Spaces:
Runtime error
Runtime error
update
Browse files- util/utils.py +222 -96
util/utils.py
CHANGED
@@ -1,59 +1,154 @@
|
|
1 |
-
|
2 |
-
from copy import deepcopy
|
3 |
import json
|
4 |
import warnings
|
|
|
|
|
|
|
5 |
|
6 |
-
import torch
|
7 |
import numpy as np
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
10 |
if isinstance(x, (torch.Tensor, np.ndarray)):
|
11 |
-
print(f
|
12 |
elif isinstance(x, (tuple, list)):
|
13 |
-
print(
|
14 |
for i in range(min(10, len(x))):
|
15 |
-
slprint(x[i], f
|
16 |
elif isinstance(x, dict):
|
17 |
-
for k,v in x.items():
|
18 |
-
slprint(v, f
|
19 |
else:
|
20 |
-
print(f
|
|
|
21 |
|
22 |
def clean_state_dict(state_dict):
|
23 |
new_state_dict = OrderedDict()
|
24 |
for k, v in state_dict.items():
|
25 |
-
if k[:7] ==
|
26 |
k = k[7:] # remove `module.`
|
27 |
new_state_dict[k] = v
|
28 |
return new_state_dict
|
29 |
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
# img: tensor(3,H,W) or tensor(B,3,H,W)
|
33 |
# return: same as img
|
34 |
-
assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim()
|
35 |
if img.dim() == 3:
|
36 |
-
assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
|
37 |
-
|
|
|
|
|
|
|
38 |
mean = torch.Tensor(mean)
|
39 |
std = torch.Tensor(std)
|
40 |
img_res = img_perm * std + mean
|
41 |
-
return img_res.permute(2,0,1)
|
42 |
-
else:
|
43 |
-
assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
|
44 |
-
|
|
|
|
|
|
|
45 |
mean = torch.Tensor(mean)
|
46 |
std = torch.Tensor(std)
|
47 |
img_res = img_perm * std + mean
|
48 |
-
return img_res.permute(0,3,1,2)
|
49 |
-
|
50 |
|
51 |
|
52 |
-
class CocoClassMapper
|
53 |
def __init__(self) -> None:
|
54 |
-
self.category_map_str = {
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def origin2compact(self, idx):
|
59 |
return self.origin2compact_mapper[int(idx)]
|
@@ -61,19 +156,21 @@ class CocoClassMapper():
|
|
61 |
def compact2origin(self, idx):
|
62 |
return self.compact2origin_mapper[int(idx)]
|
63 |
|
|
|
64 |
def to_device(item, device):
|
65 |
if isinstance(item, torch.Tensor):
|
66 |
return item.to(device)
|
67 |
elif isinstance(item, list):
|
68 |
return [to_device(i, device) for i in item]
|
69 |
elif isinstance(item, dict):
|
70 |
-
return {k: to_device(v, device) for k,v in item.items()}
|
71 |
else:
|
72 |
-
raise NotImplementedError(
|
73 |
-
|
|
|
74 |
|
75 |
|
76 |
-
#
|
77 |
def get_gaussian_mean(x, axis, other_axis, softmax=True):
|
78 |
"""
|
79 |
|
@@ -99,6 +196,7 @@ def get_gaussian_mean(x, axis, other_axis, softmax=True):
|
|
99 |
mean_position = torch.sum(index * u, dim=2)
|
100 |
return mean_position
|
101 |
|
|
|
102 |
def get_expected_points_from_map(hm, softmax=True):
|
103 |
"""get_gaussian_map_from_points
|
104 |
B,C,H,W -> B,N,2 float(0, 1) float(0, 1)
|
@@ -107,71 +205,74 @@ def get_expected_points_from_map(hm, softmax=True):
|
|
107 |
Args:
|
108 |
hm (float): Input images(BxCxHxW)
|
109 |
|
110 |
-
Returns:
|
111 |
weighted index for axis, BxCx2. float between 0 and 1.
|
112 |
|
113 |
"""
|
114 |
# hm = 10*hm
|
115 |
-
B,C,H,W = hm.shape
|
116 |
-
y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax)
|
117 |
-
x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax)
|
118 |
# return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2)
|
119 |
return torch.stack([x_mean, y_mean], dim=2)
|
120 |
|
|
|
121 |
# Positional encoding (section 5.1)
|
122 |
# borrow from nerf
|
123 |
class Embedder:
|
124 |
def __init__(self, **kwargs):
|
125 |
self.kwargs = kwargs
|
126 |
self.create_embedding_fn()
|
127 |
-
|
128 |
def create_embedding_fn(self):
|
129 |
embed_fns = []
|
130 |
-
d = self.kwargs[
|
131 |
out_dim = 0
|
132 |
-
if self.kwargs[
|
133 |
-
embed_fns.append(lambda x
|
134 |
out_dim += d
|
135 |
-
|
136 |
-
max_freq = self.kwargs[
|
137 |
-
N_freqs = self.kwargs[
|
138 |
-
|
139 |
-
if self.kwargs[
|
140 |
-
freq_bands = 2
|
141 |
else:
|
142 |
-
freq_bands = torch.linspace(2
|
143 |
-
|
144 |
for freq in freq_bands:
|
145 |
-
for p_fn in self.kwargs[
|
146 |
-
embed_fns.append(lambda x, p_fn=p_fn, freq=freq
|
147 |
out_dim += d
|
148 |
-
|
149 |
self.embed_fns = embed_fns
|
150 |
self.out_dim = out_dim
|
151 |
-
|
152 |
def embed(self, inputs):
|
153 |
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
|
154 |
|
155 |
|
156 |
def get_embedder(multires, i=0):
|
157 |
import torch.nn as nn
|
|
|
158 |
if i == -1:
|
159 |
return nn.Identity(), 3
|
160 |
-
|
161 |
embed_kwargs = {
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
}
|
169 |
-
|
170 |
embedder_obj = Embedder(**embed_kwargs)
|
171 |
-
embed = lambda x, eo=embedder_obj
|
172 |
return embed, embedder_obj.out_dim
|
173 |
|
174 |
-
|
|
|
175 |
def __init__(self) -> None:
|
176 |
self.tp = 0
|
177 |
self.fp = 0
|
@@ -195,24 +296,24 @@ class APOPMeter():
|
|
195 |
self.tn += tn
|
196 |
self.tn += fn
|
197 |
|
|
|
198 |
def inverse_sigmoid(x, eps=1e-5):
|
199 |
x = x.clamp(min=0, max=1)
|
200 |
x1 = x.clamp(min=eps)
|
201 |
x2 = (1 - x).clamp(min=eps)
|
202 |
-
return torch.log(x1/x2)
|
|
|
203 |
|
204 |
-
import argparse
|
205 |
-
from util.slconfig import SLConfig
|
206 |
def get_raw_dict(args):
|
207 |
"""
|
208 |
return the dicf contained in args.
|
209 |
-
|
210 |
e.g:
|
211 |
>>> with open(path, 'w') as f:
|
212 |
json.dump(get_raw_dict(args), f, indent=2)
|
213 |
"""
|
214 |
-
if isinstance(args, argparse.Namespace):
|
215 |
-
return vars(args)
|
216 |
elif isinstance(args, dict):
|
217 |
return args
|
218 |
elif isinstance(args, SLConfig):
|
@@ -227,12 +328,12 @@ def stat_tensors(tensor):
|
|
227 |
entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum()
|
228 |
|
229 |
return {
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
}
|
237 |
|
238 |
|
@@ -272,21 +373,20 @@ class NiceRepr:
|
|
272 |
|
273 |
def __nice__(self):
|
274 |
"""str: a "nice" summary string describing this module"""
|
275 |
-
if hasattr(self,
|
276 |
# It is a common pattern for objects to use __len__ in __nice__
|
277 |
# As a convenience we define a default __nice__ for these objects
|
278 |
return str(len(self))
|
279 |
else:
|
280 |
# In all other cases force the subclass to overload __nice__
|
281 |
-
raise NotImplementedError(
|
282 |
-
f'Define the __nice__ method for {self.__class__!r}')
|
283 |
|
284 |
def __repr__(self):
|
285 |
"""str: the string of the module"""
|
286 |
try:
|
287 |
nice = self.__nice__()
|
288 |
classname = self.__class__.__name__
|
289 |
-
return f
|
290 |
except NotImplementedError as ex:
|
291 |
warnings.warn(str(ex), category=RuntimeWarning)
|
292 |
return object.__repr__(self)
|
@@ -296,13 +396,12 @@ class NiceRepr:
|
|
296 |
try:
|
297 |
classname = self.__class__.__name__
|
298 |
nice = self.__nice__()
|
299 |
-
return f
|
300 |
except NotImplementedError as ex:
|
301 |
warnings.warn(str(ex), category=RuntimeWarning)
|
302 |
return object.__repr__(self)
|
303 |
|
304 |
|
305 |
-
|
306 |
def ensure_rng(rng=None):
|
307 |
"""Coerces input into a random number generator.
|
308 |
|
@@ -333,6 +432,7 @@ def ensure_rng(rng=None):
|
|
333 |
rng = rng
|
334 |
return rng
|
335 |
|
|
|
336 |
def random_boxes(num=1, scale=1, rng=None):
|
337 |
"""Simple version of ``kwimage.Boxes.random``
|
338 |
|
@@ -377,6 +477,8 @@ class ModelEma(torch.nn.Module):
|
|
377 |
self.module = deepcopy(model)
|
378 |
self.module.eval()
|
379 |
|
|
|
|
|
380 |
self.decay = decay
|
381 |
self.device = device # perform ema on different device from model if set
|
382 |
if self.device is not None:
|
@@ -384,30 +486,33 @@ class ModelEma(torch.nn.Module):
|
|
384 |
|
385 |
def _update(self, model, update_fn):
|
386 |
with torch.no_grad():
|
387 |
-
for ema_v, model_v in zip(
|
|
|
|
|
388 |
if self.device is not None:
|
389 |
model_v = model_v.to(device=self.device)
|
390 |
ema_v.copy_(update_fn(ema_v, model_v))
|
391 |
|
392 |
def update(self, model):
|
393 |
-
self._update(model, update_fn=lambda e, m: self.decay * e + (1. - self.decay) * m)
|
394 |
|
395 |
def set(self, model):
|
396 |
self._update(model, update_fn=lambda e, m: m)
|
397 |
|
398 |
-
|
399 |
-
|
|
|
400 |
self.init_res = init_res
|
401 |
self.best_res = init_res
|
402 |
self.best_ep = -1
|
403 |
|
404 |
self.better = better
|
405 |
-
assert better in [
|
406 |
|
407 |
def isbetter(self, new_res, old_res):
|
408 |
-
if self.better ==
|
409 |
return new_res > old_res
|
410 |
-
if self.better ==
|
411 |
return new_res < old_res
|
412 |
|
413 |
def update(self, new_res, ep):
|
@@ -425,19 +530,18 @@ class BestMetricSingle():
|
|
425 |
|
426 |
def summary(self) -> dict:
|
427 |
return {
|
428 |
-
|
429 |
-
|
430 |
}
|
431 |
|
432 |
|
433 |
-
class BestMetricHolder
|
434 |
-
def __init__(self, init_res=0.0, better=
|
435 |
self.best_all = BestMetricSingle(init_res, better)
|
436 |
self.use_ema = use_ema
|
437 |
if use_ema:
|
438 |
self.best_ema = BestMetricSingle(init_res, better)
|
439 |
self.best_regular = BestMetricSingle(init_res, better)
|
440 |
-
|
441 |
|
442 |
def update(self, new_res, epoch, is_ema=False):
|
443 |
"""
|
@@ -458,9 +562,9 @@ class BestMetricHolder():
|
|
458 |
return self.best_all.summary()
|
459 |
|
460 |
res = {}
|
461 |
-
res.update({f
|
462 |
-
res.update({f
|
463 |
-
res.update({f
|
464 |
return res
|
465 |
|
466 |
def __repr__(self) -> str:
|
@@ -469,8 +573,31 @@ class BestMetricHolder():
|
|
469 |
def __str__(self) -> str:
|
470 |
return self.__repr__()
|
471 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
def get_phrases_from_posmap(
|
473 |
-
posmap: torch.BoolTensor, tokenized:
|
474 |
):
|
475 |
assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor"
|
476 |
if posmap.dim() == 1:
|
@@ -480,5 +607,4 @@ def get_phrases_from_posmap(
|
|
480 |
token_ids = [tokenized["input_ids"][i] for i in non_zero_idx]
|
481 |
return tokenizer.decode(token_ids)
|
482 |
else:
|
483 |
-
raise NotImplementedError("posmap must be 1-dim")
|
484 |
-
|
|
|
1 |
+
import argparse
|
|
|
2 |
import json
|
3 |
import warnings
|
4 |
+
from collections import OrderedDict
|
5 |
+
from copy import deepcopy
|
6 |
+
from typing import Any, Dict, List
|
7 |
|
|
|
8 |
import numpy as np
|
9 |
+
import torch
|
10 |
+
from transformers import AutoTokenizer
|
11 |
+
|
12 |
+
from groundingdino.util.slconfig import SLConfig
|
13 |
|
14 |
+
|
15 |
+
def slprint(x, name="x"):
|
16 |
if isinstance(x, (torch.Tensor, np.ndarray)):
|
17 |
+
print(f"{name}.shape:", x.shape)
|
18 |
elif isinstance(x, (tuple, list)):
|
19 |
+
print("type x:", type(x))
|
20 |
for i in range(min(10, len(x))):
|
21 |
+
slprint(x[i], f"{name}[{i}]")
|
22 |
elif isinstance(x, dict):
|
23 |
+
for k, v in x.items():
|
24 |
+
slprint(v, f"{name}[{k}]")
|
25 |
else:
|
26 |
+
print(f"{name}.type:", type(x))
|
27 |
+
|
28 |
|
29 |
def clean_state_dict(state_dict):
|
30 |
new_state_dict = OrderedDict()
|
31 |
for k, v in state_dict.items():
|
32 |
+
if k[:7] == "module.":
|
33 |
k = k[7:] # remove `module.`
|
34 |
new_state_dict[k] = v
|
35 |
return new_state_dict
|
36 |
|
37 |
+
|
38 |
+
def renorm(
|
39 |
+
img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
40 |
+
) -> torch.FloatTensor:
|
41 |
# img: tensor(3,H,W) or tensor(B,3,H,W)
|
42 |
# return: same as img
|
43 |
+
assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim()
|
44 |
if img.dim() == 3:
|
45 |
+
assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
|
46 |
+
img.size(0),
|
47 |
+
str(img.size()),
|
48 |
+
)
|
49 |
+
img_perm = img.permute(1, 2, 0)
|
50 |
mean = torch.Tensor(mean)
|
51 |
std = torch.Tensor(std)
|
52 |
img_res = img_perm * std + mean
|
53 |
+
return img_res.permute(2, 0, 1)
|
54 |
+
else: # img.dim() == 4
|
55 |
+
assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
|
56 |
+
img.size(1),
|
57 |
+
str(img.size()),
|
58 |
+
)
|
59 |
+
img_perm = img.permute(0, 2, 3, 1)
|
60 |
mean = torch.Tensor(mean)
|
61 |
std = torch.Tensor(std)
|
62 |
img_res = img_perm * std + mean
|
63 |
+
return img_res.permute(0, 3, 1, 2)
|
|
|
64 |
|
65 |
|
66 |
+
class CocoClassMapper:
|
67 |
def __init__(self) -> None:
|
68 |
+
self.category_map_str = {
|
69 |
+
"1": 1,
|
70 |
+
"2": 2,
|
71 |
+
"3": 3,
|
72 |
+
"4": 4,
|
73 |
+
"5": 5,
|
74 |
+
"6": 6,
|
75 |
+
"7": 7,
|
76 |
+
"8": 8,
|
77 |
+
"9": 9,
|
78 |
+
"10": 10,
|
79 |
+
"11": 11,
|
80 |
+
"13": 12,
|
81 |
+
"14": 13,
|
82 |
+
"15": 14,
|
83 |
+
"16": 15,
|
84 |
+
"17": 16,
|
85 |
+
"18": 17,
|
86 |
+
"19": 18,
|
87 |
+
"20": 19,
|
88 |
+
"21": 20,
|
89 |
+
"22": 21,
|
90 |
+
"23": 22,
|
91 |
+
"24": 23,
|
92 |
+
"25": 24,
|
93 |
+
"27": 25,
|
94 |
+
"28": 26,
|
95 |
+
"31": 27,
|
96 |
+
"32": 28,
|
97 |
+
"33": 29,
|
98 |
+
"34": 30,
|
99 |
+
"35": 31,
|
100 |
+
"36": 32,
|
101 |
+
"37": 33,
|
102 |
+
"38": 34,
|
103 |
+
"39": 35,
|
104 |
+
"40": 36,
|
105 |
+
"41": 37,
|
106 |
+
"42": 38,
|
107 |
+
"43": 39,
|
108 |
+
"44": 40,
|
109 |
+
"46": 41,
|
110 |
+
"47": 42,
|
111 |
+
"48": 43,
|
112 |
+
"49": 44,
|
113 |
+
"50": 45,
|
114 |
+
"51": 46,
|
115 |
+
"52": 47,
|
116 |
+
"53": 48,
|
117 |
+
"54": 49,
|
118 |
+
"55": 50,
|
119 |
+
"56": 51,
|
120 |
+
"57": 52,
|
121 |
+
"58": 53,
|
122 |
+
"59": 54,
|
123 |
+
"60": 55,
|
124 |
+
"61": 56,
|
125 |
+
"62": 57,
|
126 |
+
"63": 58,
|
127 |
+
"64": 59,
|
128 |
+
"65": 60,
|
129 |
+
"67": 61,
|
130 |
+
"70": 62,
|
131 |
+
"72": 63,
|
132 |
+
"73": 64,
|
133 |
+
"74": 65,
|
134 |
+
"75": 66,
|
135 |
+
"76": 67,
|
136 |
+
"77": 68,
|
137 |
+
"78": 69,
|
138 |
+
"79": 70,
|
139 |
+
"80": 71,
|
140 |
+
"81": 72,
|
141 |
+
"82": 73,
|
142 |
+
"84": 74,
|
143 |
+
"85": 75,
|
144 |
+
"86": 76,
|
145 |
+
"87": 77,
|
146 |
+
"88": 78,
|
147 |
+
"89": 79,
|
148 |
+
"90": 80,
|
149 |
+
}
|
150 |
+
self.origin2compact_mapper = {int(k): v - 1 for k, v in self.category_map_str.items()}
|
151 |
+
self.compact2origin_mapper = {int(v - 1): int(k) for k, v in self.category_map_str.items()}
|
152 |
|
153 |
def origin2compact(self, idx):
|
154 |
return self.origin2compact_mapper[int(idx)]
|
|
|
156 |
def compact2origin(self, idx):
|
157 |
return self.compact2origin_mapper[int(idx)]
|
158 |
|
159 |
+
|
160 |
def to_device(item, device):
|
161 |
if isinstance(item, torch.Tensor):
|
162 |
return item.to(device)
|
163 |
elif isinstance(item, list):
|
164 |
return [to_device(i, device) for i in item]
|
165 |
elif isinstance(item, dict):
|
166 |
+
return {k: to_device(v, device) for k, v in item.items()}
|
167 |
else:
|
168 |
+
raise NotImplementedError(
|
169 |
+
"Call Shilong if you use other containers! type: {}".format(type(item))
|
170 |
+
)
|
171 |
|
172 |
|
173 |
+
#
|
174 |
def get_gaussian_mean(x, axis, other_axis, softmax=True):
|
175 |
"""
|
176 |
|
|
|
196 |
mean_position = torch.sum(index * u, dim=2)
|
197 |
return mean_position
|
198 |
|
199 |
+
|
200 |
def get_expected_points_from_map(hm, softmax=True):
|
201 |
"""get_gaussian_map_from_points
|
202 |
B,C,H,W -> B,N,2 float(0, 1) float(0, 1)
|
|
|
205 |
Args:
|
206 |
hm (float): Input images(BxCxHxW)
|
207 |
|
208 |
+
Returns:
|
209 |
weighted index for axis, BxCx2. float between 0 and 1.
|
210 |
|
211 |
"""
|
212 |
# hm = 10*hm
|
213 |
+
B, C, H, W = hm.shape
|
214 |
+
y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax) # B,C
|
215 |
+
x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax) # B,C
|
216 |
# return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2)
|
217 |
return torch.stack([x_mean, y_mean], dim=2)
|
218 |
|
219 |
+
|
220 |
# Positional encoding (section 5.1)
|
221 |
# borrow from nerf
|
222 |
class Embedder:
|
223 |
def __init__(self, **kwargs):
|
224 |
self.kwargs = kwargs
|
225 |
self.create_embedding_fn()
|
226 |
+
|
227 |
def create_embedding_fn(self):
|
228 |
embed_fns = []
|
229 |
+
d = self.kwargs["input_dims"]
|
230 |
out_dim = 0
|
231 |
+
if self.kwargs["include_input"]:
|
232 |
+
embed_fns.append(lambda x: x)
|
233 |
out_dim += d
|
234 |
+
|
235 |
+
max_freq = self.kwargs["max_freq_log2"]
|
236 |
+
N_freqs = self.kwargs["num_freqs"]
|
237 |
+
|
238 |
+
if self.kwargs["log_sampling"]:
|
239 |
+
freq_bands = 2.0 ** torch.linspace(0.0, max_freq, steps=N_freqs)
|
240 |
else:
|
241 |
+
freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq, steps=N_freqs)
|
242 |
+
|
243 |
for freq in freq_bands:
|
244 |
+
for p_fn in self.kwargs["periodic_fns"]:
|
245 |
+
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq))
|
246 |
out_dim += d
|
247 |
+
|
248 |
self.embed_fns = embed_fns
|
249 |
self.out_dim = out_dim
|
250 |
+
|
251 |
def embed(self, inputs):
|
252 |
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
|
253 |
|
254 |
|
255 |
def get_embedder(multires, i=0):
|
256 |
import torch.nn as nn
|
257 |
+
|
258 |
if i == -1:
|
259 |
return nn.Identity(), 3
|
260 |
+
|
261 |
embed_kwargs = {
|
262 |
+
"include_input": True,
|
263 |
+
"input_dims": 3,
|
264 |
+
"max_freq_log2": multires - 1,
|
265 |
+
"num_freqs": multires,
|
266 |
+
"log_sampling": True,
|
267 |
+
"periodic_fns": [torch.sin, torch.cos],
|
268 |
}
|
269 |
+
|
270 |
embedder_obj = Embedder(**embed_kwargs)
|
271 |
+
embed = lambda x, eo=embedder_obj: eo.embed(x)
|
272 |
return embed, embedder_obj.out_dim
|
273 |
|
274 |
+
|
275 |
+
class APOPMeter:
|
276 |
def __init__(self) -> None:
|
277 |
self.tp = 0
|
278 |
self.fp = 0
|
|
|
296 |
self.tn += tn
|
297 |
self.tn += fn
|
298 |
|
299 |
+
|
300 |
def inverse_sigmoid(x, eps=1e-5):
|
301 |
x = x.clamp(min=0, max=1)
|
302 |
x1 = x.clamp(min=eps)
|
303 |
x2 = (1 - x).clamp(min=eps)
|
304 |
+
return torch.log(x1 / x2)
|
305 |
+
|
306 |
|
|
|
|
|
307 |
def get_raw_dict(args):
|
308 |
"""
|
309 |
return the dicf contained in args.
|
310 |
+
|
311 |
e.g:
|
312 |
>>> with open(path, 'w') as f:
|
313 |
json.dump(get_raw_dict(args), f, indent=2)
|
314 |
"""
|
315 |
+
if isinstance(args, argparse.Namespace):
|
316 |
+
return vars(args)
|
317 |
elif isinstance(args, dict):
|
318 |
return args
|
319 |
elif isinstance(args, SLConfig):
|
|
|
328 |
entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum()
|
329 |
|
330 |
return {
|
331 |
+
"max": tensor.max(),
|
332 |
+
"min": tensor.min(),
|
333 |
+
"mean": tensor.mean(),
|
334 |
+
"var": tensor.var(),
|
335 |
+
"std": tensor.var() ** 0.5,
|
336 |
+
"entropy": entropy,
|
337 |
}
|
338 |
|
339 |
|
|
|
373 |
|
374 |
def __nice__(self):
|
375 |
"""str: a "nice" summary string describing this module"""
|
376 |
+
if hasattr(self, "__len__"):
|
377 |
# It is a common pattern for objects to use __len__ in __nice__
|
378 |
# As a convenience we define a default __nice__ for these objects
|
379 |
return str(len(self))
|
380 |
else:
|
381 |
# In all other cases force the subclass to overload __nice__
|
382 |
+
raise NotImplementedError(f"Define the __nice__ method for {self.__class__!r}")
|
|
|
383 |
|
384 |
def __repr__(self):
|
385 |
"""str: the string of the module"""
|
386 |
try:
|
387 |
nice = self.__nice__()
|
388 |
classname = self.__class__.__name__
|
389 |
+
return f"<{classname}({nice}) at {hex(id(self))}>"
|
390 |
except NotImplementedError as ex:
|
391 |
warnings.warn(str(ex), category=RuntimeWarning)
|
392 |
return object.__repr__(self)
|
|
|
396 |
try:
|
397 |
classname = self.__class__.__name__
|
398 |
nice = self.__nice__()
|
399 |
+
return f"<{classname}({nice})>"
|
400 |
except NotImplementedError as ex:
|
401 |
warnings.warn(str(ex), category=RuntimeWarning)
|
402 |
return object.__repr__(self)
|
403 |
|
404 |
|
|
|
405 |
def ensure_rng(rng=None):
|
406 |
"""Coerces input into a random number generator.
|
407 |
|
|
|
432 |
rng = rng
|
433 |
return rng
|
434 |
|
435 |
+
|
436 |
def random_boxes(num=1, scale=1, rng=None):
|
437 |
"""Simple version of ``kwimage.Boxes.random``
|
438 |
|
|
|
477 |
self.module = deepcopy(model)
|
478 |
self.module.eval()
|
479 |
|
480 |
+
# import ipdb; ipdb.set_trace()
|
481 |
+
|
482 |
self.decay = decay
|
483 |
self.device = device # perform ema on different device from model if set
|
484 |
if self.device is not None:
|
|
|
486 |
|
487 |
def _update(self, model, update_fn):
|
488 |
with torch.no_grad():
|
489 |
+
for ema_v, model_v in zip(
|
490 |
+
self.module.state_dict().values(), model.state_dict().values()
|
491 |
+
):
|
492 |
if self.device is not None:
|
493 |
model_v = model_v.to(device=self.device)
|
494 |
ema_v.copy_(update_fn(ema_v, model_v))
|
495 |
|
496 |
def update(self, model):
|
497 |
+
self._update(model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m)
|
498 |
|
499 |
def set(self, model):
|
500 |
self._update(model, update_fn=lambda e, m: m)
|
501 |
|
502 |
+
|
503 |
+
class BestMetricSingle:
|
504 |
+
def __init__(self, init_res=0.0, better="large") -> None:
|
505 |
self.init_res = init_res
|
506 |
self.best_res = init_res
|
507 |
self.best_ep = -1
|
508 |
|
509 |
self.better = better
|
510 |
+
assert better in ["large", "small"]
|
511 |
|
512 |
def isbetter(self, new_res, old_res):
|
513 |
+
if self.better == "large":
|
514 |
return new_res > old_res
|
515 |
+
if self.better == "small":
|
516 |
return new_res < old_res
|
517 |
|
518 |
def update(self, new_res, ep):
|
|
|
530 |
|
531 |
def summary(self) -> dict:
|
532 |
return {
|
533 |
+
"best_res": self.best_res,
|
534 |
+
"best_ep": self.best_ep,
|
535 |
}
|
536 |
|
537 |
|
538 |
+
class BestMetricHolder:
|
539 |
+
def __init__(self, init_res=0.0, better="large", use_ema=False) -> None:
|
540 |
self.best_all = BestMetricSingle(init_res, better)
|
541 |
self.use_ema = use_ema
|
542 |
if use_ema:
|
543 |
self.best_ema = BestMetricSingle(init_res, better)
|
544 |
self.best_regular = BestMetricSingle(init_res, better)
|
|
|
545 |
|
546 |
def update(self, new_res, epoch, is_ema=False):
|
547 |
"""
|
|
|
562 |
return self.best_all.summary()
|
563 |
|
564 |
res = {}
|
565 |
+
res.update({f"all_{k}": v for k, v in self.best_all.summary().items()})
|
566 |
+
res.update({f"regular_{k}": v for k, v in self.best_regular.summary().items()})
|
567 |
+
res.update({f"ema_{k}": v for k, v in self.best_ema.summary().items()})
|
568 |
return res
|
569 |
|
570 |
def __repr__(self) -> str:
|
|
|
573 |
def __str__(self) -> str:
|
574 |
return self.__repr__()
|
575 |
|
576 |
+
|
577 |
+
def targets_to(targets: List[Dict[str, Any]], device):
|
578 |
+
"""Moves the target dicts to the given device."""
|
579 |
+
excluded_keys = [
|
580 |
+
"questionId",
|
581 |
+
"tokens_positive",
|
582 |
+
"strings_positive",
|
583 |
+
"tokens",
|
584 |
+
"dataset_name",
|
585 |
+
"sentence_id",
|
586 |
+
"original_img_id",
|
587 |
+
"nb_eval",
|
588 |
+
"task_id",
|
589 |
+
"original_id",
|
590 |
+
"token_span",
|
591 |
+
"caption",
|
592 |
+
"dataset_type",
|
593 |
+
]
|
594 |
+
return [
|
595 |
+
{k: v.to(device) if k not in excluded_keys else v for k, v in t.items()} for t in targets
|
596 |
+
]
|
597 |
+
|
598 |
+
|
599 |
def get_phrases_from_posmap(
|
600 |
+
posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer, left_idx: int = 0, right_idx: int = 255
|
601 |
):
|
602 |
assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor"
|
603 |
if posmap.dim() == 1:
|
|
|
607 |
token_ids = [tokenized["input_ids"][i] for i in non_zero_idx]
|
608 |
return tokenizer.decode(token_ids)
|
609 |
else:
|
610 |
+
raise NotImplementedError("posmap must be 1-dim")
|
|