Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from transformers import pipeline
|
|
4 |
pipe=pipeline(model="vennify/t5-base-grammar-correction")
|
5 |
st.title("Grammatical Error Checker")
|
6 |
st.header("Text input:")
|
7 |
-
text=st.text_area('Input sentence:')
|
8 |
if text:
|
9 |
out=pipe(text)
|
10 |
st.text_area(label="Output sentence:", value=out)
|
@@ -26,14 +26,14 @@ st.title("Language Translator")
|
|
26 |
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
27 |
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
28 |
tokenizer.src_lang = "en_XX"
|
29 |
-
text_l=st.text_area('Input sentence:')
|
30 |
encoded_en = tokenizer(text_l, return_tensors="pt")
|
31 |
generated_tokens = model.generate(
|
32 |
**encoded_en,
|
33 |
forced_bos_token_id=tokenizer.lang_code_to_id["hi_IN"]
|
34 |
)
|
35 |
-
|
36 |
-
st.text_area(label="Output sentence:", value=
|
37 |
|
38 |
pipe_p=pipeline(model="ramsrigouthamg/t5_sentence_paraphraser")
|
39 |
st.title("Paraphraser")
|
|
|
4 |
pipe=pipeline(model="vennify/t5-base-grammar-correction")
|
5 |
st.title("Grammatical Error Checker")
|
6 |
st.header("Text input:")
|
7 |
+
text=st.text_area('Input sentence:', key=1)
|
8 |
if text:
|
9 |
out=pipe(text)
|
10 |
st.text_area(label="Output sentence:", value=out)
|
|
|
26 |
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
27 |
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
28 |
tokenizer.src_lang = "en_XX"
|
29 |
+
text_l=st.text_area('Input sentence:', key=2)
|
30 |
encoded_en = tokenizer(text_l, return_tensors="pt")
|
31 |
generated_tokens = model.generate(
|
32 |
**encoded_en,
|
33 |
forced_bos_token_id=tokenizer.lang_code_to_id["hi_IN"]
|
34 |
)
|
35 |
+
out_l=tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
36 |
+
st.text_area(label="Output sentence:", value=out_l)
|
37 |
|
38 |
pipe_p=pipeline(model="ramsrigouthamg/t5_sentence_paraphraser")
|
39 |
st.title("Paraphraser")
|