Haseeb230602 commited on
Commit
c6bd148
·
verified ·
1 Parent(s): f8af2be

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -4,7 +4,7 @@ from transformers import pipeline
4
  pipe=pipeline(model="vennify/t5-base-grammar-correction")
5
  st.title("Grammatical Error Checker")
6
  st.header("Text input:")
7
- text=st.text_area('Input sentence:')
8
  if text:
9
  out=pipe(text)
10
  st.text_area(label="Output sentence:", value=out)
@@ -26,14 +26,14 @@ st.title("Language Translator")
26
  model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
27
  tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
28
  tokenizer.src_lang = "en_XX"
29
- text_l=st.text_area('Input sentence:')
30
  encoded_en = tokenizer(text_l, return_tensors="pt")
31
  generated_tokens = model.generate(
32
  **encoded_en,
33
  forced_bos_token_id=tokenizer.lang_code_to_id["hi_IN"]
34
  )
35
- out_t=tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
36
- st.text_area(label="Output sentence:", value=out_t)
37
 
38
  pipe_p=pipeline(model="ramsrigouthamg/t5_sentence_paraphraser")
39
  st.title("Paraphraser")
 
4
  pipe=pipeline(model="vennify/t5-base-grammar-correction")
5
  st.title("Grammatical Error Checker")
6
  st.header("Text input:")
7
+ text=st.text_area('Input sentence:', key=1)
8
  if text:
9
  out=pipe(text)
10
  st.text_area(label="Output sentence:", value=out)
 
26
  model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
27
  tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
28
  tokenizer.src_lang = "en_XX"
29
+ text_l=st.text_area('Input sentence:', key=2)
30
  encoded_en = tokenizer(text_l, return_tensors="pt")
31
  generated_tokens = model.generate(
32
  **encoded_en,
33
  forced_bos_token_id=tokenizer.lang_code_to_id["hi_IN"]
34
  )
35
+ out_l=tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
36
+ st.text_area(label="Output sentence:", value=out_l)
37
 
38
  pipe_p=pipeline(model="ramsrigouthamg/t5_sentence_paraphraser")
39
  st.title("Paraphraser")