marc-thibault-h commited on
Commit
703b754
·
verified ·
1 Parent(s): 305639f

Update app.py and requirements following Mungert's proposed setup

Browse files
Files changed (1) hide show
  1. app.py +210 -148
app.py CHANGED
@@ -1,24 +1,89 @@
1
- import subprocess
2
- #subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
3
-
4
  import gradio as gr
5
- import json
6
- import os
7
- from typing import Any, List
8
- import spaces
9
 
 
 
10
  from PIL import Image, ImageDraw
11
  import requests
12
  from transformers import AutoModelForImageTextToText, AutoProcessor
13
  from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
14
- import torch
15
- import re
16
 
17
  # --- Configuration ---
18
- MODEL_ID = "Hcompany/Holo1-7B"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- # --- Model and Processor Loading (Load once) ---
21
- print(f"Loading model and processor for {MODEL_ID}...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  model = None
23
  processor = None
24
  model_loaded = False
@@ -27,200 +92,185 @@ load_error_message = ""
27
  try:
28
  model = AutoModelForImageTextToText.from_pretrained(
29
  MODEL_ID,
30
- torch_dtype=torch.bfloat16,
31
- attn_implementation="flash_attention_2",
32
- trust_remote_code=True
33
- ).to("cuda")
34
  processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
 
35
  model_loaded = True
36
- print("Model and processor loaded successfully.")
37
  except Exception as e:
38
- load_error_message = f"Error loading model/processor: {e}\n" \
39
- "This might be due to network issues, an incorrect model ID, or missing dependencies (like flash_attention_2 if enabled by default in some config).\n" \
40
- "Ensure you have a stable internet connection and the necessary libraries installed."
 
 
41
  print(load_error_message)
 
42
 
43
- # --- Helper functions from the model card (or adapted) ---
44
-
45
- def get_localization_prompt(pil_image: Image.Image, instruction: str) -> List[dict[str, Any]]:
46
- """
47
- Prepares the prompt structure for the Holo1 model for localization tasks.
48
- The `pil_image` argument here is primarily for semantic completeness in the prompt structure,
49
- as the actual image tensor is handled by the processor later.
50
- """
51
- guidelines: str = "Localize an element on the GUI image according to my instructions and output a click position as Click(x, y) with x num pixels from the left edge and y num pixels from the top edge."
52
-
53
  return [
54
  {
55
  "role": "user",
56
  "content": [
57
- {
58
- "type": "image",
59
- "image": pil_image,
60
- },
61
- {"type": "text", "text": f"{guidelines}\n{instruction}"},
62
  ],
63
  }
64
  ]
65
 
66
- @spaces.GPU(duration=20)
 
67
  def run_inference_localization(
68
- messages_for_template: List[dict[str, Any]],
69
- pil_image_for_processing: Image.Image
 
 
70
  ) -> str:
71
- model.to("cuda")
72
- torch.cuda.set_device(0)
73
- """
74
- Runs inference using the Holo1 model.
75
- - messages_for_template: The prompt structure, potentially including the PIL image object
76
- (which apply_chat_template converts to an image tag).
77
- - pil_image_for_processing: The actual PIL image to be processed into tensors.
78
- """
79
- # 1. Apply chat template to messages. This will create the text part of the prompt,
80
- # including image tags if the image was part of `messages_for_template`.
81
- text_prompt = processor.apply_chat_template(
82
- messages_for_template,
83
- tokenize=False,
84
- add_generation_prompt=True
85
- )
86
 
87
- # 2. Process text and image together to get model inputs
88
  inputs = processor(
89
  text=[text_prompt],
90
- images=[pil_image_for_processing], # Provide the actual image data here
91
  padding=True,
92
  return_tensors="pt",
93
  )
94
- inputs = inputs.to(model.device)
95
-
96
- # 3. Generate response
97
- # Using do_sample=False for more deterministic output, as in the model card's structured output example
98
- generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
99
-
100
- # 4. Trim input_ids from generated_ids to get only the generated part
101
- generated_ids_trimmed = [
102
- out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
103
- ]
104
-
105
- # 5. Decode the generated tokens
106
- decoded_output = processor.batch_decode(
107
- generated_ids_trimmed,
108
- skip_special_tokens=True,
 
 
 
 
 
 
 
109
  clean_up_tokenization_spaces=False
110
  )
111
-
112
  return decoded_output[0] if decoded_output else ""
113
 
114
-
115
- # --- Gradio processing function ---
 
116
  def predict_click_location(input_pil_image: Image.Image, instruction: str):
117
  if not model_loaded or not processor or not model:
118
- return f"Model not loaded. Error: {load_error_message}", None
119
  if not input_pil_image:
120
- return "No image provided. Please upload an image.", None
121
  if not instruction or instruction.strip() == "":
122
- return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB")
123
 
124
- # 1. Prepare image: Resize according to model's image processor's expected properties
125
- # This ensures predicted coordinates match the (resized) image dimensions.
126
- image_proc_config = processor.image_processor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  try:
 
128
  resized_height, resized_width = smart_resize(
129
  input_pil_image.height,
130
  input_pil_image.width,
131
- factor=image_proc_config.patch_size * image_proc_config.merge_size,
132
- min_pixels=image_proc_config.min_pixels,
133
- max_pixels=image_proc_config.max_pixels,
134
  )
135
- # Using LANCZOS for resampling as it's generally good for downscaling.
136
- # The model card used `resample=None`, which might imply nearest or default.
137
- # For visual quality in the demo, LANCZOS is reasonable.
138
  resized_image = input_pil_image.resize(
139
- size=(resized_width, resized_height),
140
- resample=Image.Resampling.LANCZOS # type: ignore
141
  )
142
  except Exception as e:
143
- print(f"Error resizing image: {e}")
144
- return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")
145
 
146
- # 2. Create the prompt using the resized image (for correct image tagging context) and instruction
147
  messages = get_localization_prompt(resized_image, instruction)
148
 
149
- # 3. Run inference
150
- # Pass `messages` (which includes the image object for template processing)
151
- # and `resized_image` (for actual tensor conversion).
152
  try:
153
- coordinates_str = run_inference_localization(messages, resized_image)
154
  except Exception as e:
155
- print(f"Error during model inference: {e}")
156
- return f"Error during model inference: {e}", resized_image.copy().convert("RGB")
157
-
158
- # 4. Parse coordinates and draw on the image
159
- output_image_with_click = resized_image.copy().convert("RGB") # Ensure it's RGB for drawing
160
- parsed_coords = None
161
-
162
- # Expected format from the model: "Click(x, y)"
163
  match = re.search(r"Click\((\d+),\s*(\d+)\)", coordinates_str)
164
  if match:
165
  try:
166
  x = int(match.group(1))
167
  y = int(match.group(2))
168
- parsed_coords = (x, y)
169
-
170
  draw = ImageDraw.Draw(output_image_with_click)
171
- # Make the marker somewhat responsive to image size, but not too small/large
172
- radius = max(5, min(resized_width // 100, resized_height // 100, 15))
173
-
174
- # Define the bounding box for the ellipse (circle)
175
  bbox = (x - radius, y - radius, x + radius, y + radius)
176
- draw.ellipse(bbox, outline="red", width=max(2, radius // 4)) # Draw a red circle
177
  print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
178
- except ValueError:
179
- print(f"Could not parse integers from coordinates: {coordinates_str}")
180
- # Keep original coordinates_str, output_image_with_click will be the resized image without a mark
181
  except Exception as e:
182
  print(f"Error drawing on image: {e}")
 
183
  else:
184
  print(f"Could not parse 'Click(x, y)' from model output: {coordinates_str}")
185
-
186
- return coordinates_str, output_image_with_click
187
 
188
  # --- Load Example Data ---
189
  example_image = None
190
- example_instruction = "Select July 14th as the check-out date"
191
  try:
192
- example_image_url = "https://huggingface.co/Hcompany/Holo1-7B/resolve/main/calendar_example.jpg"
193
  example_image = Image.open(requests.get(example_image_url, stream=True).raw)
194
  except Exception as e:
195
  print(f"Could not load example image from URL: {e}")
196
- # Create a placeholder image if loading fails, so Gradio example still works
197
  try:
198
  example_image = Image.new("RGB", (200, 150), color="lightgray")
199
  draw = ImageDraw.Draw(example_image)
200
  draw.text((10, 10), "Example image\nfailed to load", fill="black")
201
- except: # If PIL itself is an issue (unlikely here but good for robustness)
202
- pass
203
-
204
-
205
- # --- Gradio Interface Definition ---
206
- title = "Holo1-7B: Action VLM Localization Demo"
207
- description = """
208
- This demo showcases **Holo1-7B**, an Action Vision-Language Model developed by HCompany, fine-tuned from Qwen/Qwen2.5-VL-7B-Instruct.
209
- It's designed to interact with web interfaces like a human user. Here, we demonstrate its UI localization capability.
210
 
211
- **How to use:**
212
- 1. Upload an image (e.g., a screenshot of a UI, like the calendar example).
213
- 2. Provide a textual instruction (e.g., "Select July 14th as the check-out date").
214
- 3. The model will predict the click coordinates in the format `Click(x, y)`.
215
- 4. The predicted click point will be marked with a red circle on the (resized) image.
216
-
217
- The model processes a resized version of your input image. Coordinates are relative to this resized image.
218
- """
219
  article = f"""
220
  <p style='text-align: center'>
221
- Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
222
  Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
223
- Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
 
224
  </p>
225
  """
226
 
@@ -228,42 +278,54 @@ if not model_loaded:
228
  with gr.Blocks() as demo:
229
  gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
230
  gr.Markdown(f"<center>{load_error_message}</center>")
231
- gr.Markdown("<center>Please check the console output for more details. Reloading the space might help if it's a temporary issue.</center>")
232
  else:
233
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
234
  gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
235
- # gr.Markdown(description)
236
 
237
  with gr.Row():
238
  with gr.Column(scale=1):
239
  input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
240
  instruction_component = gr.Textbox(
241
- label="Instruction",
242
  placeholder="e.g., Click the 'Login' button",
243
  info="Type the action you want the model to localize on the image."
244
  )
245
  submit_button = gr.Button("Localize Click", variant="primary")
246
-
247
  with gr.Column(scale=1):
248
- output_coords_component = gr.Textbox(label="Predicted Coordinates (Format: Click(x,y))", interactive=False)
249
- output_image_component = gr.Image(type="pil", label="Image with Predicted Click Point", height=400, interactive=False)
250
-
 
 
 
 
 
 
 
 
 
 
 
 
 
251
  if example_image:
252
  gr.Examples(
253
  examples=[[example_image, example_instruction]],
254
  inputs=[input_image_component, instruction_component],
255
- outputs=[output_coords_component, output_image_component],
256
  fn=predict_click_location,
257
  cache_examples="lazy",
258
  )
259
-
260
- gr.Markdown(article)
261
 
262
  submit_button.click(
263
  fn=predict_click_location,
264
  inputs=[input_image_component, instruction_component],
265
- outputs=[output_coords_component, output_image_component]
266
  )
267
 
268
  if __name__ == "__main__":
269
- demo.launch(debug=True)
 
 
 
 
 
1
  import gradio as gr
2
+ import json, os, re, traceback, contextlib
3
+ from typing import Any, List, Dict
 
 
4
 
5
+ import spaces
6
+ import torch
7
  from PIL import Image, ImageDraw
8
  import requests
9
  from transformers import AutoModelForImageTextToText, AutoProcessor
10
  from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
 
 
11
 
12
  # --- Configuration ---
13
+ MODEL_ID = "Hcompany/Holo1-3B"
14
+
15
+ # ---------------- Device / DType helpers ----------------
16
+
17
+ def pick_device() -> str:
18
+ """
19
+ On HF Spaces (ZeroGPU), CUDA is only available inside @spaces.GPU calls.
20
+ We still honor FORCE_DEVICE for local testing.
21
+ """
22
+ forced = os.getenv("FORCE_DEVICE", "").lower().strip()
23
+ if forced in {"cpu", "cuda", "mps"}:
24
+ return forced
25
+ if torch.cuda.is_available():
26
+ return "cuda"
27
+ if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available():
28
+ return "mps"
29
+ return "cpu"
30
+
31
+ def pick_dtype(device: str) -> torch.dtype:
32
+ if device == "cuda":
33
+ major, _ = torch.cuda.get_device_capability()
34
+ return torch.bfloat16 if major >= 8 else torch.float16 # Ampere+ -> bf16
35
+ if device == "mps":
36
+ return torch.float16
37
+ return torch.float32 # CPU
38
+
39
+ def move_to_device(batch, device: str):
40
+ if isinstance(batch, dict):
41
+ return {k: (v.to(device, non_blocking=True) if hasattr(v, "to") else v) for k, v in batch.items()}
42
+ if hasattr(batch, "to"):
43
+ return batch.to(device, non_blocking=True)
44
+ return batch
45
+
46
+ # --- Chat/template helpers ---
47
+ def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str:
48
+ tok = getattr(processor, "tokenizer", None)
49
+ if hasattr(processor, "apply_chat_template"):
50
+ return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
51
+ if tok is not None and hasattr(tok, "apply_chat_template"):
52
+ return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
53
+ texts = []
54
+ for m in messages:
55
+ for c in m.get("content", []):
56
+ if isinstance(c, dict) and c.get("type") == "text":
57
+ texts.append(c.get("text", ""))
58
+ return "\n".join(texts)
59
+
60
+ def batch_decode_compat(processor, token_id_batches, **kw):
61
+ tok = getattr(processor, "tokenizer", None)
62
+ if tok is not None and hasattr(tok, "batch_decode"):
63
+ return tok.batch_decode(token_id_batches, **kw)
64
+ if hasattr(processor, "batch_decode"):
65
+ return processor.batch_decode(token_id_batches, **kw)
66
+ raise AttributeError("No batch_decode available on processor or tokenizer.")
67
 
68
+ def get_image_proc_params(processor) -> Dict[str, int]:
69
+ ip = getattr(processor, "image_processor", None)
70
+ return {
71
+ "patch_size": getattr(ip, "patch_size", 14),
72
+ "merge_size": getattr(ip, "merge_size", 1),
73
+ "min_pixels": getattr(ip, "min_pixels", 256 * 256),
74
+ "max_pixels": getattr(ip, "max_pixels", 1280 * 1280),
75
+ }
76
+
77
+ def trim_generated(generated_ids, inputs):
78
+ in_ids = getattr(inputs, "input_ids", None)
79
+ if in_ids is None and isinstance(inputs, dict):
80
+ in_ids = inputs.get("input_ids", None)
81
+ if in_ids is None:
82
+ return [out_ids for out_ids in generated_ids]
83
+ return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)]
84
+
85
+ # --- Load model/processor ON CPU at import time (required for ZeroGPU) ---
86
+ print(f"Loading model and processor for {MODEL_ID} on CPU startup (ZeroGPU safe)...")
87
  model = None
88
  processor = None
89
  model_loaded = False
 
92
  try:
93
  model = AutoModelForImageTextToText.from_pretrained(
94
  MODEL_ID,
95
+ torch_dtype=torch.float32, # CPU-safe dtype at import
96
+ trust_remote_code=True,
97
+ )
 
98
  processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
99
+ model.eval()
100
  model_loaded = True
101
+ print("Model and processor loaded on CPU.")
102
  except Exception as e:
103
+ load_error_message = (
104
+ f"Error loading model/processor: {e}\n"
105
+ "This might be due to network/model ID/library versions.\n"
106
+ "Check the full traceback in the logs."
107
+ )
108
  print(load_error_message)
109
+ traceback.print_exc()
110
 
111
+ # --- Prompt builder ---
112
+ def get_localization_prompt(pil_image: Image.Image, instruction: str) -> List[dict]:
113
+ guidelines: str = (
114
+ "Localize an element on the GUI image according to my instructions and "
115
+ "output a click position as Click(x, y) with x num pixels from the left edge "
116
+ "and y num pixels from the top edge."
117
+ )
 
 
 
118
  return [
119
  {
120
  "role": "user",
121
  "content": [
122
+ {"type": "image", "image": pil_image},
123
+ {"type": "text", "text": f"{guidelines}\n{instruction}"}
 
 
 
124
  ],
125
  }
126
  ]
127
 
128
+ # --- Inference core (device passed in; AMP used when suitable) ---
129
+ @torch.inference_mode()
130
  def run_inference_localization(
131
+ messages_for_template: List[dict[str, Any]],
132
+ pil_image_for_processing: Image.Image,
133
+ device: str,
134
+ dtype: torch.dtype,
135
  ) -> str:
136
+ text_prompt = apply_chat_template_compat(processor, messages_for_template)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
 
138
  inputs = processor(
139
  text=[text_prompt],
140
+ images=[pil_image_for_processing],
141
  padding=True,
142
  return_tensors="pt",
143
  )
144
+ inputs = move_to_device(inputs, device)
145
+
146
+ # AMP contexts
147
+ if device == "cuda":
148
+ amp_ctx = torch.autocast(device_type="cuda", dtype=dtype)
149
+ elif device == "mps":
150
+ amp_ctx = torch.autocast(device_type="mps", dtype=torch.float16)
151
+ else:
152
+ amp_ctx = contextlib.nullcontext()
153
+
154
+ with amp_ctx:
155
+ generated_ids = model.generate(
156
+ **inputs,
157
+ max_new_tokens=128,
158
+ do_sample=False,
159
+ )
160
+
161
+ generated_ids_trimmed = trim_generated(generated_ids, inputs)
162
+ decoded_output = batch_decode_compat(
163
+ processor,
164
+ generated_ids_trimmed,
165
+ skip_special_tokens=True,
166
  clean_up_tokenization_spaces=False
167
  )
 
168
  return decoded_output[0] if decoded_output else ""
169
 
170
+ # --- Gradio processing function (ZeroGPU-visible) ---
171
+ # Decorate the function Gradio calls so Spaces detects a GPU entry point.
172
+ @spaces.GPU(duration=120) # keep GPU attached briefly between calls (seconds)
173
  def predict_click_location(input_pil_image: Image.Image, instruction: str):
174
  if not model_loaded or not processor or not model:
175
+ return f"Model not loaded. Error: {load_error_message}", None, "device: n/a | dtype: n/a"
176
  if not input_pil_image:
177
+ return "No image provided. Please upload an image.", None, "device: n/a | dtype: n/a"
178
  if not instruction or instruction.strip() == "":
179
+ return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB"), "device: n/a | dtype: n/a"
180
 
181
+ # Decide device/dtype *inside* the GPU-decorated call
182
+ device = pick_device()
183
+ dtype = pick_dtype(device)
184
+
185
+ # Optional perf knobs for CUDA
186
+ if device == "cuda":
187
+ torch.backends.cuda.matmul.allow_tf32 = True
188
+ torch.set_float32_matmul_precision("high")
189
+
190
+ # If needed, move model now that GPU is available
191
+ try:
192
+ p = next(model.parameters())
193
+ cur_dev = p.device.type
194
+ cur_dtype = p.dtype
195
+ except StopIteration:
196
+ cur_dev, cur_dtype = "cpu", torch.float32
197
+
198
+ if cur_dev != device or cur_dtype != dtype:
199
+ model.to(device=device, dtype=dtype)
200
+ model.eval()
201
+
202
+ # 1) Resize according to image processor params (safe defaults if missing)
203
  try:
204
+ ip = get_image_proc_params(processor)
205
  resized_height, resized_width = smart_resize(
206
  input_pil_image.height,
207
  input_pil_image.width,
208
+ factor=ip["patch_size"] * ip["merge_size"],
209
+ min_pixels=ip["min_pixels"],
210
+ max_pixels=ip["max_pixels"],
211
  )
 
 
 
212
  resized_image = input_pil_image.resize(
213
+ size=(resized_width, resized_height),
214
+ resample=Image.Resampling.LANCZOS
215
  )
216
  except Exception as e:
217
+ traceback.print_exc()
218
+ return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB"), f"device: {device} | dtype: {dtype}"
219
 
220
+ # 2) Build messages with image + instruction
221
  messages = get_localization_prompt(resized_image, instruction)
222
 
223
+ # 3) Run inference
 
 
224
  try:
225
+ coordinates_str = run_inference_localization(messages, resized_image, device, dtype)
226
  except Exception as e:
227
+ traceback.print_exc()
228
+ return f"Error during model inference: {e}", resized_image.copy().convert("RGB"), f"device: {device} | dtype: {dtype}"
229
+
230
+ # 4) Parse coordinates and draw marker
231
+ output_image_with_click = resized_image.copy().convert("RGB")
 
 
 
232
  match = re.search(r"Click\((\d+),\s*(\d+)\)", coordinates_str)
233
  if match:
234
  try:
235
  x = int(match.group(1))
236
  y = int(match.group(2))
 
 
237
  draw = ImageDraw.Draw(output_image_with_click)
238
+ radius = max(5, min(resized_width // 100, resized_height // 100, 15))
 
 
 
239
  bbox = (x - radius, y - radius, x + radius, y + radius)
240
+ draw.ellipse(bbox, outline="red", width=max(2, radius // 4))
241
  print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
 
 
 
242
  except Exception as e:
243
  print(f"Error drawing on image: {e}")
244
+ traceback.print_exc()
245
  else:
246
  print(f"Could not parse 'Click(x, y)' from model output: {coordinates_str}")
247
+
248
+ return coordinates_str, output_image_with_click, f"device: {device} | dtype: {str(dtype).replace('torch.', '')}"
249
 
250
  # --- Load Example Data ---
251
  example_image = None
252
+ example_instruction = "Enter the server address readyforquantum.com to check its security"
253
  try:
254
+ example_image_url = "https://readyforquantum.com/img/screentest.jpg"
255
  example_image = Image.open(requests.get(example_image_url, stream=True).raw)
256
  except Exception as e:
257
  print(f"Could not load example image from URL: {e}")
258
+ traceback.print_exc()
259
  try:
260
  example_image = Image.new("RGB", (200, 150), color="lightgray")
261
  draw = ImageDraw.Draw(example_image)
262
  draw.text((10, 10), "Example image\nfailed to load", fill="black")
263
+ except Exception:
264
+ pass
 
 
 
 
 
 
 
265
 
266
+ # --- Gradio UI ---
267
+ title = "Holo1-3B: Holo1 Localization Demo (ZeroGPU-ready)"
 
 
 
 
 
 
268
  article = f"""
269
  <p style='text-align: center'>
270
+ Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
271
  Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
272
+ Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a><br/>
273
+ <small>GPU (if available) is requested only during inference via @spaces.GPU.</small>
274
  </p>
275
  """
276
 
 
278
  with gr.Blocks() as demo:
279
  gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
280
  gr.Markdown(f"<center>{load_error_message}</center>")
281
+ gr.Markdown("<center>See logs for the full traceback.</center>")
282
  else:
283
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
284
  gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
285
+ gr.Markdown(article)
286
 
287
  with gr.Row():
288
  with gr.Column(scale=1):
289
  input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
290
  instruction_component = gr.Textbox(
291
+ label="Instruction",
292
  placeholder="e.g., Click the 'Login' button",
293
  info="Type the action you want the model to localize on the image."
294
  )
295
  submit_button = gr.Button("Localize Click", variant="primary")
296
+
297
  with gr.Column(scale=1):
298
+ output_coords_component = gr.Textbox(
299
+ label="Predicted Coordinates (Format: Click(x, y))",
300
+ interactive=False
301
+ )
302
+ output_image_component = gr.Image(
303
+ type="pil",
304
+ label="Image with Predicted Click Point",
305
+ height=400,
306
+ interactive=False
307
+ )
308
+ runtime_info = gr.Textbox(
309
+ label="Runtime Info",
310
+ value="device: n/a | dtype: n/a",
311
+ interactive=False
312
+ )
313
+
314
  if example_image:
315
  gr.Examples(
316
  examples=[[example_image, example_instruction]],
317
  inputs=[input_image_component, instruction_component],
318
+ outputs=[output_coords_component, output_image_component, runtime_info],
319
  fn=predict_click_location,
320
  cache_examples="lazy",
321
  )
 
 
322
 
323
  submit_button.click(
324
  fn=predict_click_location,
325
  inputs=[input_image_component, instruction_component],
326
+ outputs=[output_coords_component, output_image_component, runtime_info]
327
  )
328
 
329
  if __name__ == "__main__":
330
+ # Do NOT pass 'concurrency_count' or ZeroGPU-specific launch args.
331
+ demo.launch(debug=True)