Spaces:
Sleeping
Sleeping
Update app-backup.py
Browse files- app-backup.py +85 -19
app-backup.py
CHANGED
|
@@ -14,6 +14,9 @@ from loguru import logger
|
|
| 14 |
from PIL import Image
|
| 15 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
| 18 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
| 19 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
@@ -48,10 +51,20 @@ def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
|
| 48 |
|
| 49 |
|
| 50 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
history_image_count, history_video_count = count_files_in_history(history)
|
| 53 |
image_count = history_image_count + new_image_count
|
| 54 |
video_count = history_video_count + new_video_count
|
|
|
|
| 55 |
if video_count > 1:
|
| 56 |
gr.Warning("Only one video is supported.")
|
| 57 |
return False
|
|
@@ -63,12 +76,21 @@ def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
|
| 63 |
gr.Warning("Using <image> tags with video files is not supported.")
|
| 64 |
return False
|
| 65 |
# TODO: Add frame count validation for videos similar to image count limits # noqa: FIX002, TD002, TD003
|
|
|
|
| 66 |
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
| 67 |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
| 68 |
return False
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
return True
|
| 73 |
|
| 74 |
|
|
@@ -127,20 +149,65 @@ def process_interleaved_images(message: dict) -> list[dict]:
|
|
| 127 |
return content
|
| 128 |
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
def process_new_user_message(message: dict) -> list[dict]:
|
|
|
|
|
|
|
|
|
|
| 131 |
if not message["files"]:
|
| 132 |
return [{"type": "text", "text": message["text"]}]
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
if "<image>" in message["text"]:
|
| 138 |
return process_interleaved_images(message)
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
|
| 145 |
|
| 146 |
def process_history(history: list[dict]) -> list[dict]:
|
|
@@ -318,26 +385,25 @@ examples = [
|
|
| 318 |
],
|
| 319 |
]
|
| 320 |
|
| 321 |
-
DESCRIPTION = """\
|
| 322 |
-
<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' />
|
| 323 |
|
| 324 |
-
This is a demo of Gemma 3 27B it, a vision language model with outstanding performance on a wide range of tasks.
|
| 325 |
-
You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input.
|
| 326 |
-
"""
|
| 327 |
|
|
|
|
| 328 |
demo = gr.ChatInterface(
|
| 329 |
fn=run,
|
| 330 |
type="messages",
|
| 331 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
| 332 |
-
textbox=gr.MultimodalTextbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
multimodal=True,
|
| 334 |
additional_inputs=[
|
| 335 |
-
gr.Textbox(label="System Prompt", value="
|
| 336 |
-
gr.Slider(label="Max New Tokens", minimum=100, maximum=
|
| 337 |
],
|
| 338 |
stop_btn=False,
|
| 339 |
title="Gemma 3 27B IT",
|
| 340 |
-
description=DESCRIPTION,
|
| 341 |
examples=examples,
|
| 342 |
run_examples_on_click=False,
|
| 343 |
cache_examples=False,
|
|
|
|
| 14 |
from PIL import Image
|
| 15 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
| 16 |
|
| 17 |
+
# [PDF] PyPDF2 ์ถ๊ฐ
|
| 18 |
+
import PyPDF2
|
| 19 |
+
|
| 20 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
| 21 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
| 22 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
| 54 |
+
"""
|
| 55 |
+
์ด๋ฏธ์ง/๋น๋์ค ๊ฐ์์ ํผํฉ ์ฌ๋ถ ๋ฑ์ ๊ฒ์ฌํ๋ ํจ์.
|
| 56 |
+
PDF๋ ๊ฒ์ฌ ๋ก์ง์์ ์ ์ธํ์ฌ ์
๋ก๋๋ง ํ์ฉ.
|
| 57 |
+
"""
|
| 58 |
+
# [PDF] PDF ํ์ผ ์ ์ธ ์ฒ๋ฆฌ
|
| 59 |
+
pdf_files = [f for f in message["files"] if f.endswith(".pdf")]
|
| 60 |
+
non_pdf_files = [f for f in message["files"] if not f.endswith(".pdf")]
|
| 61 |
+
|
| 62 |
+
# ๊ธฐ์กด ๋ก์ง์ non_pdf_files(= ์ด๋ฏธ์ง/๋น๋์ค)์ ๋ํด์๋ง ์ฒดํฌ
|
| 63 |
+
new_image_count, new_video_count = count_files_in_new_message(non_pdf_files)
|
| 64 |
history_image_count, history_video_count = count_files_in_history(history)
|
| 65 |
image_count = history_image_count + new_image_count
|
| 66 |
video_count = history_video_count + new_video_count
|
| 67 |
+
|
| 68 |
if video_count > 1:
|
| 69 |
gr.Warning("Only one video is supported.")
|
| 70 |
return False
|
|
|
|
| 76 |
gr.Warning("Using <image> tags with video files is not supported.")
|
| 77 |
return False
|
| 78 |
# TODO: Add frame count validation for videos similar to image count limits # noqa: FIX002, TD002, TD003
|
| 79 |
+
|
| 80 |
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
| 81 |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
| 82 |
return False
|
| 83 |
+
|
| 84 |
+
# [PDF] PDF ๊ฐฏ์ ์ ํ(ํ์ํ๋ค๋ฉด)๋ ์ถ๊ฐ ๊ฐ๋ฅ
|
| 85 |
+
# ์ผ๋จ ์ ํ์ ๋์ง ์๊ณ ๋ฐ๋ก True ๋ฐํ
|
| 86 |
+
|
| 87 |
+
# <image> ํ๊ทธ๊ฐ ์์ ๊ฒฝ์ฐ, ์ด๋ฏธ์ง ๊ฐ์์ ๋งค์นญ ๊ฒ์ฌ
|
| 88 |
+
if "<image>" in message["text"]:
|
| 89 |
+
# new_image_count๋ pdf ์ ์ธ๋ ์ด๋ฏธ์ง ์
|
| 90 |
+
if message["text"].count("<image>") != new_image_count:
|
| 91 |
+
gr.Warning("The number of <image> tags in the text does not match the number of images.")
|
| 92 |
+
return False
|
| 93 |
+
|
| 94 |
return True
|
| 95 |
|
| 96 |
|
|
|
|
| 149 |
return content
|
| 150 |
|
| 151 |
|
| 152 |
+
# [PDF] PDF -> Markdown ๋ณํ ํจ์ ์ถ๊ฐ
|
| 153 |
+
def pdf_to_markdown(pdf_path: str) -> str:
|
| 154 |
+
"""
|
| 155 |
+
PDF ํ์ผ์ ํ
์คํธ๋ก ์ถ์ถ ํ, ๊ฐ๋จํ Markdown ํํ๋ก ๋ฐํ.
|
| 156 |
+
"""
|
| 157 |
+
text_chunks = []
|
| 158 |
+
with open(pdf_path, "rb") as f:
|
| 159 |
+
reader = PyPDF2.PdfReader(f)
|
| 160 |
+
for page_num, page in enumerate(reader.pages, start=1):
|
| 161 |
+
page_text = page.extract_text()
|
| 162 |
+
page_text = page_text.strip() if page_text else ""
|
| 163 |
+
if page_text:
|
| 164 |
+
# ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํค๋์ ๋ณธ๋ฌธ์ Markdown์ผ๋ก ํฉ์นจ
|
| 165 |
+
text_chunks.append(f"## Page {page_num}\n\n{page_text}\n")
|
| 166 |
+
return "\n".join(text_chunks)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
def process_new_user_message(message: dict) -> list[dict]:
|
| 170 |
+
"""
|
| 171 |
+
์ user message์์ text, ํ์ผ(์ด๋ฏธ์ง/๋น๋์ค/PDF)์ ์ฒ๋ฆฌ.
|
| 172 |
+
"""
|
| 173 |
if not message["files"]:
|
| 174 |
return [{"type": "text", "text": message["text"]}]
|
| 175 |
|
| 176 |
+
# [PDF] PDF ํ์ผ ๋ชฉ๋ก
|
| 177 |
+
pdf_files = [f for f in message["files"] if f.endswith(".pdf")]
|
| 178 |
+
# ์ด๋ฏธ์งยท๋น๋์ค ๋ชฉ๋ก
|
| 179 |
+
other_files = [f for f in message["files"] if not f.endswith(".pdf")]
|
| 180 |
+
|
| 181 |
+
# ์ผ๋จ ์ฌ์ฉ์์ text๋ฅผ ๊ฐ์ฅ ๋จผ์ ๋ฃ๋๋ค
|
| 182 |
+
content_list = [{"type": "text", "text": message["text"]}]
|
| 183 |
+
|
| 184 |
+
# PDF ๋ณํ ํ ์ถ๊ฐ
|
| 185 |
+
for pdf_path in pdf_files:
|
| 186 |
+
pdf_markdown = pdf_to_markdown(pdf_path)
|
| 187 |
+
if pdf_markdown.strip():
|
| 188 |
+
content_list.append({"type": "text", "text": pdf_markdown})
|
| 189 |
+
else:
|
| 190 |
+
content_list.append({"type": "text", "text": "(PDF์์ ํ
์คํธ ์ถ์ถ ์คํจ)"})
|
| 191 |
+
|
| 192 |
|
| 193 |
+
# ์์์ด ์๋์ง ํ์ธ
|
| 194 |
+
video_files = [f for f in other_files if f.endswith(".mp4")]
|
| 195 |
+
if video_files:
|
| 196 |
+
# ๋น๋์ค๋ ํ ๊ฐ๋ง ์ฒ๋ฆฌํ๋ค๋ ์ ์ (validate_media_constraints์์ ์ด๋ฏธ ๊ฒ์ฌ)
|
| 197 |
+
# ์ฌ๋ฌ ๊ฐ์ผ ๊ฒฝ์ฐ ์ฒซ ๋ฒ์งธ ๊ฒ๋ง ์ฒ๋ฆฌํ๊ฑฐ๋, ๊ฒฝ๊ณ ์ฒ๋ฆฌ
|
| 198 |
+
content_list += process_video(video_files[0])
|
| 199 |
+
return content_list
|
| 200 |
+
|
| 201 |
+
# interleaved ์ด๋ฏธ์ง
|
| 202 |
if "<image>" in message["text"]:
|
| 203 |
return process_interleaved_images(message)
|
| 204 |
|
| 205 |
+
# ์ผ๋ฐ ์ด๋ฏธ์ง(์ฌ๋ฌ ์ฅ)
|
| 206 |
+
image_files = [f for f in other_files if not f.endswith(".mp4")]
|
| 207 |
+
if image_files:
|
| 208 |
+
content_list += [{"type": "image", "url": path} for path in image_files]
|
| 209 |
+
|
| 210 |
+
return content_list
|
| 211 |
|
| 212 |
|
| 213 |
def process_history(history: list[dict]) -> list[dict]:
|
|
|
|
| 385 |
],
|
| 386 |
]
|
| 387 |
|
|
|
|
|
|
|
| 388 |
|
|
|
|
|
|
|
|
|
|
| 389 |
|
| 390 |
+
# [PDF] .pdf ํ์ฉ
|
| 391 |
demo = gr.ChatInterface(
|
| 392 |
fn=run,
|
| 393 |
type="messages",
|
| 394 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
| 395 |
+
textbox=gr.MultimodalTextbox(
|
| 396 |
+
file_types=["image", ".mp4", ".pdf"], # [PDF] ํ์ฉ
|
| 397 |
+
file_count="multiple",
|
| 398 |
+
autofocus=True
|
| 399 |
+
),
|
| 400 |
multimodal=True,
|
| 401 |
additional_inputs=[
|
| 402 |
+
gr.Textbox(label="System Prompt", value="ou are a deeply thoughtful AI. Consider problems thoroughly and derive correct solutions through systematic reasoning. Please answer in korean."),
|
| 403 |
+
gr.Slider(label="Max New Tokens", minimum=100, maximum=8000, step=50, value=2000),
|
| 404 |
],
|
| 405 |
stop_btn=False,
|
| 406 |
title="Gemma 3 27B IT",
|
|
|
|
| 407 |
examples=examples,
|
| 408 |
run_examples_on_click=False,
|
| 409 |
cache_examples=False,
|