |
| # SPACE_API_URL = "https://heheboi0769-nexus-nlp-model.hf.space//?text=Breaking: Stock market crashes!" | |
| # # Add the text as a query parameter since the app uses st.experimental_get_query_params() | |
| # text = "Breaking: Stock market crashes!" | |
| # url_with_params = f"{SPACE_API_URL}?text={text}" | |
| # # Send request to Streamlit API | |
| # response = requests.get(url_with_params) | |
| # # Parse JSON response | |
| # if response.status_code == 200: | |
| # result = response.json() | |
| # print(f"Prediction: {result['prediction']} (Confidence: {result['confidence']*100:.2f}%)") | |
| # else: | |
| # print("Error: Could not get prediction") | |
| import requests | |
| import urllib.parse | |
| def test_model(): | |
| # Base URL for your Streamlit app | |
| base_url = "https://heheboi0769-nexus-nlp-model.hf.space/api" | |
| # Test text | |
| text = "Breaking: Stock market crashes!" | |
| # Make request to the Streamlit app's API endpoint | |
| response = requests.post( | |
| f"{base_url}/predict", | |
| headers={ | |
| "Content-Type": "application/json", | |
| "Authorization": "Bearer your_api_key_here" | |
| }, | |
| json={"text": text} | |
| ) | |
| # Print response for debugging | |
| print(f"Status Code: {response.status_code}") | |
| print(f"Response: {response.text}") | |
| if response.status_code == 200: | |
| result = response.json() | |
| print(f"Prediction: {result['prediction']}") | |
| print(f"Confidence: {result['confidence']*100:.2f}%") | |
| if __name__ == "__main__": | |
| test_model() |