Spaces:
Sleeping
Sleeping
File size: 6,529 Bytes
c51117f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import streamlit as st
import pandas as pd
import chromadb
import os
from langgraph.graph import StateGraph
from fpdf import FPDF
import json
from groq import Groq
# Securely load API key from environment variables
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
st.error("Please set GROQ_API_KEY environment variable.")
st.stop()
# Groq API Setup
try:
client = Groq(api_key=GROQ_API_KEY)
except Exception as e:
st.error(f"Error initializing Groq API: {e}")
st.stop()
# ChromaDB Setup
try:
chroma_client = chromadb.PersistentClient(path="./chromadb_store")
collection = chroma_client.get_or_create_collection(name="dna_analysis")
except Exception as e:
st.error(f"Error initializing ChromaDB: {e}")
st.stop()
def load_and_preprocess(file):
"""Load and preprocess the uploaded genomic data."""
try:
if file.name.endswith('.csv'):
df = pd.read_csv(file)
elif file.name.endswith('.xlsx'):
df = pd.read_excel(file)
elif file.name.endswith('.txt'):
df = pd.read_csv(file, delimiter="\t")
else:
return None
return df
except Exception as e:
st.error(f"Error loading file: {e}")
return None
def query_llm(category, data):
"""Query Groq LLM with retrieved DNA data insights."""
try:
prompt = f"Analyze the following DNA data under the category {category}: {data}"
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt,
}
],
model="llama-3.3-70b-versatile", # or mixtral-8x7b-390ms
stream=False,
)
return chat_completion.choices[0].message.content
except Exception as e:
st.error(f"Error querying LLM: {e}")
return "Error occurred during analysis."
# Define Graph for LangGraph
class DNAAnalysisState:
def __init__(self, data, results=None):
self.data = data
self.results = results or {}
graph = StateGraph(DNAAnalysisState)
# Define Analysis Nodes
def analyze_genomic_disorders(state):
insights = query_llm("Genomic Disorders", state.data)
state.results["Genomic Disorders"] = insights
return state
def analyze_physical_traits(state):
insights = query_llm("Physical Characteristics", state.data)
state.results["Physical Characteristics"] = insights
return state
def analyze_disease_risk(state):
insights = query_llm("Future Disease Risks", state.data)
state.results["Future Disease Risks"] = insights
return state
def analyze_ancestry(state):
insights = query_llm("Ancestry & Heritage", state.data)
state.results["Ancestry & Heritage"] = insights
return state
def analyze_dna_matching(state, second_data):
"""Analyze relationship between two DNA datasets."""
try:
prompt = f"Compare the following two DNA datasets and determine the relationship: {state.data} and {second_data}"
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt,
}
],
model="llama-3.3-70b-versatile", # or mixtral-8x7b-390ms
stream=False,
)
insights = chat_completion.choices[0].message.content
state.results["DNA Matching"] = insights
return state
except Exception as e:
st.error(f"Error comparing DNA: {e}")
state.results["DNA Matching"] = "Error during comparison."
return state
# Add Nodes to Graph
graph.add_node("genomic_disorders", analyze_genomic_disorders)
graph.add_node("physical_traits", analyze_physical_traits)
graph.add_node("disease_risk", analyze_disease_risk)
graph.add_node("ancestry", analyze_ancestry)
graph.add_edge("genomic_disorders", "physical_traits")
graph.add_edge("physical_traits", "disease_risk")
graph.add_edge("disease_risk", "ancestry")
graph.set_entry_point("genomic_disorders")
# Streamlit UI
st.title("DNA Analysis Using AI")
uploaded_file = st.file_uploader("Upload your genomic data (CSV, XLSX, TXT)", type=["csv", "xlsx", "txt"])
if uploaded_file:
df = load_and_preprocess(uploaded_file)
if df is not None:
st.dataframe(df.head())
if st.button("Start Analysis"):
state = DNAAnalysisState(df.to_json())
try:
result = graph.run(state)
st.session_state["analysis_results"] = result.results
st.success("Analysis completed!")
except Exception as e:
st.error(f"Error during analysis: {e}")
else:
st.error("Invalid file format.")
if "analysis_results" in st.session_state:
results = st.session_state["analysis_results"]
for category, insight in results.items():
with st.expander(f"{category}"):
st.write(insight)
if st.button("Download Report as PDF"):
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, "DNA Analysis Report", ln=True, align="C")
for category, insight in results.items():
pdf.add_page()
pdf.cell(200, 10, category, ln=True, align="C")
pdf.multi_cell(0, 10, insight)
pdf_path = "DNA_Analysis_Report.pdf"
try:
pdf.output(pdf_path)
with open(pdf_path, "rb") as f:
st.download_button("Download PDF", f, file_name=pdf_path, mime="application/pdf")
except Exception as e:
st.error(f"Error creating PDF: {e}")
st.header("DNA Matching")
file1 = st.file_uploader("Upload First DNA Dataset", type=["csv", "xlsx", "txt"], key="file1")
file2 = st.file_uploader("Upload Second DNA Dataset", type=["csv", "xlsx", "txt"], key="file2")
if file1 and file2:
df1 = load_and_preprocess(file1)
df2 = load_and_preprocess(file2)
if df1 is not None and df2 is not None:
if st.button("Compare DNA"):
state = DNAAnalysisState(df1.to_json())
result = analyze_dna_matching(state, df2.to_json())
st.session_state["dna_matching_result"] = result.results["DNA Matching"]
st.success("DNA Matching completed!")
if "dna_matching_result" in st.session_state:
st.subheader("DNA Matching Results")
st.write(st.session_state["dna_matching_result"]) |