|
|
""" |
|
|
๐ฎ PHOENIX Retention Research Platform - FINAL INTEGRATED VERSION |
|
|
Zero-shot Model Burning + Optional Fine-tuning |
|
|
|
|
|
โ
Zero-shot Conversion (No Dataset Required) |
|
|
โ
Optional Fine-tuning (Dataset-based) |
|
|
โ
GQA Support |
|
|
โ
HuggingFace Hub Integration |
|
|
โ
Comprehensive Evaluation |
|
|
|
|
|
VIDraft AI Research Lab |
|
|
""" |
|
|
|
|
|
import gradio as gr |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import sqlite3 |
|
|
import json |
|
|
import time |
|
|
import numpy as np |
|
|
from datetime import datetime |
|
|
from pathlib import Path |
|
|
import plotly.graph_objects as go |
|
|
import plotly.express as px |
|
|
import pandas as pd |
|
|
from typing import Dict, List, Any, Tuple, Optional |
|
|
import chromadb |
|
|
from chromadb.config import Settings |
|
|
from transformers import ( |
|
|
AutoModel, AutoTokenizer, AutoConfig, AutoModelForCausalLM, |
|
|
get_cosine_schedule_with_warmup, TrainingArguments, Trainer |
|
|
) |
|
|
from datasets import load_dataset |
|
|
from torch.utils.data import Dataset, DataLoader |
|
|
from accelerate import Accelerator |
|
|
from tqdm import tqdm |
|
|
import copy |
|
|
import shutil |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
STORAGE_PATH = "/data" |
|
|
DB_PATH = f"{STORAGE_PATH}/phoenix_experiments.db" |
|
|
VECTOR_DB_PATH = f"{STORAGE_PATH}/vector_store" |
|
|
MODELS_PATH = f"{STORAGE_PATH}/phoenix_models" |
|
|
DEFAULT_MODEL = "ibm-granite/granite-4.0-h-350m" |
|
|
|
|
|
Path(STORAGE_PATH).mkdir(parents=True, exist_ok=True) |
|
|
Path(VECTOR_DB_PATH).mkdir(parents=True, exist_ok=True) |
|
|
Path(MODELS_PATH).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
print(f"๐ PHOENIX Platform initialized on {DEVICE}") |
|
|
print(f"๐พ Storage: {STORAGE_PATH}") |
|
|
print(f"๐ฏ Default Base Model: {DEFAULT_MODEL}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MultiScaleRetention(nn.Module): |
|
|
"""์ง์ง Retention Attention with GQA Support""" |
|
|
|
|
|
def __init__(self, config, layer_idx=0): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
|
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
|
|
|
|
|
|
if hasattr(config, 'num_key_value_heads'): |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
else: |
|
|
self.num_key_value_heads = self.num_heads |
|
|
|
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.kv_head_dim = self.head_dim |
|
|
self.kv_dim = self.num_key_value_heads * self.kv_head_dim |
|
|
|
|
|
|
|
|
self.register_buffer('_internal_state', None, persistent=False) |
|
|
self.register_buffer('_state_initialized', torch.tensor(False), persistent=False) |
|
|
|
|
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) |
|
|
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False) |
|
|
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False) |
|
|
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) |
|
|
|
|
|
|
|
|
decay_values = torch.linspace(0.95, 0.99, self.num_heads) |
|
|
self.decay = nn.Parameter(decay_values, requires_grad=True) |
|
|
|
|
|
|
|
|
self.group_norm = nn.GroupNorm( |
|
|
num_groups=self.num_heads, |
|
|
num_channels=self.hidden_size |
|
|
) |
|
|
|
|
|
def _repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
"""Repeat K/V heads to match Q heads (GQA)""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
|
|
|
hidden_states = hidden_states[:, :, None, :, :].expand( |
|
|
batch, num_key_value_heads, n_rep, slen, head_dim |
|
|
) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def reset_state(self): |
|
|
"""Reset internal state""" |
|
|
self._internal_state = None |
|
|
self._state_initialized = torch.tensor(False) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.Tensor] = None, |
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.Tensor] = None, |
|
|
past_key_values: Optional[Tuple[torch.Tensor]] = None, |
|
|
**kwargs |
|
|
): |
|
|
"""O(n) Retention with GQA support""" |
|
|
batch_size, seq_len, _ = hidden_states.shape |
|
|
|
|
|
if past_key_values is not None: |
|
|
past_key_value = past_key_values |
|
|
|
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
|
|
|
query_states = query_states.view( |
|
|
batch_size, seq_len, self.num_heads, self.head_dim |
|
|
).transpose(1, 2) |
|
|
|
|
|
key_states = key_states.view( |
|
|
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim |
|
|
).transpose(1, 2) |
|
|
|
|
|
value_states = value_states.view( |
|
|
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim |
|
|
).transpose(1, 2) |
|
|
|
|
|
|
|
|
key_states = self._repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = self._repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
|
|
|
past_state = self._internal_state if (use_cache and self._state_initialized) else None |
|
|
retention_states, new_state = self._compute_retention( |
|
|
query_states, key_states, value_states, past_state |
|
|
) |
|
|
|
|
|
|
|
|
if use_cache: |
|
|
self._internal_state = new_state.detach() |
|
|
self._state_initialized = torch.tensor(True) |
|
|
|
|
|
|
|
|
retention_states = retention_states.transpose(1, 2).contiguous() |
|
|
retention_states = retention_states.reshape( |
|
|
batch_size, seq_len, self.hidden_size |
|
|
) |
|
|
|
|
|
|
|
|
if not next(self.group_norm.parameters()).is_cuda and retention_states.is_cuda: |
|
|
self.group_norm = self.group_norm.to(retention_states.device, dtype=retention_states.dtype) |
|
|
elif next(self.group_norm.parameters()).dtype != retention_states.dtype: |
|
|
self.group_norm = self.group_norm.to(dtype=retention_states.dtype) |
|
|
|
|
|
retention_states = self.group_norm( |
|
|
retention_states.transpose(1, 2) |
|
|
).transpose(1, 2) |
|
|
|
|
|
retention_states = torch.clamp(retention_states, min=-10.0, max=10.0) |
|
|
|
|
|
|
|
|
attn_output = self.o_proj(retention_states) |
|
|
|
|
|
return (attn_output, None) |
|
|
|
|
|
def _compute_retention( |
|
|
self, |
|
|
queries: torch.Tensor, |
|
|
keys: torch.Tensor, |
|
|
values: torch.Tensor, |
|
|
past_state: Optional[torch.Tensor] = None |
|
|
): |
|
|
"""O(n) Retention computation""" |
|
|
batch_size, num_heads, seq_len, head_dim = queries.shape |
|
|
|
|
|
if past_state is not None: |
|
|
state = past_state.to(queries.device, dtype=queries.dtype) |
|
|
else: |
|
|
state = torch.zeros( |
|
|
batch_size, num_heads, head_dim, head_dim, |
|
|
dtype=queries.dtype, |
|
|
device=queries.device |
|
|
) + 1e-6 |
|
|
|
|
|
outputs = [] |
|
|
|
|
|
decay = torch.sigmoid(self.decay).view(1, -1, 1, 1).to( |
|
|
device=queries.device, |
|
|
dtype=queries.dtype |
|
|
) |
|
|
|
|
|
for t in range(seq_len): |
|
|
q_t = queries[:, :, t, :] |
|
|
k_t = keys[:, :, t, :] |
|
|
v_t = values[:, :, t, :] |
|
|
|
|
|
state = decay * state |
|
|
kv_update = torch.einsum('bhd,bhe->bhde', k_t, v_t) |
|
|
kv_update = torch.clamp(kv_update, min=-5.0, max=5.0) |
|
|
state = state + kv_update |
|
|
state = torch.clamp(state, min=-10.0, max=10.0) |
|
|
|
|
|
output_t = torch.einsum('bhd,bhde->bhe', q_t, state) |
|
|
outputs.append(output_t) |
|
|
|
|
|
output = torch.stack(outputs, dim=2) |
|
|
|
|
|
return output, state |
|
|
|
|
|
|
|
|
class HierarchicalRetention(nn.Module): |
|
|
"""PHOENIX Hierarchical Retention with GQA""" |
|
|
|
|
|
def __init__(self, config, layer_idx=0): |
|
|
super().__init__() |
|
|
self.base_retention = MultiScaleRetention(config, layer_idx) |
|
|
|
|
|
hidden_size = config.hidden_size |
|
|
self.d_state = hidden_size // 2 |
|
|
|
|
|
self.short_proj = nn.Linear(hidden_size, self.d_state) |
|
|
self.medium_proj = nn.Linear(self.d_state, self.d_state) |
|
|
self.long_proj = nn.Linear(self.d_state, self.d_state * 2) |
|
|
self.fusion = nn.Linear(self.d_state * 4, hidden_size) |
|
|
|
|
|
self.short_decay = 0.5 |
|
|
self.medium_decay = 0.8 |
|
|
self.long_decay = 0.95 |
|
|
|
|
|
self.norm = nn.LayerNorm(hidden_size) |
|
|
|
|
|
if next(self.base_retention.parameters()).is_cuda: |
|
|
device = next(self.base_retention.parameters()).device |
|
|
dtype = next(self.base_retention.parameters()).dtype |
|
|
self.short_proj = self.short_proj.to(device, dtype=dtype) |
|
|
self.medium_proj = self.medium_proj.to(device, dtype=dtype) |
|
|
self.long_proj = self.long_proj.to(device, dtype=dtype) |
|
|
self.fusion = self.fusion.to(device, dtype=dtype) |
|
|
self.norm = self.norm.to(device, dtype=dtype) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.Tensor] = None, |
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.Tensor] = None, |
|
|
past_key_values: Optional[Tuple[torch.Tensor]] = None, |
|
|
**kwargs |
|
|
): |
|
|
"""Hierarchical forward pass""" |
|
|
batch_size, seq_len, hidden_size = hidden_states.shape |
|
|
|
|
|
if past_key_values is not None: |
|
|
past_key_value = past_key_values |
|
|
|
|
|
target_device = hidden_states.device |
|
|
target_dtype = hidden_states.dtype |
|
|
|
|
|
if not next(self.short_proj.parameters()).is_cuda and hidden_states.is_cuda: |
|
|
self.short_proj = self.short_proj.to(target_device, dtype=target_dtype) |
|
|
self.medium_proj = self.medium_proj.to(target_device, dtype=target_dtype) |
|
|
self.long_proj = self.long_proj.to(target_device, dtype=target_dtype) |
|
|
self.fusion = self.fusion.to(target_device, dtype=target_dtype) |
|
|
self.norm = self.norm.to(target_device, dtype=target_dtype) |
|
|
elif next(self.short_proj.parameters()).dtype != target_dtype: |
|
|
self.short_proj = self.short_proj.to(dtype=target_dtype) |
|
|
self.medium_proj = self.medium_proj.to(dtype=target_dtype) |
|
|
self.long_proj = self.long_proj.to(dtype=target_dtype) |
|
|
self.fusion = self.fusion.to(dtype=target_dtype) |
|
|
self.norm = self.norm.to(dtype=target_dtype) |
|
|
|
|
|
base_result = self.base_retention( |
|
|
hidden_states, attention_mask, position_ids, |
|
|
past_key_value, output_attentions, use_cache |
|
|
) |
|
|
|
|
|
retention_output = base_result[0] |
|
|
|
|
|
|
|
|
short_state = torch.zeros(batch_size, self.d_state, dtype=hidden_states.dtype, device=target_device) |
|
|
medium_state = torch.zeros(batch_size, self.d_state, dtype=hidden_states.dtype, device=target_device) |
|
|
long_state = torch.zeros(batch_size, self.d_state * 2, dtype=hidden_states.dtype, device=target_device) |
|
|
|
|
|
hierarchical_outputs = [] |
|
|
|
|
|
for t in range(seq_len): |
|
|
x_t = retention_output[:, t, :] |
|
|
|
|
|
short_input = self.short_proj(x_t) |
|
|
short_state = self.short_decay * short_state + short_input |
|
|
|
|
|
if t % 8 == 0: |
|
|
medium_state = self.medium_decay * medium_state + \ |
|
|
self.medium_proj(short_state) |
|
|
|
|
|
if t % 64 == 0: |
|
|
long_state = self.long_decay * long_state + \ |
|
|
self.long_proj(medium_state) |
|
|
|
|
|
combined = torch.cat([short_state, medium_state, long_state], dim=-1) |
|
|
output_t = self.fusion(combined) |
|
|
hierarchical_outputs.append(output_t) |
|
|
|
|
|
output = torch.stack(hierarchical_outputs, dim=1) |
|
|
output = self.norm(output) |
|
|
|
|
|
return (output, None) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def replace_attention_with_retention(model, use_hierarchical=True): |
|
|
"""Transformer Attention โ PHOENIX Retention (GQA Support)""" |
|
|
print("๐ Starting Attention โ Retention conversion (GQA support)...") |
|
|
|
|
|
replaced_count = 0 |
|
|
total_layers = 0 |
|
|
|
|
|
if hasattr(model, 'transformer'): |
|
|
layers = model.transformer.h |
|
|
elif hasattr(model, 'model') and hasattr(model.model, 'layers'): |
|
|
layers = model.model.layers |
|
|
elif hasattr(model, 'layers'): |
|
|
layers = model.layers |
|
|
else: |
|
|
print("โ ๏ธ Unknown model structure") |
|
|
return model, 0, 0 |
|
|
|
|
|
total_layers = len(layers) |
|
|
|
|
|
|
|
|
first_layer = layers[0] |
|
|
if hasattr(first_layer, 'self_attn'): |
|
|
old_attn = first_layer.self_attn |
|
|
|
|
|
if hasattr(old_attn, 'q_proj'): |
|
|
q_shape = old_attn.q_proj.weight.shape |
|
|
k_shape = old_attn.k_proj.weight.shape |
|
|
|
|
|
if k_shape[0] != q_shape[0]: |
|
|
print(f" โ
GQA detected! (K/V dim: {k_shape[0]} < Q dim: {q_shape[0]})") |
|
|
if not hasattr(model.config, 'num_key_value_heads'): |
|
|
num_kv_heads = k_shape[0] // (model.config.hidden_size // model.config.num_attention_heads) |
|
|
model.config.num_key_value_heads = num_kv_heads |
|
|
|
|
|
for layer_idx, layer in enumerate(layers): |
|
|
try: |
|
|
if hasattr(layer, 'self_attn'): |
|
|
old_attn = layer.self_attn |
|
|
|
|
|
if use_hierarchical: |
|
|
new_retention = HierarchicalRetention(model.config, layer_idx) |
|
|
else: |
|
|
new_retention = MultiScaleRetention(model.config, layer_idx) |
|
|
|
|
|
|
|
|
if hasattr(old_attn, 'q_proj'): |
|
|
try: |
|
|
if use_hierarchical: |
|
|
target = new_retention.base_retention |
|
|
else: |
|
|
target = new_retention |
|
|
|
|
|
q_match = old_attn.q_proj.weight.shape == target.q_proj.weight.shape |
|
|
k_match = old_attn.k_proj.weight.shape == target.k_proj.weight.shape |
|
|
v_match = old_attn.v_proj.weight.shape == target.v_proj.weight.shape |
|
|
o_match = old_attn.o_proj.weight.shape == target.o_proj.weight.shape |
|
|
|
|
|
if q_match and k_match and v_match and o_match: |
|
|
target.q_proj.weight.data = old_attn.q_proj.weight.data.clone() |
|
|
target.k_proj.weight.data = old_attn.k_proj.weight.data.clone() |
|
|
target.v_proj.weight.data = old_attn.v_proj.weight.data.clone() |
|
|
target.o_proj.weight.data = old_attn.o_proj.weight.data.clone() |
|
|
print(f" โ
Layer {layer_idx}: Perfect match") |
|
|
|
|
|
elif q_match and o_match: |
|
|
target.q_proj.weight.data = old_attn.q_proj.weight.data.clone() |
|
|
target.o_proj.weight.data = old_attn.o_proj.weight.data.clone() |
|
|
|
|
|
k_copy_size = min(old_attn.k_proj.weight.shape[0], target.k_proj.weight.shape[0]) |
|
|
v_copy_size = min(old_attn.v_proj.weight.shape[0], target.v_proj.weight.shape[0]) |
|
|
|
|
|
target.k_proj.weight.data[:k_copy_size] = old_attn.k_proj.weight.data[:k_copy_size].clone() |
|
|
target.v_proj.weight.data[:v_copy_size] = old_attn.v_proj.weight.data[:v_copy_size].clone() |
|
|
|
|
|
print(f" โ
Layer {layer_idx}: Partial (GQA)") |
|
|
|
|
|
else: |
|
|
nn.init.xavier_uniform_(target.q_proj.weight) |
|
|
nn.init.xavier_uniform_(target.k_proj.weight) |
|
|
nn.init.xavier_uniform_(target.v_proj.weight) |
|
|
nn.init.xavier_uniform_(target.o_proj.weight) |
|
|
print(f" โ ๏ธ Layer {layer_idx}: Xavier init") |
|
|
|
|
|
except Exception as e: |
|
|
print(f" โ ๏ธ Layer {layer_idx}: Weight copy failed - {e}") |
|
|
|
|
|
layer.self_attn = new_retention |
|
|
replaced_count += 1 |
|
|
|
|
|
except Exception as e: |
|
|
print(f" โ Layer {layer_idx}: Failed - {e}") |
|
|
continue |
|
|
|
|
|
print(f"\nโ
Conversion complete: {replaced_count}/{total_layers} layers") |
|
|
|
|
|
return model, replaced_count, total_layers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ExperimentDatabase: |
|
|
"""SQLite database""" |
|
|
|
|
|
def __init__(self, db_path: str): |
|
|
self.db_path = db_path |
|
|
self.init_database() |
|
|
|
|
|
def init_database(self): |
|
|
with sqlite3.connect(self.db_path) as conn: |
|
|
cursor = conn.cursor() |
|
|
cursor.execute(""" |
|
|
CREATE TABLE IF NOT EXISTS experiments ( |
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
|
model_type TEXT NOT NULL, |
|
|
sequence_length INTEGER, |
|
|
use_hierarchical BOOLEAN, |
|
|
attention_replaced BOOLEAN, |
|
|
layers_converted INTEGER, |
|
|
total_layers INTEGER, |
|
|
elapsed_time REAL, |
|
|
memory_mb REAL, |
|
|
throughput REAL, |
|
|
config_json TEXT, |
|
|
metrics_json TEXT, |
|
|
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP |
|
|
) |
|
|
""") |
|
|
|
|
|
|
|
|
cursor.execute(""" |
|
|
CREATE TABLE IF NOT EXISTS burning_history ( |
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
|
model_url TEXT NOT NULL, |
|
|
output_path TEXT NOT NULL, |
|
|
use_hierarchical BOOLEAN, |
|
|
dataset_used BOOLEAN, |
|
|
conversion_rate REAL, |
|
|
training_steps INTEGER, |
|
|
final_loss REAL, |
|
|
evaluation_score REAL, |
|
|
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP |
|
|
) |
|
|
""") |
|
|
conn.commit() |
|
|
|
|
|
def save_experiment(self, config: Dict, metrics: Dict) -> int: |
|
|
with sqlite3.connect(self.db_path) as conn: |
|
|
cursor = conn.cursor() |
|
|
cursor.execute(""" |
|
|
INSERT INTO experiments ( |
|
|
model_type, sequence_length, use_hierarchical, |
|
|
attention_replaced, layers_converted, total_layers, |
|
|
elapsed_time, memory_mb, throughput, |
|
|
config_json, metrics_json |
|
|
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) |
|
|
""", ( |
|
|
config.get('model_type'), |
|
|
config.get('sequence_length'), |
|
|
config.get('use_hierarchical'), |
|
|
config.get('attention_replaced'), |
|
|
config.get('layers_converted'), |
|
|
config.get('total_layers'), |
|
|
metrics.get('elapsed_time'), |
|
|
metrics.get('memory_mb'), |
|
|
metrics.get('throughput'), |
|
|
json.dumps(config), |
|
|
json.dumps(metrics) |
|
|
)) |
|
|
conn.commit() |
|
|
return cursor.lastrowid |
|
|
|
|
|
def save_burning(self, burning_info: Dict) -> int: |
|
|
with sqlite3.connect(self.db_path) as conn: |
|
|
cursor = conn.cursor() |
|
|
cursor.execute(""" |
|
|
INSERT INTO burning_history ( |
|
|
model_url, output_path, use_hierarchical, |
|
|
dataset_used, conversion_rate, training_steps, |
|
|
final_loss, evaluation_score |
|
|
) VALUES (?, ?, ?, ?, ?, ?, ?, ?) |
|
|
""", ( |
|
|
burning_info.get('model_url'), |
|
|
burning_info.get('output_path'), |
|
|
burning_info.get('use_hierarchical'), |
|
|
burning_info.get('dataset_used'), |
|
|
burning_info.get('conversion_rate'), |
|
|
burning_info.get('training_steps', 0), |
|
|
burning_info.get('final_loss'), |
|
|
burning_info.get('evaluation_score'), |
|
|
)) |
|
|
conn.commit() |
|
|
return cursor.lastrowid |
|
|
|
|
|
def get_burning_history(self, limit: int = 20) -> List[Dict]: |
|
|
with sqlite3.connect(self.db_path) as conn: |
|
|
conn.row_factory = sqlite3.Row |
|
|
cursor = conn.cursor() |
|
|
cursor.execute("SELECT * FROM burning_history ORDER BY timestamp DESC LIMIT ?", (limit,)) |
|
|
return [dict(row) for row in cursor.fetchall()] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def evaluate_model_quality(model, tokenizer, test_prompts=None): |
|
|
""" |
|
|
๊ฐ๋จํ ๋ชจ๋ธ ํ์ง ํ๊ฐ |
|
|
|
|
|
Returns: |
|
|
score: 0.0 ~ 1.0 (๋์์๋ก ์ข์) |
|
|
""" |
|
|
if test_prompts is None: |
|
|
test_prompts = [ |
|
|
"The capital of France is", |
|
|
"In machine learning, overfitting means", |
|
|
"2 + 2 =", |
|
|
] |
|
|
|
|
|
model.eval() |
|
|
scores = [] |
|
|
|
|
|
with torch.no_grad(): |
|
|
for prompt in test_prompts: |
|
|
try: |
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=20, |
|
|
do_sample=False, |
|
|
pad_token_id=tokenizer.eos_token_id, |
|
|
) |
|
|
generated = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
|
score = 0.0 |
|
|
if len(generated) > len(prompt): |
|
|
score += 0.3 |
|
|
if not any(char in generated[len(prompt):] for char in ['๏ฟฝ', '[UNK]']): |
|
|
score += 0.3 |
|
|
if len(generated.split()) > len(prompt.split()) + 2: |
|
|
score += 0.4 |
|
|
|
|
|
scores.append(score) |
|
|
except Exception as e: |
|
|
print(f" โ ๏ธ Evaluation error for '{prompt}': {e}") |
|
|
scores.append(0.0) |
|
|
|
|
|
return sum(scores) / len(scores) if scores else 0.0 |
|
|
|
|
|
|
|
|
def burn_model_zero_shot( |
|
|
model_url: str, |
|
|
output_dir: str, |
|
|
use_hierarchical: bool = True, |
|
|
test_prompts: List[str] = None, |
|
|
): |
|
|
""" |
|
|
Zero-shot Model Burning (๋ฐ์ดํฐ์
๋ถํ์) |
|
|
|
|
|
1. ๋ชจ๋ธ ๋ก๋ |
|
|
2. Attention โ Retention ๋ณํ |
|
|
3. ํ์ง ํ๊ฐ |
|
|
4. ์ ์ฅ |
|
|
|
|
|
Returns: |
|
|
status, model_path, metrics |
|
|
""" |
|
|
print("="*80) |
|
|
print("๐ฅ PHOENIX Zero-shot Model Burning") |
|
|
print("="*80) |
|
|
|
|
|
output_path = Path(output_dir) |
|
|
output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
try: |
|
|
|
|
|
print(f"\n๐ฅ Loading model: {model_url}") |
|
|
start_time = time.time() |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_url, |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.float16, |
|
|
).to(DEVICE) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_url, trust_remote_code=True) |
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
load_time = time.time() - start_time |
|
|
print(f"โ
Loaded in {load_time:.1f}s") |
|
|
|
|
|
|
|
|
print(f"\n๐ Converting Attention โ Retention...") |
|
|
convert_start = time.time() |
|
|
|
|
|
model.model, converted, total = replace_attention_with_retention( |
|
|
model.model, |
|
|
use_hierarchical=use_hierarchical |
|
|
) |
|
|
|
|
|
convert_time = time.time() - convert_start |
|
|
conversion_rate = converted / total if total > 0 else 0 |
|
|
|
|
|
print(f"โ
Converted {converted}/{total} layers ({conversion_rate*100:.1f}%) in {convert_time:.1f}s") |
|
|
|
|
|
|
|
|
print(f"\n๐ Evaluating model quality...") |
|
|
eval_start = time.time() |
|
|
|
|
|
quality_score = evaluate_model_quality(model, tokenizer, test_prompts) |
|
|
|
|
|
eval_time = time.time() - eval_start |
|
|
print(f"โ
Quality Score: {quality_score:.2f}/1.00 (in {eval_time:.1f}s)") |
|
|
|
|
|
|
|
|
print(f"\n๐พ Saving PHOENIX model...") |
|
|
save_start = time.time() |
|
|
|
|
|
model.save_pretrained(output_path) |
|
|
tokenizer.save_pretrained(output_path) |
|
|
|
|
|
|
|
|
metadata = { |
|
|
'phoenix_version': '1.0.0', |
|
|
'original_model': model_url, |
|
|
'use_hierarchical': use_hierarchical, |
|
|
'conversion_rate': conversion_rate, |
|
|
'layers_converted': converted, |
|
|
'total_layers': total, |
|
|
'quality_score': quality_score, |
|
|
'burning_type': 'zero_shot', |
|
|
'timestamp': datetime.now().isoformat(), |
|
|
} |
|
|
|
|
|
with open(output_path / 'phoenix_metadata.json', 'w') as f: |
|
|
json.dump(metadata, f, indent=2) |
|
|
|
|
|
save_time = time.time() - save_start |
|
|
print(f"โ
Saved to {output_path} in {save_time:.1f}s") |
|
|
|
|
|
|
|
|
total_time = time.time() - start_time |
|
|
|
|
|
result = { |
|
|
'status': 'success', |
|
|
'model_path': str(output_path), |
|
|
'conversion_rate': conversion_rate, |
|
|
'quality_score': quality_score, |
|
|
'total_time': total_time, |
|
|
'load_time': load_time, |
|
|
'convert_time': convert_time, |
|
|
'eval_time': eval_time, |
|
|
'save_time': save_time, |
|
|
} |
|
|
|
|
|
print(f"\n{'='*80}") |
|
|
print(f"โ
Zero-shot Burning Complete!") |
|
|
print(f" Total Time: {total_time:.1f}s") |
|
|
print(f" Model Path: {output_path}") |
|
|
print(f" Quality: {quality_score:.2f}/1.00") |
|
|
print(f"{'='*80}\n") |
|
|
|
|
|
return result |
|
|
|
|
|
except Exception as e: |
|
|
import traceback |
|
|
error_msg = traceback.format_exc() |
|
|
print(f"\nโ Zero-shot burning failed:\n{error_msg}") |
|
|
return { |
|
|
'status': 'failed', |
|
|
'error': str(e), |
|
|
'traceback': error_msg |
|
|
} |
|
|
|
|
|
|
|
|
def burn_model_with_finetuning( |
|
|
model_url: str, |
|
|
output_dir: str, |
|
|
dataset_path: str, |
|
|
use_hierarchical: bool = True, |
|
|
num_epochs: int = 1, |
|
|
batch_size: int = 4, |
|
|
learning_rate: float = 5e-5, |
|
|
max_steps: int = 100, |
|
|
): |
|
|
""" |
|
|
Fine-tuning Model Burning (๋ฐ์ดํฐ์
๊ธฐ๋ฐ) |
|
|
|
|
|
1. ๋ชจ๋ธ ๋ก๋ & ๋ณํ |
|
|
2. ๋ฐ์ดํฐ์
๋ก๋ |
|
|
3. Fine-tuning |
|
|
4. ํ๊ฐ & ์ ์ฅ |
|
|
|
|
|
Returns: |
|
|
status, model_path, metrics |
|
|
""" |
|
|
print("="*80) |
|
|
print("๐ฅ PHOENIX Fine-tuning Model Burning") |
|
|
print("="*80) |
|
|
|
|
|
output_path = Path(output_dir) |
|
|
output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
try: |
|
|
|
|
|
print(f"\n๐ฅ Loading model: {model_url}") |
|
|
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_url, |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.float16, |
|
|
).to(DEVICE) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_url, trust_remote_code=True) |
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
print(f"\n๐ Converting...") |
|
|
model.model, converted, total = replace_attention_with_retention( |
|
|
model.model, |
|
|
use_hierarchical=use_hierarchical |
|
|
) |
|
|
|
|
|
conversion_rate = converted / total if total > 0 else 0 |
|
|
print(f"โ
Converted {converted}/{total} layers") |
|
|
|
|
|
|
|
|
print(f"\n๐ Loading dataset: {dataset_path}") |
|
|
|
|
|
if dataset_path.endswith('.txt'): |
|
|
with open(dataset_path, 'r', encoding='utf-8') as f: |
|
|
texts = [line.strip() for line in f if line.strip()] |
|
|
|
|
|
|
|
|
def tokenize_fn(text): |
|
|
return tokenizer( |
|
|
text, |
|
|
truncation=True, |
|
|
max_length=512, |
|
|
padding='max_length', |
|
|
return_tensors='pt' |
|
|
) |
|
|
|
|
|
tokenized_data = [tokenize_fn(text) for text in texts[:1000]] |
|
|
|
|
|
else: |
|
|
|
|
|
from datasets import load_dataset |
|
|
dataset = load_dataset('text', data_files=dataset_path) |
|
|
|
|
|
def tokenize_function(examples): |
|
|
return tokenizer( |
|
|
examples['text'], |
|
|
truncation=True, |
|
|
max_length=512, |
|
|
padding='max_length', |
|
|
) |
|
|
|
|
|
dataset = dataset.map(tokenize_function, batched=True) |
|
|
tokenized_data = dataset['train'] |
|
|
|
|
|
print(f"โ
Loaded {len(tokenized_data)} samples") |
|
|
|
|
|
|
|
|
print(f"\n๐ Starting fine-tuning...") |
|
|
print(f" Epochs: {num_epochs}") |
|
|
print(f" Batch Size: {batch_size}") |
|
|
print(f" Max Steps: {max_steps}") |
|
|
|
|
|
model.train() |
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) |
|
|
|
|
|
step = 0 |
|
|
total_loss = 0.0 |
|
|
|
|
|
for epoch in range(num_epochs): |
|
|
for i in range(0, len(tokenized_data), batch_size): |
|
|
if step >= max_steps: |
|
|
break |
|
|
|
|
|
batch = tokenized_data[i:i+batch_size] |
|
|
|
|
|
|
|
|
if isinstance(batch, list): |
|
|
input_ids = torch.stack([item['input_ids'].squeeze() for item in batch]).to(DEVICE) |
|
|
attention_mask = torch.stack([item['attention_mask'].squeeze() for item in batch]).to(DEVICE) |
|
|
else: |
|
|
input_ids = torch.tensor(batch['input_ids']).to(DEVICE) |
|
|
attention_mask = torch.tensor(batch['attention_mask']).to(DEVICE) |
|
|
|
|
|
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids) |
|
|
loss = outputs.loss |
|
|
|
|
|
loss.backward() |
|
|
optimizer.step() |
|
|
optimizer.zero_grad() |
|
|
|
|
|
total_loss += loss.item() |
|
|
step += 1 |
|
|
|
|
|
if step % 10 == 0: |
|
|
avg_loss = total_loss / step |
|
|
print(f" Step {step}/{max_steps} - Loss: {avg_loss:.4f}") |
|
|
|
|
|
final_loss = total_loss / step if step > 0 else 0.0 |
|
|
print(f"โ
Training complete - Final Loss: {final_loss:.4f}") |
|
|
|
|
|
|
|
|
print(f"\n๐ Evaluating...") |
|
|
model.eval() |
|
|
quality_score = evaluate_model_quality(model, tokenizer) |
|
|
print(f"โ
Quality Score: {quality_score:.2f}/1.00") |
|
|
|
|
|
print(f"\n๐พ Saving model...") |
|
|
model.save_pretrained(output_path) |
|
|
tokenizer.save_pretrained(output_path) |
|
|
|
|
|
metadata = { |
|
|
'phoenix_version': '1.0.0', |
|
|
'original_model': model_url, |
|
|
'use_hierarchical': use_hierarchical, |
|
|
'conversion_rate': conversion_rate, |
|
|
'quality_score': quality_score, |
|
|
'burning_type': 'fine_tuning', |
|
|
'training_steps': step, |
|
|
'final_loss': final_loss, |
|
|
'dataset': dataset_path, |
|
|
'timestamp': datetime.now().isoformat(), |
|
|
} |
|
|
|
|
|
with open(output_path / 'phoenix_metadata.json', 'w') as f: |
|
|
json.dump(metadata, f, indent=2) |
|
|
|
|
|
print(f"โ
Saved to {output_path}") |
|
|
|
|
|
result = { |
|
|
'status': 'success', |
|
|
'model_path': str(output_path), |
|
|
'conversion_rate': conversion_rate, |
|
|
'quality_score': quality_score, |
|
|
'training_steps': step, |
|
|
'final_loss': final_loss, |
|
|
} |
|
|
|
|
|
print(f"\n{'='*80}") |
|
|
print(f"โ
Fine-tuning Burning Complete!") |
|
|
print(f"{'='*80}\n") |
|
|
|
|
|
return result |
|
|
|
|
|
except Exception as e: |
|
|
import traceback |
|
|
error_msg = traceback.format_exc() |
|
|
print(f"\nโ Fine-tuning burning failed:\n{error_msg}") |
|
|
return { |
|
|
'status': 'failed', |
|
|
'error': str(e), |
|
|
'traceback': error_msg |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert_model_to_phoenix(model_url, use_hierarchical=True, gpu_type="L40S"): |
|
|
"""Convert model to PHOENIX (๊ธฐ์กด ํจ์ ์ ์ง)""" |
|
|
try: |
|
|
start_time = time.time() |
|
|
|
|
|
print(f"๐ฅ Loading model: {model_url}") |
|
|
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True) |
|
|
model = AutoModel.from_pretrained( |
|
|
model_url, |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.float16 |
|
|
).to(DEVICE) |
|
|
|
|
|
model, converted, total = replace_attention_with_retention(model, use_hierarchical) |
|
|
|
|
|
elapsed_time = time.time() - start_time |
|
|
conversion_pct = (converted / total * 100) if total > 0 else 0 |
|
|
|
|
|
result = f""" |
|
|
โ
**Conversion Complete!** |
|
|
|
|
|
**Model**: {model_url} |
|
|
**Converted**: {converted}/{total} layers ({conversion_pct:.1f}%) |
|
|
**Time**: {elapsed_time:.1f}s |
|
|
**GPU**: {gpu_type} |
|
|
|
|
|
๐ฏ GQA-aware O(n) complexity! |
|
|
""" |
|
|
|
|
|
return result |
|
|
|
|
|
except Exception as e: |
|
|
return f"โ Conversion failed: {str(e)}" |
|
|
|
|
|
|
|
|
def generate_text_phoenix( |
|
|
model_url, use_hierarchical, convert_attention, |
|
|
prompt, max_new_tokens, temperature |
|
|
): |
|
|
"""PHOENIX ํ
์คํธ ์์ฑ (๊ธฐ์กด ํจ์ - ๊ฐ์ํ)""" |
|
|
try: |
|
|
if not convert_attention or not model_url.strip(): |
|
|
return "โ ๏ธ Enable 'Attention Replace' and provide model URL", "" |
|
|
|
|
|
print(f"๐ฅ Loading model: {model_url}") |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_url, |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.float16 |
|
|
).to(DEVICE) |
|
|
|
|
|
print(f"๐ Converting...") |
|
|
model.model, converted, total = replace_attention_with_retention( |
|
|
model.model, |
|
|
use_hierarchical=use_hierarchical |
|
|
) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_url, trust_remote_code=True) |
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE) |
|
|
|
|
|
print(f"๐ Generating...") |
|
|
start_time = time.time() |
|
|
|
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=max_new_tokens, |
|
|
temperature=temperature, |
|
|
do_sample=temperature > 0.01, |
|
|
pad_token_id=tokenizer.eos_token_id, |
|
|
) |
|
|
|
|
|
elapsed = time.time() - start_time |
|
|
|
|
|
generated = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
output_md = f""" |
|
|
## ๐ Generated Text |
|
|
|
|
|
``` |
|
|
{generated} |
|
|
``` |
|
|
""" |
|
|
|
|
|
stats_md = f""" |
|
|
## ๐ Statistics |
|
|
|
|
|
- **Time**: {elapsed:.2f}s |
|
|
- **Converted**: {converted}/{total} layers |
|
|
- **Tokens/s**: {max_new_tokens/elapsed:.1f} |
|
|
""" |
|
|
|
|
|
return output_md, stats_md |
|
|
|
|
|
except Exception as e: |
|
|
import traceback |
|
|
return f"โ Error:\n```\n{traceback.format_exc()}\n```", "" |
|
|
|
|
|
|
|
|
def burn_phoenix_model_ui( |
|
|
model_url, |
|
|
use_hierarchical, |
|
|
dataset_path, |
|
|
output_name, |
|
|
use_finetuning, |
|
|
num_epochs, |
|
|
batch_size, |
|
|
learning_rate, |
|
|
max_steps, |
|
|
): |
|
|
""" |
|
|
Gradio UI์ฉ ๋ชจ๋ธ ๋ฒ๋ ํจ์ |
|
|
""" |
|
|
try: |
|
|
if not model_url.strip(): |
|
|
return "โ ๏ธ Model URL required", None |
|
|
|
|
|
if not output_name.strip(): |
|
|
output_name = f"phoenix_{model_url.split('/')[-1]}_{int(time.time())}" |
|
|
|
|
|
output_dir = f"{MODELS_PATH}/{output_name}" |
|
|
|
|
|
|
|
|
has_dataset = dataset_path and dataset_path.strip() and Path(dataset_path).exists() |
|
|
|
|
|
if use_finetuning and not has_dataset: |
|
|
return "โ ๏ธ Fine-tuning requires dataset path", None |
|
|
|
|
|
|
|
|
if use_finetuning and has_dataset: |
|
|
result = burn_model_with_finetuning( |
|
|
model_url=model_url, |
|
|
output_dir=output_dir, |
|
|
dataset_path=dataset_path, |
|
|
use_hierarchical=use_hierarchical, |
|
|
num_epochs=num_epochs, |
|
|
batch_size=batch_size, |
|
|
learning_rate=learning_rate, |
|
|
max_steps=max_steps, |
|
|
) |
|
|
else: |
|
|
result = burn_model_zero_shot( |
|
|
model_url=model_url, |
|
|
output_dir=output_dir, |
|
|
use_hierarchical=use_hierarchical, |
|
|
) |
|
|
|
|
|
if result['status'] == 'success': |
|
|
|
|
|
burning_info = { |
|
|
'model_url': model_url, |
|
|
'output_path': result['model_path'], |
|
|
'use_hierarchical': use_hierarchical, |
|
|
'dataset_used': has_dataset, |
|
|
'conversion_rate': result.get('conversion_rate', 0.0), |
|
|
'training_steps': result.get('training_steps', 0), |
|
|
'final_loss': result.get('final_loss'), |
|
|
'evaluation_score': result.get('quality_score', 0.0), |
|
|
} |
|
|
|
|
|
db.save_burning(burning_info) |
|
|
|
|
|
|
|
|
output_md = f""" |
|
|
# ๐ฅ Model Burning Complete! |
|
|
|
|
|
## ๐ฆ Model Information |
|
|
- **Original**: {model_url} |
|
|
- **Output**: `{result['model_path']}` |
|
|
- **Type**: {'Fine-tuning' if has_dataset else 'Zero-shot'} |
|
|
|
|
|
## ๐ Metrics |
|
|
- **Conversion Rate**: {result['conversion_rate']*100:.1f}% |
|
|
- **Quality Score**: {result.get('quality_score', 0.0):.2f}/1.00 |
|
|
""" |
|
|
|
|
|
if 'training_steps' in result: |
|
|
output_md += f""" |
|
|
## ๐ Training |
|
|
- **Steps**: {result['training_steps']} |
|
|
- **Final Loss**: {result.get('final_loss', 0.0):.4f} |
|
|
""" |
|
|
|
|
|
output_md += f""" |
|
|
## โฑ๏ธ Time Breakdown |
|
|
- **Total**: {result.get('total_time', 0):.1f}s |
|
|
""" |
|
|
|
|
|
if 'load_time' in result: |
|
|
output_md += f"- **Load**: {result['load_time']:.1f}s\n" |
|
|
output_md += f"- **Convert**: {result['convert_time']:.1f}s\n" |
|
|
output_md += f"- **Evaluate**: {result['eval_time']:.1f}s\n" |
|
|
output_md += f"- **Save**: {result['save_time']:.1f}s\n" |
|
|
|
|
|
output_md += f""" |
|
|
## ๐ฏ Usage |
|
|
|
|
|
```python |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained("{result['model_path']}") |
|
|
tokenizer = AutoTokenizer.from_pretrained("{result['model_path']}") |
|
|
|
|
|
inputs = tokenizer("Your prompt", return_tensors="pt") |
|
|
outputs = model.generate(**inputs, max_new_tokens=50) |
|
|
print(tokenizer.decode(outputs[0])) |
|
|
``` |
|
|
|
|
|
โ
**PHOENIX Model Ready!** |
|
|
""" |
|
|
|
|
|
|
|
|
fig = go.Figure() |
|
|
fig.add_trace(go.Bar( |
|
|
x=['Conversion', 'Quality'], |
|
|
y=[result['conversion_rate'], result.get('quality_score', 0.0)], |
|
|
text=[f"{result['conversion_rate']*100:.1f}%", f"{result.get('quality_score', 0.0):.2f}"], |
|
|
textposition='auto', |
|
|
)) |
|
|
fig.update_layout( |
|
|
title="Burning Metrics", |
|
|
yaxis_range=[0, 1], |
|
|
template='plotly_white' |
|
|
) |
|
|
|
|
|
return output_md, fig |
|
|
|
|
|
else: |
|
|
return f"โ Burning failed:\n```\n{result.get('error', 'Unknown error')}\n```", None |
|
|
|
|
|
except Exception as e: |
|
|
import traceback |
|
|
return f"โ Error:\n```\n{traceback.format_exc()}\n```", None |
|
|
|
|
|
|
|
|
def view_burning_history(): |
|
|
"""View burning history""" |
|
|
try: |
|
|
history = db.get_burning_history(limit=20) |
|
|
|
|
|
if not history: |
|
|
return "๐ญ No burning history yet", None |
|
|
|
|
|
df = pd.DataFrame(history) |
|
|
|
|
|
fig = px.scatter( |
|
|
df, |
|
|
x='timestamp', |
|
|
y='evaluation_score', |
|
|
size='conversion_rate', |
|
|
color='dataset_used', |
|
|
hover_data=['model_url', 'output_path'], |
|
|
title='Burning History' |
|
|
) |
|
|
|
|
|
cols = ['id', 'model_url', 'output_path', 'conversion_rate', |
|
|
'evaluation_score', 'training_steps', 'timestamp'] |
|
|
available = [c for c in cols if c in df.columns] |
|
|
|
|
|
return f"## ๐ Burning History\n\n{df[available].to_markdown(index=False)}", fig |
|
|
|
|
|
except Exception as e: |
|
|
return f"โ Error: {e}", None |
|
|
|
|
|
|
|
|
|
|
|
db = ExperimentDatabase(DB_PATH) |
|
|
CONVERTED_MODELS = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks( |
|
|
title="๐ฎ PHOENIX - Model Burning Platform", |
|
|
theme=gr.themes.Soft(), |
|
|
) as demo: |
|
|
|
|
|
gr.Markdown(""" |
|
|
# ๐ฎ PHOENIX Retention Platform |
|
|
|
|
|
**Zero-shot Model Burning + Optional Fine-tuning** |
|
|
|
|
|
โ
Zero-shot Conversion (๋ฐ์ดํฐ์
๋ถํ์!) |
|
|
โ
Optional Fine-tuning (๋ฐ์ดํฐ์
๊ธฐ๋ฐ) |
|
|
โ
GQA Support |
|
|
โ
O(n) Complexity |
|
|
|
|
|
--- |
|
|
""") |
|
|
|
|
|
with gr.Tabs(): |
|
|
with gr.Tab("๐ Quick Convert"): |
|
|
gr.Markdown(""" |
|
|
### ๋น ๋ฅธ ๋ณํ ํ
์คํธ |
|
|
๋ชจ๋ธ์ ๋ก๋ํ๊ณ Attention โ Retention ๋ณํ๋ง ์ํํฉ๋๋ค. (์ ์ฅ ์ ํจ) |
|
|
""") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
convert_url = gr.Textbox( |
|
|
label="๐ Model URL", |
|
|
value=DEFAULT_MODEL, |
|
|
placeholder="ibm-granite/granite-4.0-h-350m" |
|
|
) |
|
|
convert_hierarchical = gr.Checkbox(value=True, label="Hierarchical Retention") |
|
|
convert_gpu = gr.Radio(choices=["L40S", "H100"], value="L40S", label="GPU") |
|
|
convert_btn = gr.Button("๐ Convert", variant="primary") |
|
|
|
|
|
with gr.Column(scale=2): |
|
|
convert_output = gr.Markdown() |
|
|
|
|
|
convert_btn.click( |
|
|
convert_model_to_phoenix, |
|
|
[convert_url, convert_hierarchical, convert_gpu], |
|
|
[convert_output] |
|
|
) |
|
|
|
|
|
with gr.Tab("๐ฅ Model Burning"): |
|
|
gr.Markdown(""" |
|
|
### ๐ฅ PHOENIX Model Burning |
|
|
|
|
|
**๋ชจ๋ธ์ ๋ณํํ๊ณ ์ ์ฅํฉ๋๋ค!** |
|
|
|
|
|
- **Zero-shot**: ๋ฐ์ดํฐ์
์์ด ๋ณํ๋ง ์ํ (๋น ๋ฆ!) |
|
|
- **Fine-tuning**: ๋ฐ์ดํฐ์
์ผ๋ก ์ถ๊ฐ ํ์ต (์ฑ๋ฅ ํฅ์) |
|
|
""") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
burn_model_url = gr.Textbox( |
|
|
label="๐ Model URL", |
|
|
value=DEFAULT_MODEL, |
|
|
placeholder="ibm-granite/granite-4.0-h-350m" |
|
|
) |
|
|
burn_hierarchical = gr.Checkbox(value=True, label="Hierarchical Retention") |
|
|
|
|
|
burn_output_name = gr.Textbox( |
|
|
label="๐พ Output Name", |
|
|
placeholder="phoenix_my_model (auto-generated if empty)" |
|
|
) |
|
|
|
|
|
gr.Markdown("---") |
|
|
gr.Markdown("### ๐ Dataset (Optional)") |
|
|
|
|
|
burn_dataset = gr.Textbox( |
|
|
label="๐ Dataset Path (Optional)", |
|
|
placeholder="/path/to/dataset.txt (leave empty for zero-shot)", |
|
|
value="" |
|
|
) |
|
|
|
|
|
burn_use_finetuning = gr.Checkbox( |
|
|
value=False, |
|
|
label="๐ Enable Fine-tuning (requires dataset)" |
|
|
) |
|
|
|
|
|
with gr.Accordion("โ๏ธ Fine-tuning Config", open=False): |
|
|
burn_epochs = gr.Slider(1, 5, 1, step=1, label="Epochs") |
|
|
burn_batch = gr.Slider(1, 16, 4, step=1, label="Batch Size") |
|
|
burn_lr = gr.Number(value=5e-5, label="Learning Rate") |
|
|
burn_max_steps = gr.Slider(10, 500, 100, step=10, label="Max Steps") |
|
|
|
|
|
burn_btn = gr.Button("๐ฅ Burn Model", variant="primary", size="lg") |
|
|
|
|
|
with gr.Column(scale=2): |
|
|
burn_output = gr.Markdown() |
|
|
burn_plot = gr.Plot() |
|
|
|
|
|
burn_btn.click( |
|
|
burn_phoenix_model_ui, |
|
|
[ |
|
|
burn_model_url, |
|
|
burn_hierarchical, |
|
|
burn_dataset, |
|
|
burn_output_name, |
|
|
burn_use_finetuning, |
|
|
burn_epochs, |
|
|
burn_batch, |
|
|
burn_lr, |
|
|
burn_max_steps, |
|
|
], |
|
|
[burn_output, burn_plot] |
|
|
) |
|
|
|
|
|
with gr.Tab("๐ฌ Text Generation"): |
|
|
gr.Markdown(""" |
|
|
### PHOENIX ํ
์คํธ ์์ฑ |
|
|
๋ณํ๋ ๋ชจ๋ธ๋ก ํ
์คํธ๋ฅผ ์์ฑํฉ๋๋ค. |
|
|
""") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
gen_model_url = gr.Textbox(label="๐ Model URL", value=DEFAULT_MODEL) |
|
|
gen_hierarchical = gr.Checkbox(value=True, label="Hierarchical") |
|
|
gen_convert = gr.Checkbox(value=True, label="Enable Conversion") |
|
|
|
|
|
gen_prompt = gr.Textbox( |
|
|
label="๐ Prompt", |
|
|
lines=3, |
|
|
value="The future of AI is" |
|
|
) |
|
|
|
|
|
gen_max_tokens = gr.Slider(16, 256, 64, step=16, label="Max Tokens") |
|
|
gen_temperature = gr.Slider(0.1, 2.0, 0.7, step=0.1, label="Temperature") |
|
|
|
|
|
gen_btn = gr.Button("๐ Generate", variant="primary") |
|
|
|
|
|
with gr.Column(scale=2): |
|
|
gen_output = gr.Markdown() |
|
|
gen_stats = gr.Markdown() |
|
|
|
|
|
gen_btn.click( |
|
|
generate_text_phoenix, |
|
|
[gen_model_url, gen_hierarchical, gen_convert, gen_prompt, |
|
|
gen_max_tokens, gen_temperature], |
|
|
[gen_output, gen_stats] |
|
|
) |
|
|
|
|
|
with gr.Tab("๐ Burning History"): |
|
|
gr.Markdown(""" |
|
|
### ๐ Model Burning History |
|
|
์ ์ฅ๋ ๋ชจ๋ธ ๋ฒ๋ ๊ธฐ๋ก์ ํ์ธํฉ๋๋ค. |
|
|
""") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
hist_btn = gr.Button("๐ Load History", variant="primary") |
|
|
|
|
|
with gr.Column(scale=2): |
|
|
hist_output = gr.Markdown() |
|
|
hist_plot = gr.Plot() |
|
|
|
|
|
hist_btn.click(view_burning_history, outputs=[hist_output, hist_plot]) |
|
|
|
|
|
gr.Markdown(""" |
|
|
--- |
|
|
|
|
|
## ๐ฅ PHOENIX Model Burning |
|
|
|
|
|
### Zero-shot (๋ฐ์ดํฐ์
๋ถํ์!) |
|
|
1. ๋ชจ๋ธ URL ์
๋ ฅ |
|
|
2. "Burn Model" ํด๋ฆญ |
|
|
3. ์๋ฃ! โ `/data/phoenix_models/` ์ ์ ์ฅ |
|
|
|
|
|
### Fine-tuning (์ ํ์ฌํญ) |
|
|
1. Dataset Path ์
๋ ฅ |
|
|
2. "Enable Fine-tuning" ์ฒดํฌ |
|
|
3. "Burn Model" ํด๋ฆญ |
|
|
|
|
|
**VIDraft AI Research Lab** | PHOENIX v1.0 |
|
|
""") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.queue(max_size=20) |
|
|
demo.launch(server_name="0.0.0.0", server_port=7860, share=False) |