Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load your pre-trained model
|
7 |
+
def load_model():
|
8 |
+
model = tf.keras.models.load_model('depi-graduation-project (1).ipynb') # Replace with your model's path
|
9 |
+
return model
|
10 |
+
|
11 |
+
model = load_model()
|
12 |
+
|
13 |
+
# Define the labels (categories)
|
14 |
+
labels = ['Water', 'Cloudy', 'Desert', 'Green Area']
|
15 |
+
|
16 |
+
# Function to preprocess the image and predict the class
|
17 |
+
def classify_image(image):
|
18 |
+
img = image.resize((128, 128)) # Resize the image
|
19 |
+
img = np.array(img) / 255.0 # Normalize the image
|
20 |
+
img = np.expand_dims(img, axis=0) # Add batch dimension
|
21 |
+
prediction = model.predict(img)
|
22 |
+
predicted_class = labels[np.argmax(prediction)]
|
23 |
+
|
24 |
+
# Prepare output with probabilities
|
25 |
+
return {labels[i]: float(prediction[0][i]) for i in range(len(labels))}
|
26 |
+
|
27 |
+
# Define the Gradio interface
|
28 |
+
image_input = gr.inputs.Image(shape=(128, 128))
|
29 |
+
label_output = gr.outputs.Label(num_top_classes=4)
|
30 |
+
|
31 |
+
# Launch the interface
|
32 |
+
gr.Interface(fn=classify_image,
|
33 |
+
inputs=image_input,
|
34 |
+
outputs=label_output,
|
35 |
+
title="Satellite Image Classification",
|
36 |
+
description="Classify satellite images into four types: Water, Cloudy, Desert, Green Area").launch()
|