# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 from typing import Any, Tuple import torch import torch.distributed as dist from torch import Tensor from .parallel_states import nccl_info def broadcast(input_: torch.Tensor): src = nccl_info.group_id * nccl_info.sp_size dist.broadcast(input_, src=src, group=nccl_info.group) def _all_to_all_4D(input: torch.tensor, scatter_idx: int = 2, gather_idx: int = 1, group=None) -> torch.tensor: """ all-to-all for QKV Args: input (torch.tensor): a tensor sharded along dim scatter dim scatter_idx (int): default 1 gather_idx (int): default 2 group : torch process group Returns: torch.tensor: resharded tensor (bs, seqlen/P, hc, hs) """ assert ( input.dim() == 4 ), f"input must be 4D tensor, got {input.dim()} and shape {input.shape}" seq_world_size = dist.get_world_size(group) if scatter_idx == 2 and gather_idx == 1: # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, hc, hs) output: (bs, seqlen, hc/P, hs) bs, shard_seqlen, hc, hs = input.shape seqlen = shard_seqlen * seq_world_size shard_hc = hc // seq_world_size # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! # (bs, seqlen/P, hc, hs) -reshape-> (bs, seq_len/P, P, hc/P, hs) -transpose(0,2)-> (P, seq_len/P, bs, hc/P, hs) input_t = (input.reshape(bs, shard_seqlen, seq_world_size, shard_hc, hs).transpose(0, 2).contiguous()) output = torch.empty_like(input_t) # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single # (P, seq_len/P, bs, hc/P, hs) scatter seqlen -all2all-> (P, seq_len/P, bs, hc/P, hs) scatter head if seq_world_size > 1: dist.all_to_all_single(output, input_t, group=group) torch.cuda.synchronize() else: output = input_t # if scattering the seq-dim, transpose the heads back to the original dimension output = output.reshape(seqlen, bs, shard_hc, hs) # (seq_len, bs, hc/P, hs) -reshape-> (bs, seq_len, hc/P, hs) output = output.transpose(0, 1).contiguous().reshape( bs, seqlen, shard_hc, hs) return output elif scatter_idx == 1 and gather_idx == 2: # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs) bs, seqlen, shard_hc, hs = input.shape hc = shard_hc * seq_world_size shard_seqlen = seqlen // seq_world_size seq_world_size = dist.get_world_size(group) # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! # (bs, seqlen, hc/P, hs) -reshape-> (bs, P, seq_len/P, hc/P, hs) -transpose(0, 3)-> (hc/P, P, seqlen/P, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, bs, hs) input_t = (input.reshape( bs, seq_world_size, shard_seqlen, shard_hc, hs).transpose(0, 3).transpose(0, 1).contiguous().reshape( seq_world_size, shard_hc, shard_seqlen, bs, hs)) output = torch.empty_like(input_t) # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single # (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head if seq_world_size > 1: dist.all_to_all_single(output, input_t, group=group) torch.cuda.synchronize() else: output = input_t # if scattering the seq-dim, transpose the heads back to the original dimension output = output.reshape(hc, shard_seqlen, bs, hs) # (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs) output = output.transpose(0, 2).contiguous().reshape( bs, shard_seqlen, hc, hs) return output else: raise RuntimeError( "scatter_idx must be 1 or 2 and gather_idx must be 1 or 2") class SeqAllToAll4D(torch.autograd.Function): @staticmethod def forward( ctx: Any, group: dist.ProcessGroup, input: Tensor, scatter_idx: int, gather_idx: int, ) -> Tensor: ctx.group = group ctx.scatter_idx = scatter_idx ctx.gather_idx = gather_idx return _all_to_all_4D(input, scatter_idx, gather_idx, group=group) @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]: return ( None, SeqAllToAll4D.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx), None, None, ) def all_to_all_4D( input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1, ): return SeqAllToAll4D.apply(nccl_info.group, input_, scatter_dim, gather_dim) def _all_to_all( input_: torch.Tensor, world_size: int, group: dist.ProcessGroup, scatter_dim: int, gather_dim: int, ): input_list = [ t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim) ] output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)] dist.all_to_all(output_list, input_list, group=group) return torch.cat(output_list, dim=gather_dim).contiguous() class _AllToAll(torch.autograd.Function): """All-to-all communication. Args: input_: input matrix process_group: communication group scatter_dim: scatter dimension gather_dim: gather dimension """ @staticmethod def forward(ctx, input_, process_group, scatter_dim, gather_dim): ctx.process_group = process_group ctx.scatter_dim = scatter_dim ctx.gather_dim = gather_dim ctx.world_size = dist.get_world_size(process_group) output = _all_to_all(input_, ctx.world_size, process_group, scatter_dim, gather_dim) return output @staticmethod def backward(ctx, grad_output): grad_output = _all_to_all( grad_output, ctx.world_size, ctx.process_group, ctx.gather_dim, ctx.scatter_dim, ) return ( grad_output, None, None, None, ) def all_to_all( input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1, ): return _AllToAll.apply(input_, nccl_info.group, scatter_dim, gather_dim) class _AllGather(torch.autograd.Function): """All-gather communication with autograd support. Args: input_: input tensor dim: dimension along which to concatenate """ @staticmethod def forward(ctx, input_, dim): ctx.dim = dim world_size = nccl_info.sp_size group = nccl_info.group input_size = list(input_.size()) ctx.input_size = input_size[dim] tensor_list = [torch.empty_like(input_) for _ in range(world_size)] input_ = input_.contiguous() dist.all_gather(tensor_list, input_, group=group) output = torch.cat(tensor_list, dim=dim) return output @staticmethod def backward(ctx, grad_output): world_size = nccl_info.sp_size rank = nccl_info.rank_within_group dim = ctx.dim input_size = ctx.input_size sizes = [input_size] * world_size grad_input_list = torch.split(grad_output, sizes, dim=dim) grad_input = grad_input_list[rank] return grad_input, None def all_gather(input_: torch.Tensor, dim: int = 1): """Performs an all-gather operation on the input tensor along the specified dimension. Args: input_ (torch.Tensor): Input tensor of shape [B, H, S, D]. dim (int, optional): Dimension along which to concatenate. Defaults to 1. Returns: torch.Tensor: Output tensor after all-gather operation, concatenated along 'dim'. """ return _AllGather.apply(input_, dim) def prepare_sequence_parallel_data(hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask): if nccl_info.sp_size == 1: return ( hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask, ) def prepare(hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask): hidden_states = all_to_all(hidden_states, scatter_dim=2, gather_dim=0) encoder_hidden_states = all_to_all(encoder_hidden_states, scatter_dim=1, gather_dim=0) attention_mask = all_to_all(attention_mask, scatter_dim=1, gather_dim=0) encoder_attention_mask = all_to_all(encoder_attention_mask, scatter_dim=1, gather_dim=0) return ( hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask, ) sp_size = nccl_info.sp_size frame = hidden_states.shape[2] assert frame % sp_size == 0, "frame should be a multiple of sp_size" ( hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask, ) = prepare( hidden_states, encoder_hidden_states.repeat(1, sp_size, 1), attention_mask.repeat(1, sp_size, 1, 1), encoder_attention_mask.repeat(1, sp_size), ) return hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask def sp_parallel_dataloader_wrapper(dataloader, device, train_batch_size, sp_size, train_sp_batch_size): while True: for data_item in dataloader: latents, cond, attn_mask, cond_mask = data_item latents = latents.to(device) cond = cond.to(device) attn_mask = attn_mask.to(device) cond_mask = cond_mask.to(device) frame = latents.shape[2] if frame == 1: yield latents, cond, attn_mask, cond_mask else: latents, cond, attn_mask, cond_mask = prepare_sequence_parallel_data( latents, cond, attn_mask, cond_mask) assert ( train_batch_size * sp_size >= train_sp_batch_size ), "train_batch_size * sp_size should be greater than train_sp_batch_size" for iter in range(train_batch_size * sp_size // train_sp_batch_size): st_idx = iter * train_sp_batch_size ed_idx = (iter + 1) * train_sp_batch_size encoder_hidden_states = cond[st_idx:ed_idx] attention_mask = attn_mask[st_idx:ed_idx] encoder_attention_mask = cond_mask[st_idx:ed_idx] yield ( latents[st_idx:ed_idx], encoder_hidden_states, attention_mask, encoder_attention_mask, )