Spaces:
Runtime error
Runtime error
update
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- groundingdino/.ipynb_checkpoints/__init__-checkpoint.py +0 -0
- groundingdino/_C.cpython-310-x86_64-linux-gnu.so +3 -0
- groundingdino/__init__.py +0 -0
- groundingdino/__pycache__/__init__.cpython-310.pyc +0 -0
- groundingdino/config/.ipynb_checkpoints/GroundingDINO_SwinB_cfg-checkpoint.py +43 -0
- groundingdino/config/GroundingDINO_SwinB_cfg.py +43 -0
- groundingdino/config/GroundingDINO_SwinT_OGC.py +43 -0
- groundingdino/config/__init__.py +0 -0
- groundingdino/datasets/__init__.py +0 -0
- groundingdino/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
- groundingdino/datasets/__pycache__/transforms.cpython-310.pyc +0 -0
- groundingdino/datasets/cocogrounding_eval.py +269 -0
- groundingdino/datasets/transforms.py +311 -0
- groundingdino/models/.ipynb_checkpoints/__init__-checkpoint.py +18 -0
- groundingdino/models/.ipynb_checkpoints/registry-checkpoint.py +66 -0
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/fuse_modules-checkpoint.py +298 -0
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/groundingdino-checkpoint.py +412 -0
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/ms_deform_attn-checkpoint.py +414 -0
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/transformer-checkpoint.py +961 -0
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/transformer_vanilla-checkpoint.py +124 -0
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/utils-checkpoint.py +269 -0
- groundingdino/models/GroundingDINO/__pycache__/__init__.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/bertwarper.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/fuse_modules.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/groundingdino.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/ms_deform_attn.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/transformer.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/transformer_vanilla.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/utils.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/backbone-checkpoint.py +220 -0
- groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/position_encoding-checkpoint.py +186 -0
- groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/swin_transformer-checkpoint.py +804 -0
- groundingdino/models/GroundingDINO/backbone/__pycache__/__init__.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/backbone/__pycache__/backbone.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/backbone/__pycache__/position_encoding.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/backbone/__pycache__/swin_transformer.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/backbone/backbone.py +220 -0
- groundingdino/models/GroundingDINO/backbone/position_encoding.py +186 -0
- groundingdino/models/GroundingDINO/backbone/swin_transformer.py +804 -0
- groundingdino/models/GroundingDINO/fuse_modules.py +298 -0
- groundingdino/models/GroundingDINO/groundingdino.py +412 -0
- groundingdino/models/GroundingDINO/ms_deform_attn.py +414 -0
- groundingdino/models/GroundingDINO/transformer.py +961 -0
- groundingdino/models/GroundingDINO/transformer_vanilla.py +124 -0
- groundingdino/models/GroundingDINO/utils.py +269 -0
- groundingdino/models/__init__.py +18 -0
- groundingdino/models/__pycache__/__init__.cpython-310.pyc +0 -0
- groundingdino/models/__pycache__/registry.cpython-310.pyc +0 -0
- groundingdino/models/registry.py +66 -0
- groundingdino/util/__pycache__/__init__.cpython-310.pyc +0 -0
groundingdino/.ipynb_checkpoints/__init__-checkpoint.py
ADDED
File without changes
|
groundingdino/_C.cpython-310-x86_64-linux-gnu.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee590993174e3c9b9b4110d8c90aee2873edec5a61da94c577d381b320791520
|
3 |
+
size 9940696
|
groundingdino/__init__.py
ADDED
File without changes
|
groundingdino/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (182 Bytes). View file
|
|
groundingdino/config/.ipynb_checkpoints/GroundingDINO_SwinB_cfg-checkpoint.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size = 1
|
2 |
+
modelname = "groundingdino"
|
3 |
+
backbone = "swin_B_384_22k"
|
4 |
+
position_embedding = "sine"
|
5 |
+
pe_temperatureH = 20
|
6 |
+
pe_temperatureW = 20
|
7 |
+
return_interm_indices = [1, 2, 3]
|
8 |
+
backbone_freeze_keywords = None
|
9 |
+
enc_layers = 6
|
10 |
+
dec_layers = 6
|
11 |
+
pre_norm = False
|
12 |
+
dim_feedforward = 2048
|
13 |
+
hidden_dim = 256
|
14 |
+
dropout = 0.0
|
15 |
+
nheads = 8
|
16 |
+
num_queries = 900
|
17 |
+
query_dim = 4
|
18 |
+
num_patterns = 0
|
19 |
+
num_feature_levels = 4
|
20 |
+
enc_n_points = 4
|
21 |
+
dec_n_points = 4
|
22 |
+
two_stage_type = "standard"
|
23 |
+
two_stage_bbox_embed_share = False
|
24 |
+
two_stage_class_embed_share = False
|
25 |
+
transformer_activation = "relu"
|
26 |
+
dec_pred_bbox_embed_share = True
|
27 |
+
dn_box_noise_scale = 1.0
|
28 |
+
dn_label_noise_ratio = 0.5
|
29 |
+
dn_label_coef = 1.0
|
30 |
+
dn_bbox_coef = 1.0
|
31 |
+
embed_init_tgt = True
|
32 |
+
dn_labelbook_size = 2000
|
33 |
+
max_text_len = 256
|
34 |
+
text_encoder_type = "bert-base-uncased"
|
35 |
+
use_text_enhancer = True
|
36 |
+
use_fusion_layer = True
|
37 |
+
use_checkpoint = True
|
38 |
+
use_transformer_ckpt = True
|
39 |
+
use_text_cross_attention = True
|
40 |
+
text_dropout = 0.0
|
41 |
+
fusion_dropout = 0.0
|
42 |
+
fusion_droppath = 0.1
|
43 |
+
sub_sentence_present = True
|
groundingdino/config/GroundingDINO_SwinB_cfg.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size = 1
|
2 |
+
modelname = "groundingdino"
|
3 |
+
backbone = "swin_B_384_22k"
|
4 |
+
position_embedding = "sine"
|
5 |
+
pe_temperatureH = 20
|
6 |
+
pe_temperatureW = 20
|
7 |
+
return_interm_indices = [1, 2, 3]
|
8 |
+
backbone_freeze_keywords = None
|
9 |
+
enc_layers = 6
|
10 |
+
dec_layers = 6
|
11 |
+
pre_norm = False
|
12 |
+
dim_feedforward = 2048
|
13 |
+
hidden_dim = 256
|
14 |
+
dropout = 0.0
|
15 |
+
nheads = 8
|
16 |
+
num_queries = 900
|
17 |
+
query_dim = 4
|
18 |
+
num_patterns = 0
|
19 |
+
num_feature_levels = 4
|
20 |
+
enc_n_points = 4
|
21 |
+
dec_n_points = 4
|
22 |
+
two_stage_type = "standard"
|
23 |
+
two_stage_bbox_embed_share = False
|
24 |
+
two_stage_class_embed_share = False
|
25 |
+
transformer_activation = "relu"
|
26 |
+
dec_pred_bbox_embed_share = True
|
27 |
+
dn_box_noise_scale = 1.0
|
28 |
+
dn_label_noise_ratio = 0.5
|
29 |
+
dn_label_coef = 1.0
|
30 |
+
dn_bbox_coef = 1.0
|
31 |
+
embed_init_tgt = True
|
32 |
+
dn_labelbook_size = 2000
|
33 |
+
max_text_len = 256
|
34 |
+
text_encoder_type = "bert-base-uncased"
|
35 |
+
use_text_enhancer = True
|
36 |
+
use_fusion_layer = True
|
37 |
+
use_checkpoint = True
|
38 |
+
use_transformer_ckpt = True
|
39 |
+
use_text_cross_attention = True
|
40 |
+
text_dropout = 0.0
|
41 |
+
fusion_dropout = 0.0
|
42 |
+
fusion_droppath = 0.1
|
43 |
+
sub_sentence_present = True
|
groundingdino/config/GroundingDINO_SwinT_OGC.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size = 1
|
2 |
+
modelname = "groundingdino"
|
3 |
+
backbone = "swin_T_224_1k"
|
4 |
+
position_embedding = "sine"
|
5 |
+
pe_temperatureH = 20
|
6 |
+
pe_temperatureW = 20
|
7 |
+
return_interm_indices = [1, 2, 3]
|
8 |
+
backbone_freeze_keywords = None
|
9 |
+
enc_layers = 6
|
10 |
+
dec_layers = 6
|
11 |
+
pre_norm = False
|
12 |
+
dim_feedforward = 2048
|
13 |
+
hidden_dim = 256
|
14 |
+
dropout = 0.0
|
15 |
+
nheads = 8
|
16 |
+
num_queries = 900
|
17 |
+
query_dim = 4
|
18 |
+
num_patterns = 0
|
19 |
+
num_feature_levels = 4
|
20 |
+
enc_n_points = 4
|
21 |
+
dec_n_points = 4
|
22 |
+
two_stage_type = "standard"
|
23 |
+
two_stage_bbox_embed_share = False
|
24 |
+
two_stage_class_embed_share = False
|
25 |
+
transformer_activation = "relu"
|
26 |
+
dec_pred_bbox_embed_share = True
|
27 |
+
dn_box_noise_scale = 1.0
|
28 |
+
dn_label_noise_ratio = 0.5
|
29 |
+
dn_label_coef = 1.0
|
30 |
+
dn_bbox_coef = 1.0
|
31 |
+
embed_init_tgt = True
|
32 |
+
dn_labelbook_size = 2000
|
33 |
+
max_text_len = 256
|
34 |
+
text_encoder_type = "bert-base-uncased"
|
35 |
+
use_text_enhancer = True
|
36 |
+
use_fusion_layer = True
|
37 |
+
use_checkpoint = True
|
38 |
+
use_transformer_ckpt = True
|
39 |
+
use_text_cross_attention = True
|
40 |
+
text_dropout = 0.0
|
41 |
+
fusion_dropout = 0.0
|
42 |
+
fusion_droppath = 0.1
|
43 |
+
sub_sentence_present = True
|
groundingdino/config/__init__.py
ADDED
File without changes
|
groundingdino/datasets/__init__.py
ADDED
File without changes
|
groundingdino/datasets/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (191 Bytes). View file
|
|
groundingdino/datasets/__pycache__/transforms.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
groundingdino/datasets/cocogrounding_eval.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO. Midified by Shilong Liu.
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
|
8 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
9 |
+
"""
|
10 |
+
COCO evaluator that works in distributed mode.
|
11 |
+
|
12 |
+
Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
|
13 |
+
The difference is that there is less copy-pasting from pycocotools
|
14 |
+
in the end of the file, as python3 can suppress prints with contextlib
|
15 |
+
"""
|
16 |
+
import contextlib
|
17 |
+
import copy
|
18 |
+
import os
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import pycocotools.mask as mask_util
|
22 |
+
import torch
|
23 |
+
from pycocotools.coco import COCO
|
24 |
+
from pycocotools.cocoeval import COCOeval
|
25 |
+
|
26 |
+
from groundingdino.util.misc import all_gather
|
27 |
+
|
28 |
+
|
29 |
+
class CocoGroundingEvaluator(object):
|
30 |
+
def __init__(self, coco_gt, iou_types, useCats=True):
|
31 |
+
assert isinstance(iou_types, (list, tuple))
|
32 |
+
coco_gt = copy.deepcopy(coco_gt)
|
33 |
+
self.coco_gt = coco_gt
|
34 |
+
|
35 |
+
self.iou_types = iou_types
|
36 |
+
self.coco_eval = {}
|
37 |
+
for iou_type in iou_types:
|
38 |
+
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
|
39 |
+
self.coco_eval[iou_type].useCats = useCats
|
40 |
+
|
41 |
+
self.img_ids = []
|
42 |
+
self.eval_imgs = {k: [] for k in iou_types}
|
43 |
+
self.useCats = useCats
|
44 |
+
|
45 |
+
def update(self, predictions):
|
46 |
+
img_ids = list(np.unique(list(predictions.keys())))
|
47 |
+
self.img_ids.extend(img_ids)
|
48 |
+
|
49 |
+
for iou_type in self.iou_types:
|
50 |
+
results = self.prepare(predictions, iou_type)
|
51 |
+
|
52 |
+
# suppress pycocotools prints
|
53 |
+
with open(os.devnull, "w") as devnull:
|
54 |
+
with contextlib.redirect_stdout(devnull):
|
55 |
+
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
|
56 |
+
|
57 |
+
coco_eval = self.coco_eval[iou_type]
|
58 |
+
|
59 |
+
coco_eval.cocoDt = coco_dt
|
60 |
+
coco_eval.params.imgIds = list(img_ids)
|
61 |
+
coco_eval.params.useCats = self.useCats
|
62 |
+
img_ids, eval_imgs = evaluate(coco_eval)
|
63 |
+
|
64 |
+
self.eval_imgs[iou_type].append(eval_imgs)
|
65 |
+
|
66 |
+
def synchronize_between_processes(self):
|
67 |
+
for iou_type in self.iou_types:
|
68 |
+
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
|
69 |
+
create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
|
70 |
+
|
71 |
+
def accumulate(self):
|
72 |
+
for coco_eval in self.coco_eval.values():
|
73 |
+
coco_eval.accumulate()
|
74 |
+
|
75 |
+
def summarize(self):
|
76 |
+
for iou_type, coco_eval in self.coco_eval.items():
|
77 |
+
print("IoU metric: {}".format(iou_type))
|
78 |
+
coco_eval.summarize()
|
79 |
+
|
80 |
+
def prepare(self, predictions, iou_type):
|
81 |
+
if iou_type == "bbox":
|
82 |
+
return self.prepare_for_coco_detection(predictions)
|
83 |
+
elif iou_type == "segm":
|
84 |
+
return self.prepare_for_coco_segmentation(predictions)
|
85 |
+
elif iou_type == "keypoints":
|
86 |
+
return self.prepare_for_coco_keypoint(predictions)
|
87 |
+
else:
|
88 |
+
raise ValueError("Unknown iou type {}".format(iou_type))
|
89 |
+
|
90 |
+
def prepare_for_coco_detection(self, predictions):
|
91 |
+
coco_results = []
|
92 |
+
for original_id, prediction in predictions.items():
|
93 |
+
if len(prediction) == 0:
|
94 |
+
continue
|
95 |
+
|
96 |
+
boxes = prediction["boxes"]
|
97 |
+
boxes = convert_to_xywh(boxes).tolist()
|
98 |
+
scores = prediction["scores"].tolist()
|
99 |
+
labels = prediction["labels"].tolist()
|
100 |
+
|
101 |
+
coco_results.extend(
|
102 |
+
[
|
103 |
+
{
|
104 |
+
"image_id": original_id,
|
105 |
+
"category_id": labels[k],
|
106 |
+
"bbox": box,
|
107 |
+
"score": scores[k],
|
108 |
+
}
|
109 |
+
for k, box in enumerate(boxes)
|
110 |
+
]
|
111 |
+
)
|
112 |
+
return coco_results
|
113 |
+
|
114 |
+
def prepare_for_coco_segmentation(self, predictions):
|
115 |
+
coco_results = []
|
116 |
+
for original_id, prediction in predictions.items():
|
117 |
+
if len(prediction) == 0:
|
118 |
+
continue
|
119 |
+
|
120 |
+
scores = prediction["scores"]
|
121 |
+
labels = prediction["labels"]
|
122 |
+
masks = prediction["masks"]
|
123 |
+
|
124 |
+
masks = masks > 0.5
|
125 |
+
|
126 |
+
scores = prediction["scores"].tolist()
|
127 |
+
labels = prediction["labels"].tolist()
|
128 |
+
|
129 |
+
rles = [
|
130 |
+
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
|
131 |
+
for mask in masks
|
132 |
+
]
|
133 |
+
for rle in rles:
|
134 |
+
rle["counts"] = rle["counts"].decode("utf-8")
|
135 |
+
|
136 |
+
coco_results.extend(
|
137 |
+
[
|
138 |
+
{
|
139 |
+
"image_id": original_id,
|
140 |
+
"category_id": labels[k],
|
141 |
+
"segmentation": rle,
|
142 |
+
"score": scores[k],
|
143 |
+
}
|
144 |
+
for k, rle in enumerate(rles)
|
145 |
+
]
|
146 |
+
)
|
147 |
+
return coco_results
|
148 |
+
|
149 |
+
def prepare_for_coco_keypoint(self, predictions):
|
150 |
+
coco_results = []
|
151 |
+
for original_id, prediction in predictions.items():
|
152 |
+
if len(prediction) == 0:
|
153 |
+
continue
|
154 |
+
|
155 |
+
boxes = prediction["boxes"]
|
156 |
+
boxes = convert_to_xywh(boxes).tolist()
|
157 |
+
scores = prediction["scores"].tolist()
|
158 |
+
labels = prediction["labels"].tolist()
|
159 |
+
keypoints = prediction["keypoints"]
|
160 |
+
keypoints = keypoints.flatten(start_dim=1).tolist()
|
161 |
+
|
162 |
+
coco_results.extend(
|
163 |
+
[
|
164 |
+
{
|
165 |
+
"image_id": original_id,
|
166 |
+
"category_id": labels[k],
|
167 |
+
"keypoints": keypoint,
|
168 |
+
"score": scores[k],
|
169 |
+
}
|
170 |
+
for k, keypoint in enumerate(keypoints)
|
171 |
+
]
|
172 |
+
)
|
173 |
+
return coco_results
|
174 |
+
|
175 |
+
|
176 |
+
def convert_to_xywh(boxes):
|
177 |
+
xmin, ymin, xmax, ymax = boxes.unbind(1)
|
178 |
+
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
|
179 |
+
|
180 |
+
|
181 |
+
def merge(img_ids, eval_imgs):
|
182 |
+
all_img_ids = all_gather(img_ids)
|
183 |
+
all_eval_imgs = all_gather(eval_imgs)
|
184 |
+
|
185 |
+
merged_img_ids = []
|
186 |
+
for p in all_img_ids:
|
187 |
+
merged_img_ids.extend(p)
|
188 |
+
|
189 |
+
merged_eval_imgs = []
|
190 |
+
for p in all_eval_imgs:
|
191 |
+
merged_eval_imgs.append(p)
|
192 |
+
|
193 |
+
merged_img_ids = np.array(merged_img_ids)
|
194 |
+
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
|
195 |
+
|
196 |
+
# keep only unique (and in sorted order) images
|
197 |
+
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
|
198 |
+
merged_eval_imgs = merged_eval_imgs[..., idx]
|
199 |
+
|
200 |
+
return merged_img_ids, merged_eval_imgs
|
201 |
+
|
202 |
+
|
203 |
+
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
|
204 |
+
img_ids, eval_imgs = merge(img_ids, eval_imgs)
|
205 |
+
img_ids = list(img_ids)
|
206 |
+
eval_imgs = list(eval_imgs.flatten())
|
207 |
+
|
208 |
+
coco_eval.evalImgs = eval_imgs
|
209 |
+
coco_eval.params.imgIds = img_ids
|
210 |
+
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
|
211 |
+
|
212 |
+
|
213 |
+
#################################################################
|
214 |
+
# From pycocotools, just removed the prints and fixed
|
215 |
+
# a Python3 bug about unicode not defined
|
216 |
+
#################################################################
|
217 |
+
|
218 |
+
|
219 |
+
def evaluate(self):
|
220 |
+
"""
|
221 |
+
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
|
222 |
+
:return: None
|
223 |
+
"""
|
224 |
+
# tic = time.time()
|
225 |
+
# print('Running per image evaluation...')
|
226 |
+
p = self.params
|
227 |
+
# add backward compatibility if useSegm is specified in params
|
228 |
+
if p.useSegm is not None:
|
229 |
+
p.iouType = "segm" if p.useSegm == 1 else "bbox"
|
230 |
+
print("useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType))
|
231 |
+
# print('Evaluate annotation type *{}*'.format(p.iouType))
|
232 |
+
p.imgIds = list(np.unique(p.imgIds))
|
233 |
+
if p.useCats:
|
234 |
+
p.catIds = list(np.unique(p.catIds))
|
235 |
+
p.maxDets = sorted(p.maxDets)
|
236 |
+
self.params = p
|
237 |
+
|
238 |
+
self._prepare()
|
239 |
+
# loop through images, area range, max detection number
|
240 |
+
catIds = p.catIds if p.useCats else [-1]
|
241 |
+
|
242 |
+
if p.iouType == "segm" or p.iouType == "bbox":
|
243 |
+
computeIoU = self.computeIoU
|
244 |
+
elif p.iouType == "keypoints":
|
245 |
+
computeIoU = self.computeOks
|
246 |
+
self.ious = {
|
247 |
+
(imgId, catId): computeIoU(imgId, catId)
|
248 |
+
for imgId in p.imgIds
|
249 |
+
for catId in catIds}
|
250 |
+
|
251 |
+
evaluateImg = self.evaluateImg
|
252 |
+
maxDet = p.maxDets[-1]
|
253 |
+
evalImgs = [
|
254 |
+
evaluateImg(imgId, catId, areaRng, maxDet)
|
255 |
+
for catId in catIds
|
256 |
+
for areaRng in p.areaRng
|
257 |
+
for imgId in p.imgIds
|
258 |
+
]
|
259 |
+
# this is NOT in the pycocotools code, but could be done outside
|
260 |
+
evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
|
261 |
+
self._paramsEval = copy.deepcopy(self.params)
|
262 |
+
# toc = time.time()
|
263 |
+
# print('DONE (t={:0.2f}s).'.format(toc-tic))
|
264 |
+
return p.imgIds, evalImgs
|
265 |
+
|
266 |
+
|
267 |
+
#################################################################
|
268 |
+
# end of straight copy from pycocotools, just removing the prints
|
269 |
+
#################################################################
|
groundingdino/datasets/transforms.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
"""
|
3 |
+
Transforms and data augmentation for both image + bbox.
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
|
8 |
+
import PIL
|
9 |
+
import torch
|
10 |
+
import torchvision.transforms as T
|
11 |
+
import torchvision.transforms.functional as F
|
12 |
+
|
13 |
+
from groundingdino.util.box_ops import box_xyxy_to_cxcywh
|
14 |
+
from groundingdino.util.misc import interpolate
|
15 |
+
|
16 |
+
|
17 |
+
def crop(image, target, region):
|
18 |
+
cropped_image = F.crop(image, *region)
|
19 |
+
|
20 |
+
target = target.copy()
|
21 |
+
i, j, h, w = region
|
22 |
+
|
23 |
+
# should we do something wrt the original size?
|
24 |
+
target["size"] = torch.tensor([h, w])
|
25 |
+
|
26 |
+
fields = ["labels", "area", "iscrowd", "positive_map"]
|
27 |
+
|
28 |
+
if "boxes" in target:
|
29 |
+
boxes = target["boxes"]
|
30 |
+
max_size = torch.as_tensor([w, h], dtype=torch.float32)
|
31 |
+
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
|
32 |
+
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
|
33 |
+
cropped_boxes = cropped_boxes.clamp(min=0)
|
34 |
+
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
|
35 |
+
target["boxes"] = cropped_boxes.reshape(-1, 4)
|
36 |
+
target["area"] = area
|
37 |
+
fields.append("boxes")
|
38 |
+
|
39 |
+
if "masks" in target:
|
40 |
+
# FIXME should we update the area here if there are no boxes?
|
41 |
+
target["masks"] = target["masks"][:, i : i + h, j : j + w]
|
42 |
+
fields.append("masks")
|
43 |
+
|
44 |
+
# remove elements for which the boxes or masks that have zero area
|
45 |
+
if "boxes" in target or "masks" in target:
|
46 |
+
# favor boxes selection when defining which elements to keep
|
47 |
+
# this is compatible with previous implementation
|
48 |
+
if "boxes" in target:
|
49 |
+
cropped_boxes = target["boxes"].reshape(-1, 2, 2)
|
50 |
+
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
|
51 |
+
else:
|
52 |
+
keep = target["masks"].flatten(1).any(1)
|
53 |
+
|
54 |
+
for field in fields:
|
55 |
+
if field in target:
|
56 |
+
target[field] = target[field][keep]
|
57 |
+
|
58 |
+
if os.environ.get("IPDB_SHILONG_DEBUG", None) == "INFO":
|
59 |
+
# for debug and visualization only.
|
60 |
+
if "strings_positive" in target:
|
61 |
+
target["strings_positive"] = [
|
62 |
+
_i for _i, _j in zip(target["strings_positive"], keep) if _j
|
63 |
+
]
|
64 |
+
|
65 |
+
return cropped_image, target
|
66 |
+
|
67 |
+
|
68 |
+
def hflip(image, target):
|
69 |
+
flipped_image = F.hflip(image)
|
70 |
+
|
71 |
+
w, h = image.size
|
72 |
+
|
73 |
+
target = target.copy()
|
74 |
+
if "boxes" in target:
|
75 |
+
boxes = target["boxes"]
|
76 |
+
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor(
|
77 |
+
[w, 0, w, 0]
|
78 |
+
)
|
79 |
+
target["boxes"] = boxes
|
80 |
+
|
81 |
+
if "masks" in target:
|
82 |
+
target["masks"] = target["masks"].flip(-1)
|
83 |
+
|
84 |
+
return flipped_image, target
|
85 |
+
|
86 |
+
|
87 |
+
def resize(image, target, size, max_size=None):
|
88 |
+
# size can be min_size (scalar) or (w, h) tuple
|
89 |
+
|
90 |
+
def get_size_with_aspect_ratio(image_size, size, max_size=None):
|
91 |
+
w, h = image_size
|
92 |
+
if max_size is not None:
|
93 |
+
min_original_size = float(min((w, h)))
|
94 |
+
max_original_size = float(max((w, h)))
|
95 |
+
if max_original_size / min_original_size * size > max_size:
|
96 |
+
size = int(round(max_size * min_original_size / max_original_size))
|
97 |
+
|
98 |
+
if (w <= h and w == size) or (h <= w and h == size):
|
99 |
+
return (h, w)
|
100 |
+
|
101 |
+
if w < h:
|
102 |
+
ow = size
|
103 |
+
oh = int(size * h / w)
|
104 |
+
else:
|
105 |
+
oh = size
|
106 |
+
ow = int(size * w / h)
|
107 |
+
|
108 |
+
return (oh, ow)
|
109 |
+
|
110 |
+
def get_size(image_size, size, max_size=None):
|
111 |
+
if isinstance(size, (list, tuple)):
|
112 |
+
return size[::-1]
|
113 |
+
else:
|
114 |
+
return get_size_with_aspect_ratio(image_size, size, max_size)
|
115 |
+
|
116 |
+
size = get_size(image.size, size, max_size)
|
117 |
+
rescaled_image = F.resize(image, size)
|
118 |
+
|
119 |
+
if target is None:
|
120 |
+
return rescaled_image, None
|
121 |
+
|
122 |
+
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
|
123 |
+
ratio_width, ratio_height = ratios
|
124 |
+
|
125 |
+
target = target.copy()
|
126 |
+
if "boxes" in target:
|
127 |
+
boxes = target["boxes"]
|
128 |
+
scaled_boxes = boxes * torch.as_tensor(
|
129 |
+
[ratio_width, ratio_height, ratio_width, ratio_height]
|
130 |
+
)
|
131 |
+
target["boxes"] = scaled_boxes
|
132 |
+
|
133 |
+
if "area" in target:
|
134 |
+
area = target["area"]
|
135 |
+
scaled_area = area * (ratio_width * ratio_height)
|
136 |
+
target["area"] = scaled_area
|
137 |
+
|
138 |
+
h, w = size
|
139 |
+
target["size"] = torch.tensor([h, w])
|
140 |
+
|
141 |
+
if "masks" in target:
|
142 |
+
target["masks"] = (
|
143 |
+
interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5
|
144 |
+
)
|
145 |
+
|
146 |
+
return rescaled_image, target
|
147 |
+
|
148 |
+
|
149 |
+
def pad(image, target, padding):
|
150 |
+
# assumes that we only pad on the bottom right corners
|
151 |
+
padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
|
152 |
+
if target is None:
|
153 |
+
return padded_image, None
|
154 |
+
target = target.copy()
|
155 |
+
# should we do something wrt the original size?
|
156 |
+
target["size"] = torch.tensor(padded_image.size[::-1])
|
157 |
+
if "masks" in target:
|
158 |
+
target["masks"] = torch.nn.functional.pad(target["masks"], (0, padding[0], 0, padding[1]))
|
159 |
+
return padded_image, target
|
160 |
+
|
161 |
+
|
162 |
+
class ResizeDebug(object):
|
163 |
+
def __init__(self, size):
|
164 |
+
self.size = size
|
165 |
+
|
166 |
+
def __call__(self, img, target):
|
167 |
+
return resize(img, target, self.size)
|
168 |
+
|
169 |
+
|
170 |
+
class RandomCrop(object):
|
171 |
+
def __init__(self, size):
|
172 |
+
self.size = size
|
173 |
+
|
174 |
+
def __call__(self, img, target):
|
175 |
+
region = T.RandomCrop.get_params(img, self.size)
|
176 |
+
return crop(img, target, region)
|
177 |
+
|
178 |
+
|
179 |
+
class RandomSizeCrop(object):
|
180 |
+
def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False):
|
181 |
+
# respect_boxes: True to keep all boxes
|
182 |
+
# False to tolerence box filter
|
183 |
+
self.min_size = min_size
|
184 |
+
self.max_size = max_size
|
185 |
+
self.respect_boxes = respect_boxes
|
186 |
+
|
187 |
+
def __call__(self, img: PIL.Image.Image, target: dict):
|
188 |
+
init_boxes = len(target["boxes"])
|
189 |
+
max_patience = 10
|
190 |
+
for i in range(max_patience):
|
191 |
+
w = random.randint(self.min_size, min(img.width, self.max_size))
|
192 |
+
h = random.randint(self.min_size, min(img.height, self.max_size))
|
193 |
+
region = T.RandomCrop.get_params(img, [h, w])
|
194 |
+
result_img, result_target = crop(img, target, region)
|
195 |
+
if (
|
196 |
+
not self.respect_boxes
|
197 |
+
or len(result_target["boxes"]) == init_boxes
|
198 |
+
or i == max_patience - 1
|
199 |
+
):
|
200 |
+
return result_img, result_target
|
201 |
+
return result_img, result_target
|
202 |
+
|
203 |
+
|
204 |
+
class CenterCrop(object):
|
205 |
+
def __init__(self, size):
|
206 |
+
self.size = size
|
207 |
+
|
208 |
+
def __call__(self, img, target):
|
209 |
+
image_width, image_height = img.size
|
210 |
+
crop_height, crop_width = self.size
|
211 |
+
crop_top = int(round((image_height - crop_height) / 2.0))
|
212 |
+
crop_left = int(round((image_width - crop_width) / 2.0))
|
213 |
+
return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
|
214 |
+
|
215 |
+
|
216 |
+
class RandomHorizontalFlip(object):
|
217 |
+
def __init__(self, p=0.5):
|
218 |
+
self.p = p
|
219 |
+
|
220 |
+
def __call__(self, img, target):
|
221 |
+
if random.random() < self.p:
|
222 |
+
return hflip(img, target)
|
223 |
+
return img, target
|
224 |
+
|
225 |
+
|
226 |
+
class RandomResize(object):
|
227 |
+
def __init__(self, sizes, max_size=None):
|
228 |
+
assert isinstance(sizes, (list, tuple))
|
229 |
+
self.sizes = sizes
|
230 |
+
self.max_size = max_size
|
231 |
+
|
232 |
+
def __call__(self, img, target=None):
|
233 |
+
size = random.choice(self.sizes)
|
234 |
+
return resize(img, target, size, self.max_size)
|
235 |
+
|
236 |
+
|
237 |
+
class RandomPad(object):
|
238 |
+
def __init__(self, max_pad):
|
239 |
+
self.max_pad = max_pad
|
240 |
+
|
241 |
+
def __call__(self, img, target):
|
242 |
+
pad_x = random.randint(0, self.max_pad)
|
243 |
+
pad_y = random.randint(0, self.max_pad)
|
244 |
+
return pad(img, target, (pad_x, pad_y))
|
245 |
+
|
246 |
+
|
247 |
+
class RandomSelect(object):
|
248 |
+
"""
|
249 |
+
Randomly selects between transforms1 and transforms2,
|
250 |
+
with probability p for transforms1 and (1 - p) for transforms2
|
251 |
+
"""
|
252 |
+
|
253 |
+
def __init__(self, transforms1, transforms2, p=0.5):
|
254 |
+
self.transforms1 = transforms1
|
255 |
+
self.transforms2 = transforms2
|
256 |
+
self.p = p
|
257 |
+
|
258 |
+
def __call__(self, img, target):
|
259 |
+
if random.random() < self.p:
|
260 |
+
return self.transforms1(img, target)
|
261 |
+
return self.transforms2(img, target)
|
262 |
+
|
263 |
+
|
264 |
+
class ToTensor(object):
|
265 |
+
def __call__(self, img, target):
|
266 |
+
return F.to_tensor(img), target
|
267 |
+
|
268 |
+
|
269 |
+
class RandomErasing(object):
|
270 |
+
def __init__(self, *args, **kwargs):
|
271 |
+
self.eraser = T.RandomErasing(*args, **kwargs)
|
272 |
+
|
273 |
+
def __call__(self, img, target):
|
274 |
+
return self.eraser(img), target
|
275 |
+
|
276 |
+
|
277 |
+
class Normalize(object):
|
278 |
+
def __init__(self, mean, std):
|
279 |
+
self.mean = mean
|
280 |
+
self.std = std
|
281 |
+
|
282 |
+
def __call__(self, image, target=None):
|
283 |
+
image = F.normalize(image, mean=self.mean, std=self.std)
|
284 |
+
if target is None:
|
285 |
+
return image, None
|
286 |
+
target = target.copy()
|
287 |
+
h, w = image.shape[-2:]
|
288 |
+
if "boxes" in target:
|
289 |
+
boxes = target["boxes"]
|
290 |
+
boxes = box_xyxy_to_cxcywh(boxes)
|
291 |
+
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
|
292 |
+
target["boxes"] = boxes
|
293 |
+
return image, target
|
294 |
+
|
295 |
+
|
296 |
+
class Compose(object):
|
297 |
+
def __init__(self, transforms):
|
298 |
+
self.transforms = transforms
|
299 |
+
|
300 |
+
def __call__(self, image, target):
|
301 |
+
for t in self.transforms:
|
302 |
+
image, target = t(image, target)
|
303 |
+
return image, target
|
304 |
+
|
305 |
+
def __repr__(self):
|
306 |
+
format_string = self.__class__.__name__ + "("
|
307 |
+
for t in self.transforms:
|
308 |
+
format_string += "\n"
|
309 |
+
format_string += " {0}".format(t)
|
310 |
+
format_string += "\n)"
|
311 |
+
return format_string
|
groundingdino/models/.ipynb_checkpoints/__init__-checkpoint.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
8 |
+
from .GroundingDINO import build_groundingdino
|
9 |
+
|
10 |
+
|
11 |
+
def build_model(args):
|
12 |
+
# we use register to maintain models from catdet6 on.
|
13 |
+
from .registry import MODULE_BUILD_FUNCS
|
14 |
+
|
15 |
+
assert args.modelname in MODULE_BUILD_FUNCS._module_dict
|
16 |
+
build_func = MODULE_BUILD_FUNCS.get(args.modelname)
|
17 |
+
model = build_func(args)
|
18 |
+
return model
|
groundingdino/models/.ipynb_checkpoints/registry-checkpoint.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# -*- coding: utf-8 -*-
|
8 |
+
# @Author: Yihao Chen
|
9 |
+
# @Date: 2021-08-16 16:03:17
|
10 |
+
# @Last Modified by: Shilong Liu
|
11 |
+
# @Last Modified time: 2022-01-23 15:26
|
12 |
+
# modified from mmcv
|
13 |
+
|
14 |
+
import inspect
|
15 |
+
from functools import partial
|
16 |
+
|
17 |
+
|
18 |
+
class Registry(object):
|
19 |
+
def __init__(self, name):
|
20 |
+
self._name = name
|
21 |
+
self._module_dict = dict()
|
22 |
+
|
23 |
+
def __repr__(self):
|
24 |
+
format_str = self.__class__.__name__ + "(name={}, items={})".format(
|
25 |
+
self._name, list(self._module_dict.keys())
|
26 |
+
)
|
27 |
+
return format_str
|
28 |
+
|
29 |
+
def __len__(self):
|
30 |
+
return len(self._module_dict)
|
31 |
+
|
32 |
+
@property
|
33 |
+
def name(self):
|
34 |
+
return self._name
|
35 |
+
|
36 |
+
@property
|
37 |
+
def module_dict(self):
|
38 |
+
return self._module_dict
|
39 |
+
|
40 |
+
def get(self, key):
|
41 |
+
return self._module_dict.get(key, None)
|
42 |
+
|
43 |
+
def registe_with_name(self, module_name=None, force=False):
|
44 |
+
return partial(self.register, module_name=module_name, force=force)
|
45 |
+
|
46 |
+
def register(self, module_build_function, module_name=None, force=False):
|
47 |
+
"""Register a module build function.
|
48 |
+
Args:
|
49 |
+
module (:obj:`nn.Module`): Module to be registered.
|
50 |
+
"""
|
51 |
+
if not inspect.isfunction(module_build_function):
|
52 |
+
raise TypeError(
|
53 |
+
"module_build_function must be a function, but got {}".format(
|
54 |
+
type(module_build_function)
|
55 |
+
)
|
56 |
+
)
|
57 |
+
if module_name is None:
|
58 |
+
module_name = module_build_function.__name__
|
59 |
+
if not force and module_name in self._module_dict:
|
60 |
+
raise KeyError("{} is already registered in {}".format(module_name, self.name))
|
61 |
+
self._module_dict[module_name] = module_build_function
|
62 |
+
|
63 |
+
return module_build_function
|
64 |
+
|
65 |
+
|
66 |
+
MODULE_BUILD_FUNCS = Registry("model build functions")
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/fuse_modules-checkpoint.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from timm.models.layers import DropPath
|
12 |
+
import loralib as lora
|
13 |
+
|
14 |
+
class FeatureResizer(nn.Module):
|
15 |
+
"""
|
16 |
+
This class takes as input a set of embeddings of dimension C1 and outputs a set of
|
17 |
+
embedding of dimension C2, after a linear transformation, dropout and normalization (LN).
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True):
|
21 |
+
super().__init__()
|
22 |
+
self.do_ln = do_ln
|
23 |
+
# Object feature encoding
|
24 |
+
r = 16
|
25 |
+
self.fc = lora.Linear(input_feat_size, output_feat_size,r=r , bias=True)
|
26 |
+
self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12)
|
27 |
+
self.dropout = nn.Dropout(dropout)
|
28 |
+
|
29 |
+
def forward(self, encoder_features):
|
30 |
+
x = self.fc(encoder_features)
|
31 |
+
if self.do_ln:
|
32 |
+
x = self.layer_norm(x)
|
33 |
+
output = self.dropout(x)
|
34 |
+
return output
|
35 |
+
|
36 |
+
|
37 |
+
def l1norm(X, dim, eps=1e-8):
|
38 |
+
"""L1-normalize columns of X"""
|
39 |
+
norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
|
40 |
+
X = torch.div(X, norm)
|
41 |
+
return X
|
42 |
+
|
43 |
+
|
44 |
+
def l2norm(X, dim, eps=1e-8):
|
45 |
+
"""L2-normalize columns of X"""
|
46 |
+
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
|
47 |
+
X = torch.div(X, norm)
|
48 |
+
return X
|
49 |
+
|
50 |
+
|
51 |
+
def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8):
|
52 |
+
"""
|
53 |
+
query: (n_context, queryL, d)
|
54 |
+
context: (n_context, sourceL, d)
|
55 |
+
"""
|
56 |
+
batch_size_q, queryL = query.size(0), query.size(1)
|
57 |
+
batch_size, sourceL = context.size(0), context.size(1)
|
58 |
+
|
59 |
+
# Get attention
|
60 |
+
# --> (batch, d, queryL)
|
61 |
+
queryT = torch.transpose(query, 1, 2)
|
62 |
+
|
63 |
+
# (batch, sourceL, d)(batch, d, queryL)
|
64 |
+
# --> (batch, sourceL, queryL)
|
65 |
+
attn = torch.bmm(context, queryT)
|
66 |
+
if raw_feature_norm == "softmax":
|
67 |
+
# --> (batch*sourceL, queryL)
|
68 |
+
attn = attn.view(batch_size * sourceL, queryL)
|
69 |
+
attn = nn.Softmax()(attn)
|
70 |
+
# --> (batch, sourceL, queryL)
|
71 |
+
attn = attn.view(batch_size, sourceL, queryL)
|
72 |
+
elif raw_feature_norm == "l2norm":
|
73 |
+
attn = l2norm(attn, 2)
|
74 |
+
elif raw_feature_norm == "clipped_l2norm":
|
75 |
+
attn = nn.LeakyReLU(0.1)(attn)
|
76 |
+
attn = l2norm(attn, 2)
|
77 |
+
else:
|
78 |
+
raise ValueError("unknown first norm type:", raw_feature_norm)
|
79 |
+
# --> (batch, queryL, sourceL)
|
80 |
+
attn = torch.transpose(attn, 1, 2).contiguous()
|
81 |
+
# --> (batch*queryL, sourceL)
|
82 |
+
attn = attn.view(batch_size * queryL, sourceL)
|
83 |
+
attn = nn.Softmax()(attn * smooth)
|
84 |
+
# --> (batch, queryL, sourceL)
|
85 |
+
attn = attn.view(batch_size, queryL, sourceL)
|
86 |
+
# --> (batch, sourceL, queryL)
|
87 |
+
attnT = torch.transpose(attn, 1, 2).contiguous()
|
88 |
+
|
89 |
+
# --> (batch, d, sourceL)
|
90 |
+
contextT = torch.transpose(context, 1, 2)
|
91 |
+
# (batch x d x sourceL)(batch x sourceL x queryL)
|
92 |
+
# --> (batch, d, queryL)
|
93 |
+
weightedContext = torch.bmm(contextT, attnT)
|
94 |
+
# --> (batch, queryL, d)
|
95 |
+
weightedContext = torch.transpose(weightedContext, 1, 2)
|
96 |
+
|
97 |
+
return weightedContext, attnT
|
98 |
+
|
99 |
+
|
100 |
+
class BiMultiHeadAttention(nn.Module):
|
101 |
+
def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None):
|
102 |
+
super(BiMultiHeadAttention, self).__init__()
|
103 |
+
|
104 |
+
self.embed_dim = embed_dim
|
105 |
+
self.num_heads = num_heads
|
106 |
+
self.head_dim = embed_dim // num_heads
|
107 |
+
self.v_dim = v_dim
|
108 |
+
self.l_dim = l_dim
|
109 |
+
|
110 |
+
assert (
|
111 |
+
self.head_dim * self.num_heads == self.embed_dim
|
112 |
+
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
|
113 |
+
self.scale = self.head_dim ** (-0.5)
|
114 |
+
self.dropout = dropout
|
115 |
+
r = 16
|
116 |
+
self.v_proj = lora.Linear(self.v_dim, self.embed_dim , r=r)
|
117 |
+
self.l_proj = lora.Linear(self.l_dim, self.embed_dim , r=r)
|
118 |
+
self.values_v_proj = lora.Linear(self.v_dim, self.embed_dim , r=r)
|
119 |
+
self.values_l_proj = lora.Linear(self.l_dim, self.embed_dim , r=r)
|
120 |
+
|
121 |
+
self.out_v_proj = lora.Linear(self.embed_dim, self.v_dim , r=r)
|
122 |
+
self.out_l_proj = lora.Linear(self.embed_dim, self.l_dim , r=r)
|
123 |
+
|
124 |
+
self.stable_softmax_2d = True
|
125 |
+
self.clamp_min_for_underflow = True
|
126 |
+
self.clamp_max_for_overflow = True
|
127 |
+
|
128 |
+
self._reset_parameters()
|
129 |
+
|
130 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
131 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
132 |
+
|
133 |
+
def _reset_parameters(self):
|
134 |
+
nn.init.xavier_uniform_(self.v_proj.weight)
|
135 |
+
self.v_proj.bias.data.fill_(0)
|
136 |
+
nn.init.xavier_uniform_(self.l_proj.weight)
|
137 |
+
self.l_proj.bias.data.fill_(0)
|
138 |
+
nn.init.xavier_uniform_(self.values_v_proj.weight)
|
139 |
+
self.values_v_proj.bias.data.fill_(0)
|
140 |
+
nn.init.xavier_uniform_(self.values_l_proj.weight)
|
141 |
+
self.values_l_proj.bias.data.fill_(0)
|
142 |
+
nn.init.xavier_uniform_(self.out_v_proj.weight)
|
143 |
+
self.out_v_proj.bias.data.fill_(0)
|
144 |
+
nn.init.xavier_uniform_(self.out_l_proj.weight)
|
145 |
+
self.out_l_proj.bias.data.fill_(0)
|
146 |
+
|
147 |
+
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
|
148 |
+
"""_summary_
|
149 |
+
|
150 |
+
Args:
|
151 |
+
v (_type_): bs, n_img, dim
|
152 |
+
l (_type_): bs, n_text, dim
|
153 |
+
attention_mask_v (_type_, optional): _description_. bs, n_img
|
154 |
+
attention_mask_l (_type_, optional): _description_. bs, n_text
|
155 |
+
|
156 |
+
Returns:
|
157 |
+
_type_: _description_
|
158 |
+
"""
|
159 |
+
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
160 |
+
# import ipdb; ipdb.set_trace()
|
161 |
+
bsz, tgt_len, _ = v.size()
|
162 |
+
|
163 |
+
query_states = self.v_proj(v) * self.scale
|
164 |
+
key_states = self._shape(self.l_proj(l), -1, bsz)
|
165 |
+
value_v_states = self._shape(self.values_v_proj(v), -1, bsz)
|
166 |
+
value_l_states = self._shape(self.values_l_proj(l), -1, bsz)
|
167 |
+
|
168 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
169 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
170 |
+
key_states = key_states.view(*proj_shape)
|
171 |
+
value_v_states = value_v_states.view(*proj_shape)
|
172 |
+
value_l_states = value_l_states.view(*proj_shape)
|
173 |
+
|
174 |
+
src_len = key_states.size(1)
|
175 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bs*nhead, nimg, ntxt
|
176 |
+
|
177 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
178 |
+
raise ValueError(
|
179 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
|
180 |
+
)
|
181 |
+
|
182 |
+
if self.stable_softmax_2d:
|
183 |
+
attn_weights = attn_weights - attn_weights.max()
|
184 |
+
|
185 |
+
if self.clamp_min_for_underflow:
|
186 |
+
attn_weights = torch.clamp(
|
187 |
+
attn_weights, min=-50000
|
188 |
+
) # Do not increase -50000, data type half has quite limited range
|
189 |
+
if self.clamp_max_for_overflow:
|
190 |
+
attn_weights = torch.clamp(
|
191 |
+
attn_weights, max=50000
|
192 |
+
) # Do not increase 50000, data type half has quite limited range
|
193 |
+
|
194 |
+
attn_weights_T = attn_weights.transpose(1, 2)
|
195 |
+
attn_weights_l = attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[0]
|
196 |
+
if self.clamp_min_for_underflow:
|
197 |
+
attn_weights_l = torch.clamp(
|
198 |
+
attn_weights_l, min=-50000
|
199 |
+
) # Do not increase -50000, data type half has quite limited range
|
200 |
+
if self.clamp_max_for_overflow:
|
201 |
+
attn_weights_l = torch.clamp(
|
202 |
+
attn_weights_l, max=50000
|
203 |
+
) # Do not increase 50000, data type half has quite limited range
|
204 |
+
|
205 |
+
# mask vison for language
|
206 |
+
if attention_mask_v is not None:
|
207 |
+
attention_mask_v = (
|
208 |
+
attention_mask_v[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
|
209 |
+
)
|
210 |
+
attn_weights_l.masked_fill_(attention_mask_v, float("-inf"))
|
211 |
+
|
212 |
+
attn_weights_l = attn_weights_l.softmax(dim=-1)
|
213 |
+
|
214 |
+
# mask language for vision
|
215 |
+
if attention_mask_l is not None:
|
216 |
+
attention_mask_l = (
|
217 |
+
attention_mask_l[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
|
218 |
+
)
|
219 |
+
attn_weights.masked_fill_(attention_mask_l, float("-inf"))
|
220 |
+
attn_weights_v = attn_weights.softmax(dim=-1)
|
221 |
+
|
222 |
+
attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training)
|
223 |
+
attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training)
|
224 |
+
|
225 |
+
attn_output_v = torch.bmm(attn_probs_v, value_l_states)
|
226 |
+
attn_output_l = torch.bmm(attn_probs_l, value_v_states)
|
227 |
+
|
228 |
+
if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
229 |
+
raise ValueError(
|
230 |
+
f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}"
|
231 |
+
)
|
232 |
+
|
233 |
+
if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim):
|
234 |
+
raise ValueError(
|
235 |
+
f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}"
|
236 |
+
)
|
237 |
+
|
238 |
+
attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
239 |
+
attn_output_v = attn_output_v.transpose(1, 2)
|
240 |
+
attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim)
|
241 |
+
|
242 |
+
attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim)
|
243 |
+
attn_output_l = attn_output_l.transpose(1, 2)
|
244 |
+
attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim)
|
245 |
+
|
246 |
+
attn_output_v = self.out_v_proj(attn_output_v)
|
247 |
+
attn_output_l = self.out_l_proj(attn_output_l)
|
248 |
+
|
249 |
+
return attn_output_v, attn_output_l
|
250 |
+
|
251 |
+
|
252 |
+
# Bi-Direction MHA (text->image, image->text)
|
253 |
+
class BiAttentionBlock(nn.Module):
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
v_dim,
|
257 |
+
l_dim,
|
258 |
+
embed_dim,
|
259 |
+
num_heads,
|
260 |
+
dropout=0.1,
|
261 |
+
drop_path=0.0,
|
262 |
+
init_values=1e-4,
|
263 |
+
cfg=None,
|
264 |
+
):
|
265 |
+
"""
|
266 |
+
Inputs:
|
267 |
+
embed_dim - Dimensionality of input and attention feature vectors
|
268 |
+
hidden_dim - Dimensionality of hidden layer in feed-forward network
|
269 |
+
(usually 2-4x larger than embed_dim)
|
270 |
+
num_heads - Number of heads to use in the Multi-Head Attention block
|
271 |
+
dropout - Amount of dropout to apply in the feed-forward network
|
272 |
+
"""
|
273 |
+
super(BiAttentionBlock, self).__init__()
|
274 |
+
|
275 |
+
# pre layer norm
|
276 |
+
self.layer_norm_v = nn.LayerNorm(v_dim)
|
277 |
+
self.layer_norm_l = nn.LayerNorm(l_dim)
|
278 |
+
self.attn = BiMultiHeadAttention(
|
279 |
+
v_dim=v_dim, l_dim=l_dim, embed_dim=embed_dim, num_heads=num_heads, dropout=dropout
|
280 |
+
)
|
281 |
+
|
282 |
+
# add layer scale for training stability
|
283 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
284 |
+
self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True)
|
285 |
+
self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True)
|
286 |
+
|
287 |
+
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
|
288 |
+
v = self.layer_norm_v(v)
|
289 |
+
l = self.layer_norm_l(l)
|
290 |
+
delta_v, delta_l = self.attn(
|
291 |
+
v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l
|
292 |
+
)
|
293 |
+
# v, l = v + delta_v, l + delta_l
|
294 |
+
v = v + self.drop_path(self.gamma_v * delta_v)
|
295 |
+
l = l + self.drop_path(self.gamma_l * delta_l)
|
296 |
+
return v, l
|
297 |
+
|
298 |
+
# def forward(self, v:List[torch.Tensor], l, attention_mask_v=None, attention_mask_l=None)
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/groundingdino-checkpoint.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Conditional DETR model and criterion classes.
|
8 |
+
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------
|
11 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
12 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
13 |
+
# ------------------------------------------------------------------------
|
14 |
+
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
|
15 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
16 |
+
# ------------------------------------------------------------------------
|
17 |
+
import copy
|
18 |
+
from typing import List
|
19 |
+
import loralib as lora
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from torch import nn
|
23 |
+
from torchvision.ops.boxes import nms
|
24 |
+
from transformers import AutoTokenizer, BertModel, BertTokenizer, RobertaModel, RobertaTokenizerFast
|
25 |
+
|
26 |
+
from groundingdino.util import box_ops, get_tokenlizer
|
27 |
+
from groundingdino.util.misc import (
|
28 |
+
NestedTensor,
|
29 |
+
accuracy,
|
30 |
+
get_world_size,
|
31 |
+
interpolate,
|
32 |
+
inverse_sigmoid,
|
33 |
+
is_dist_avail_and_initialized,
|
34 |
+
nested_tensor_from_tensor_list,
|
35 |
+
)
|
36 |
+
from groundingdino.util.utils import get_phrases_from_posmap
|
37 |
+
from groundingdino.util.visualizer import COCOVisualizer
|
38 |
+
from groundingdino.util.vl_utils import create_positive_map_from_span
|
39 |
+
|
40 |
+
from ..registry import MODULE_BUILD_FUNCS
|
41 |
+
from .backbone import build_backbone
|
42 |
+
from .bertwarper import (
|
43 |
+
BertModelWarper,
|
44 |
+
generate_masks_with_special_tokens,
|
45 |
+
generate_masks_with_special_tokens_and_transfer_map,
|
46 |
+
)
|
47 |
+
from .transformer import build_transformer
|
48 |
+
from .utils import MLP, ContrastiveEmbed, sigmoid_focal_loss
|
49 |
+
|
50 |
+
|
51 |
+
class GroundingDINO(nn.Module):
|
52 |
+
"""This is the Cross-Attention Detector module that performs object detection"""
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
backbone,
|
57 |
+
transformer,
|
58 |
+
num_queries,
|
59 |
+
aux_loss=False,
|
60 |
+
iter_update=False,
|
61 |
+
query_dim=2,
|
62 |
+
num_feature_levels=1,
|
63 |
+
nheads=8,
|
64 |
+
# two stage
|
65 |
+
two_stage_type="no", # ['no', 'standard']
|
66 |
+
dec_pred_bbox_embed_share=True,
|
67 |
+
two_stage_class_embed_share=True,
|
68 |
+
two_stage_bbox_embed_share=True,
|
69 |
+
num_patterns=0,
|
70 |
+
dn_number=100,
|
71 |
+
dn_box_noise_scale=0.4,
|
72 |
+
dn_label_noise_ratio=0.5,
|
73 |
+
dn_labelbook_size=100,
|
74 |
+
text_encoder_type="bert-base-uncased",
|
75 |
+
sub_sentence_present=True,
|
76 |
+
max_text_len=256,
|
77 |
+
):
|
78 |
+
"""Initializes the model.
|
79 |
+
Parameters:
|
80 |
+
backbone: torch module of the backbone to be used. See backbone.py
|
81 |
+
transformer: torch module of the transformer architecture. See transformer.py
|
82 |
+
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
83 |
+
Conditional DETR can detect in a single image. For COCO, we recommend 100 queries.
|
84 |
+
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
85 |
+
"""
|
86 |
+
super().__init__()
|
87 |
+
self.num_queries = num_queries
|
88 |
+
self.transformer = transformer
|
89 |
+
self.hidden_dim = hidden_dim = transformer.d_model
|
90 |
+
self.num_feature_levels = num_feature_levels
|
91 |
+
self.nheads = nheads
|
92 |
+
self.max_text_len = 256
|
93 |
+
self.sub_sentence_present = sub_sentence_present
|
94 |
+
|
95 |
+
# setting query dim
|
96 |
+
self.query_dim = query_dim
|
97 |
+
assert query_dim == 4
|
98 |
+
|
99 |
+
# for dn training
|
100 |
+
self.num_patterns = num_patterns
|
101 |
+
self.dn_number = dn_number
|
102 |
+
self.dn_box_noise_scale = dn_box_noise_scale
|
103 |
+
self.dn_label_noise_ratio = dn_label_noise_ratio
|
104 |
+
self.dn_labelbook_size = dn_labelbook_size
|
105 |
+
|
106 |
+
# bert
|
107 |
+
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
|
108 |
+
self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type)
|
109 |
+
self.bert.pooler.dense.weight.requires_grad_(False)
|
110 |
+
self.bert.pooler.dense.bias.requires_grad_(False)
|
111 |
+
self.bert = BertModelWarper(bert_model=self.bert)
|
112 |
+
|
113 |
+
self.feat_map = nn.Linear(self.bert.config.hidden_size, self.hidden_dim, bias=True)
|
114 |
+
nn.init.constant_(self.feat_map.bias.data, 0)
|
115 |
+
nn.init.xavier_uniform_(self.feat_map.weight.data)
|
116 |
+
# freeze
|
117 |
+
|
118 |
+
# special tokens
|
119 |
+
self.specical_tokens = self.tokenizer.convert_tokens_to_ids(["[CLS]", "[SEP]", ".", "?"])
|
120 |
+
|
121 |
+
# prepare input projection layers
|
122 |
+
if num_feature_levels > 1:
|
123 |
+
num_backbone_outs = len(backbone.num_channels)
|
124 |
+
input_proj_list = []
|
125 |
+
for _ in range(num_backbone_outs):
|
126 |
+
in_channels = backbone.num_channels[_]
|
127 |
+
input_proj_list.append(
|
128 |
+
nn.Sequential(
|
129 |
+
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
|
130 |
+
nn.GroupNorm(32, hidden_dim),
|
131 |
+
)
|
132 |
+
)
|
133 |
+
for _ in range(num_feature_levels - num_backbone_outs):
|
134 |
+
input_proj_list.append(
|
135 |
+
nn.Sequential(
|
136 |
+
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
|
137 |
+
nn.GroupNorm(32, hidden_dim),
|
138 |
+
)
|
139 |
+
)
|
140 |
+
in_channels = hidden_dim
|
141 |
+
self.input_proj = nn.ModuleList(input_proj_list)
|
142 |
+
else:
|
143 |
+
assert two_stage_type == "no", "two_stage_type should be no if num_feature_levels=1 !!!"
|
144 |
+
self.input_proj = nn.ModuleList(
|
145 |
+
[
|
146 |
+
nn.Sequential(
|
147 |
+
nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1),
|
148 |
+
nn.GroupNorm(32, hidden_dim),
|
149 |
+
)
|
150 |
+
]
|
151 |
+
)
|
152 |
+
|
153 |
+
self.backbone = backbone
|
154 |
+
self.aux_loss = aux_loss
|
155 |
+
self.box_pred_damping = box_pred_damping = None
|
156 |
+
|
157 |
+
self.iter_update = iter_update
|
158 |
+
assert iter_update, "Why not iter_update?"
|
159 |
+
|
160 |
+
# prepare pred layers
|
161 |
+
self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
|
162 |
+
# prepare class & box embed
|
163 |
+
_class_embed = ContrastiveEmbed()
|
164 |
+
|
165 |
+
_bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
|
166 |
+
nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
|
167 |
+
nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)
|
168 |
+
|
169 |
+
if dec_pred_bbox_embed_share:
|
170 |
+
box_embed_layerlist = [_bbox_embed for i in range(transformer.num_decoder_layers)]
|
171 |
+
else:
|
172 |
+
box_embed_layerlist = [
|
173 |
+
copy.deepcopy(_bbox_embed) for i in range(transformer.num_decoder_layers)
|
174 |
+
]
|
175 |
+
class_embed_layerlist = [_class_embed for i in range(transformer.num_decoder_layers)]
|
176 |
+
self.bbox_embed = nn.ModuleList(box_embed_layerlist)
|
177 |
+
self.class_embed = nn.ModuleList(class_embed_layerlist)
|
178 |
+
self.transformer.decoder.bbox_embed = self.bbox_embed
|
179 |
+
self.transformer.decoder.class_embed = self.class_embed
|
180 |
+
|
181 |
+
# two stage
|
182 |
+
self.two_stage_type = two_stage_type
|
183 |
+
assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
|
184 |
+
two_stage_type
|
185 |
+
)
|
186 |
+
if two_stage_type != "no":
|
187 |
+
if two_stage_bbox_embed_share:
|
188 |
+
assert dec_pred_bbox_embed_share
|
189 |
+
self.transformer.enc_out_bbox_embed = _bbox_embed
|
190 |
+
else:
|
191 |
+
self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed)
|
192 |
+
|
193 |
+
if two_stage_class_embed_share:
|
194 |
+
assert dec_pred_bbox_embed_share
|
195 |
+
self.transformer.enc_out_class_embed = _class_embed
|
196 |
+
else:
|
197 |
+
self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed)
|
198 |
+
|
199 |
+
self.refpoint_embed = None
|
200 |
+
|
201 |
+
self._reset_parameters()
|
202 |
+
|
203 |
+
def _reset_parameters(self):
|
204 |
+
# init input_proj
|
205 |
+
for proj in self.input_proj:
|
206 |
+
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
207 |
+
nn.init.constant_(proj[0].bias, 0)
|
208 |
+
|
209 |
+
def set_image_tensor(self, samples: NestedTensor):
|
210 |
+
if isinstance(samples, (list, torch.Tensor)):
|
211 |
+
samples = nested_tensor_from_tensor_list(samples)
|
212 |
+
self.features, self.poss = self.backbone(samples)
|
213 |
+
|
214 |
+
def unset_image_tensor(self):
|
215 |
+
if hasattr(self, 'features'):
|
216 |
+
del self.features
|
217 |
+
if hasattr(self,'poss'):
|
218 |
+
del self.poss
|
219 |
+
|
220 |
+
def set_image_features(self, features , poss):
|
221 |
+
self.features = features
|
222 |
+
self.poss = poss
|
223 |
+
|
224 |
+
def init_ref_points(self, use_num_queries):
|
225 |
+
self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
|
226 |
+
|
227 |
+
def forward(self, samples: NestedTensor, targets: List = None, **kw):
|
228 |
+
"""The forward expects a NestedTensor, which consists of:
|
229 |
+
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
|
230 |
+
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
|
231 |
+
|
232 |
+
It returns a dict with the following elements:
|
233 |
+
- "pred_logits": the classification logits (including no-object) for all queries.
|
234 |
+
Shape= [batch_size x num_queries x num_classes]
|
235 |
+
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
|
236 |
+
(center_x, center_y, width, height). These values are normalized in [0, 1],
|
237 |
+
relative to the size of each individual image (disregarding possible padding).
|
238 |
+
See PostProcess for information on how to retrieve the unnormalized bounding box.
|
239 |
+
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
|
240 |
+
dictionnaries containing the two above keys for each decoder layer.
|
241 |
+
"""
|
242 |
+
if targets is None:
|
243 |
+
captions = kw["captions"]
|
244 |
+
else:
|
245 |
+
captions = [t["caption"] for t in targets]
|
246 |
+
|
247 |
+
# encoder texts
|
248 |
+
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
|
249 |
+
samples.device
|
250 |
+
)
|
251 |
+
(
|
252 |
+
text_self_attention_masks,
|
253 |
+
position_ids,
|
254 |
+
cate_to_token_mask_list,
|
255 |
+
) = generate_masks_with_special_tokens_and_transfer_map(
|
256 |
+
tokenized, self.specical_tokens, self.tokenizer
|
257 |
+
)
|
258 |
+
|
259 |
+
if text_self_attention_masks.shape[1] > self.max_text_len:
|
260 |
+
text_self_attention_masks = text_self_attention_masks[
|
261 |
+
:, : self.max_text_len, : self.max_text_len
|
262 |
+
]
|
263 |
+
position_ids = position_ids[:, : self.max_text_len]
|
264 |
+
tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len]
|
265 |
+
tokenized["attention_mask"] = tokenized["attention_mask"][:, : self.max_text_len]
|
266 |
+
tokenized["token_type_ids"] = tokenized["token_type_ids"][:, : self.max_text_len]
|
267 |
+
|
268 |
+
# extract text embeddings
|
269 |
+
if self.sub_sentence_present:
|
270 |
+
tokenized_for_encoder = {k: v for k, v in tokenized.items() if k != "attention_mask"}
|
271 |
+
tokenized_for_encoder["attention_mask"] = text_self_attention_masks
|
272 |
+
tokenized_for_encoder["position_ids"] = position_ids
|
273 |
+
else:
|
274 |
+
# import ipdb; ipdb.set_trace()
|
275 |
+
tokenized_for_encoder = tokenized
|
276 |
+
|
277 |
+
bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768
|
278 |
+
|
279 |
+
encoded_text = self.feat_map(bert_output["last_hidden_state"]) # bs, 195, d_model
|
280 |
+
text_token_mask = tokenized.attention_mask.bool() # bs, 195
|
281 |
+
# text_token_mask: True for nomask, False for mask
|
282 |
+
# text_self_attention_masks: True for nomask, False for mask
|
283 |
+
|
284 |
+
if encoded_text.shape[1] > self.max_text_len:
|
285 |
+
encoded_text = encoded_text[:, : self.max_text_len, :]
|
286 |
+
text_token_mask = text_token_mask[:, : self.max_text_len]
|
287 |
+
position_ids = position_ids[:, : self.max_text_len]
|
288 |
+
text_self_attention_masks = text_self_attention_masks[
|
289 |
+
:, : self.max_text_len, : self.max_text_len
|
290 |
+
]
|
291 |
+
|
292 |
+
text_dict = {
|
293 |
+
"encoded_text": encoded_text, # bs, 195, d_model
|
294 |
+
"text_token_mask": text_token_mask, # bs, 195
|
295 |
+
"position_ids": position_ids, # bs, 195
|
296 |
+
"text_self_attention_masks": text_self_attention_masks, # bs, 195,195
|
297 |
+
}
|
298 |
+
|
299 |
+
# import ipdb; ipdb.set_trace()
|
300 |
+
if isinstance(samples, (list, torch.Tensor)):
|
301 |
+
samples = nested_tensor_from_tensor_list(samples)
|
302 |
+
if not hasattr(self, 'features') or not hasattr(self, 'poss'):
|
303 |
+
self.set_image_tensor(samples)
|
304 |
+
|
305 |
+
srcs = []
|
306 |
+
masks = []
|
307 |
+
for l, feat in enumerate(self.features):
|
308 |
+
src, mask = feat.decompose()
|
309 |
+
srcs.append(self.input_proj[l](src))
|
310 |
+
masks.append(mask)
|
311 |
+
assert mask is not None
|
312 |
+
if self.num_feature_levels > len(srcs):
|
313 |
+
_len_srcs = len(srcs)
|
314 |
+
for l in range(_len_srcs, self.num_feature_levels):
|
315 |
+
if l == _len_srcs:
|
316 |
+
src = self.input_proj[l](self.features[-1].tensors)
|
317 |
+
else:
|
318 |
+
src = self.input_proj[l](srcs[-1])
|
319 |
+
m = samples.mask
|
320 |
+
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
|
321 |
+
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
|
322 |
+
srcs.append(src)
|
323 |
+
masks.append(mask)
|
324 |
+
self.poss.append(pos_l)
|
325 |
+
|
326 |
+
input_query_bbox = input_query_label = attn_mask = dn_meta = None
|
327 |
+
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
|
328 |
+
srcs, masks, input_query_bbox, self.poss, input_query_label, attn_mask, text_dict
|
329 |
+
)
|
330 |
+
|
331 |
+
# deformable-detr-like anchor update
|
332 |
+
outputs_coord_list = []
|
333 |
+
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(
|
334 |
+
zip(reference[:-1], self.bbox_embed, hs)
|
335 |
+
):
|
336 |
+
layer_delta_unsig = layer_bbox_embed(layer_hs)
|
337 |
+
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig)
|
338 |
+
layer_outputs_unsig = layer_outputs_unsig.sigmoid()
|
339 |
+
outputs_coord_list.append(layer_outputs_unsig)
|
340 |
+
outputs_coord_list = torch.stack(outputs_coord_list)
|
341 |
+
|
342 |
+
# output
|
343 |
+
outputs_class = torch.stack(
|
344 |
+
[
|
345 |
+
layer_cls_embed(layer_hs, text_dict)
|
346 |
+
for layer_cls_embed, layer_hs in zip(self.class_embed, hs)
|
347 |
+
]
|
348 |
+
)
|
349 |
+
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]}
|
350 |
+
|
351 |
+
# # for intermediate outputs
|
352 |
+
# if self.aux_loss:
|
353 |
+
# out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord_list)
|
354 |
+
|
355 |
+
# # for encoder output
|
356 |
+
# if hs_enc is not None:
|
357 |
+
# # prepare intermediate outputs
|
358 |
+
# interm_coord = ref_enc[-1]
|
359 |
+
# interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
|
360 |
+
# out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord}
|
361 |
+
# out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal}
|
362 |
+
unset_image_tensor = kw.get('unset_image_tensor', True)
|
363 |
+
if unset_image_tensor:
|
364 |
+
self.unset_image_tensor() ## If necessary
|
365 |
+
return out
|
366 |
+
|
367 |
+
@torch.jit.unused
|
368 |
+
def _set_aux_loss(self, outputs_class, outputs_coord):
|
369 |
+
# this is a workaround to make torchscript happy, as torchscript
|
370 |
+
# doesn't support dictionary with non-homogeneous values, such
|
371 |
+
# as a dict having both a Tensor and a list.
|
372 |
+
return [
|
373 |
+
{"pred_logits": a, "pred_boxes": b}
|
374 |
+
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
|
375 |
+
]
|
376 |
+
|
377 |
+
|
378 |
+
@MODULE_BUILD_FUNCS.registe_with_name(module_name="groundingdino")
|
379 |
+
def build_groundingdino(args):
|
380 |
+
|
381 |
+
backbone = build_backbone(args)
|
382 |
+
transformer = build_transformer(args)
|
383 |
+
|
384 |
+
dn_labelbook_size = args.dn_labelbook_size
|
385 |
+
dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share
|
386 |
+
sub_sentence_present = args.sub_sentence_present
|
387 |
+
|
388 |
+
model = GroundingDINO(
|
389 |
+
backbone,
|
390 |
+
transformer,
|
391 |
+
num_queries=args.num_queries,
|
392 |
+
aux_loss=True,
|
393 |
+
iter_update=True,
|
394 |
+
query_dim=4,
|
395 |
+
num_feature_levels=args.num_feature_levels,
|
396 |
+
nheads=args.nheads,
|
397 |
+
dec_pred_bbox_embed_share=dec_pred_bbox_embed_share,
|
398 |
+
two_stage_type=args.two_stage_type,
|
399 |
+
two_stage_bbox_embed_share=args.two_stage_bbox_embed_share,
|
400 |
+
two_stage_class_embed_share=args.two_stage_class_embed_share,
|
401 |
+
num_patterns=args.num_patterns,
|
402 |
+
dn_number=0,
|
403 |
+
dn_box_noise_scale=args.dn_box_noise_scale,
|
404 |
+
dn_label_noise_ratio=args.dn_label_noise_ratio,
|
405 |
+
dn_labelbook_size=dn_labelbook_size,
|
406 |
+
text_encoder_type=args.text_encoder_type,
|
407 |
+
sub_sentence_present=sub_sentence_present,
|
408 |
+
max_text_len=args.max_text_len,
|
409 |
+
)
|
410 |
+
|
411 |
+
return model
|
412 |
+
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/ms_deform_attn-checkpoint.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Deformable DETR
|
8 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------------------------------
|
11 |
+
# Modified from:
|
12 |
+
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py
|
13 |
+
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
14 |
+
# https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py
|
15 |
+
# ------------------------------------------------------------------------------------------------
|
16 |
+
|
17 |
+
import math
|
18 |
+
import warnings
|
19 |
+
from typing import Optional
|
20 |
+
import loralib as lora
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
import torch.nn.functional as F
|
24 |
+
from torch.autograd import Function
|
25 |
+
from torch.autograd.function import once_differentiable
|
26 |
+
from torch.nn.init import constant_, xavier_uniform_
|
27 |
+
|
28 |
+
try:
|
29 |
+
from groundingdino import _C
|
30 |
+
except:
|
31 |
+
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!")
|
32 |
+
|
33 |
+
|
34 |
+
# helpers
|
35 |
+
def _is_power_of_2(n):
|
36 |
+
if (not isinstance(n, int)) or (n < 0):
|
37 |
+
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
|
38 |
+
return (n & (n - 1) == 0) and n != 0
|
39 |
+
|
40 |
+
|
41 |
+
class MultiScaleDeformableAttnFunction(Function):
|
42 |
+
@staticmethod
|
43 |
+
def forward(
|
44 |
+
ctx,
|
45 |
+
value,
|
46 |
+
value_spatial_shapes,
|
47 |
+
value_level_start_index,
|
48 |
+
sampling_locations,
|
49 |
+
attention_weights,
|
50 |
+
im2col_step,
|
51 |
+
):
|
52 |
+
ctx.im2col_step = im2col_step
|
53 |
+
output = _C.ms_deform_attn_forward(
|
54 |
+
value,
|
55 |
+
value_spatial_shapes,
|
56 |
+
value_level_start_index,
|
57 |
+
sampling_locations,
|
58 |
+
attention_weights,
|
59 |
+
ctx.im2col_step,
|
60 |
+
)
|
61 |
+
ctx.save_for_backward(
|
62 |
+
value,
|
63 |
+
value_spatial_shapes,
|
64 |
+
value_level_start_index,
|
65 |
+
sampling_locations,
|
66 |
+
attention_weights,
|
67 |
+
)
|
68 |
+
return output
|
69 |
+
|
70 |
+
@staticmethod
|
71 |
+
@once_differentiable
|
72 |
+
def backward(ctx, grad_output):
|
73 |
+
(
|
74 |
+
value,
|
75 |
+
value_spatial_shapes,
|
76 |
+
value_level_start_index,
|
77 |
+
sampling_locations,
|
78 |
+
attention_weights,
|
79 |
+
) = ctx.saved_tensors
|
80 |
+
grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward(
|
81 |
+
value,
|
82 |
+
value_spatial_shapes,
|
83 |
+
value_level_start_index,
|
84 |
+
sampling_locations,
|
85 |
+
attention_weights,
|
86 |
+
grad_output,
|
87 |
+
ctx.im2col_step,
|
88 |
+
)
|
89 |
+
|
90 |
+
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
91 |
+
|
92 |
+
|
93 |
+
def multi_scale_deformable_attn_pytorch(
|
94 |
+
value: torch.Tensor,
|
95 |
+
value_spatial_shapes: torch.Tensor,
|
96 |
+
sampling_locations: torch.Tensor,
|
97 |
+
attention_weights: torch.Tensor,
|
98 |
+
) -> torch.Tensor:
|
99 |
+
|
100 |
+
bs, _, num_heads, embed_dims = value.shape
|
101 |
+
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
102 |
+
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
103 |
+
sampling_grids = 2 * sampling_locations - 1
|
104 |
+
sampling_value_list = []
|
105 |
+
for level, (H_, W_) in enumerate(value_spatial_shapes):
|
106 |
+
# bs, H_*W_, num_heads, embed_dims ->
|
107 |
+
# bs, H_*W_, num_heads*embed_dims ->
|
108 |
+
# bs, num_heads*embed_dims, H_*W_ ->
|
109 |
+
# bs*num_heads, embed_dims, H_, W_
|
110 |
+
value_l_ = (
|
111 |
+
value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
|
112 |
+
)
|
113 |
+
# bs, num_queries, num_heads, num_points, 2 ->
|
114 |
+
# bs, num_heads, num_queries, num_points, 2 ->
|
115 |
+
# bs*num_heads, num_queries, num_points, 2
|
116 |
+
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
117 |
+
# bs*num_heads, embed_dims, num_queries, num_points
|
118 |
+
sampling_value_l_ = F.grid_sample(
|
119 |
+
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
|
120 |
+
)
|
121 |
+
sampling_value_list.append(sampling_value_l_)
|
122 |
+
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
123 |
+
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
124 |
+
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
125 |
+
attention_weights = attention_weights.transpose(1, 2).reshape(
|
126 |
+
bs * num_heads, 1, num_queries, num_levels * num_points
|
127 |
+
)
|
128 |
+
output = (
|
129 |
+
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
130 |
+
.sum(-1)
|
131 |
+
.view(bs, num_heads * embed_dims, num_queries)
|
132 |
+
)
|
133 |
+
return output.transpose(1, 2).contiguous()
|
134 |
+
|
135 |
+
|
136 |
+
class MultiScaleDeformableAttention(nn.Module):
|
137 |
+
"""Multi-Scale Deformable Attention Module used in Deformable-DETR
|
138 |
+
|
139 |
+
`Deformable DETR: Deformable Transformers for End-to-End Object Detection.
|
140 |
+
<https://arxiv.org/pdf/2010.04159.pdf>`_.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
embed_dim (int): The embedding dimension of Attention. Default: 256.
|
144 |
+
num_heads (int): The number of attention heads. Default: 8.
|
145 |
+
num_levels (int): The number of feature map used in Attention. Default: 4.
|
146 |
+
num_points (int): The number of sampling points for each query
|
147 |
+
in each head. Default: 4.
|
148 |
+
img2col_steps (int): The step used in image_to_column. Defualt: 64.
|
149 |
+
dropout (float): Dropout layer used in output. Default: 0.1.
|
150 |
+
batch_first (bool): if ``True``, then the input and output tensor will be
|
151 |
+
provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)`
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
embed_dim: int = 256,
|
157 |
+
num_heads: int = 8,
|
158 |
+
num_levels: int = 4,
|
159 |
+
num_points: int = 4,
|
160 |
+
img2col_step: int = 64,
|
161 |
+
batch_first: bool = False,
|
162 |
+
):
|
163 |
+
super().__init__()
|
164 |
+
if embed_dim % num_heads != 0:
|
165 |
+
raise ValueError(
|
166 |
+
"embed_dim must be divisible by num_heads, but got {} and {}".format(
|
167 |
+
embed_dim, num_heads
|
168 |
+
)
|
169 |
+
)
|
170 |
+
head_dim = embed_dim // num_heads
|
171 |
+
|
172 |
+
self.batch_first = batch_first
|
173 |
+
|
174 |
+
if not _is_power_of_2(head_dim):
|
175 |
+
warnings.warn(
|
176 |
+
"""
|
177 |
+
You'd better set d_model in MSDeformAttn to make sure that
|
178 |
+
each dim of the attention head a power of 2, which is more efficient.
|
179 |
+
"""
|
180 |
+
)
|
181 |
+
|
182 |
+
self.im2col_step = img2col_step
|
183 |
+
self.embed_dim = embed_dim
|
184 |
+
self.num_heads = num_heads
|
185 |
+
self.num_levels = num_levels
|
186 |
+
self.num_points = num_points
|
187 |
+
r = 16
|
188 |
+
self.sampling_offsets = lora.Linear(embed_dim, num_heads * num_levels * num_points * 2 , r=r)
|
189 |
+
self.attention_weights = lora.Linear(embed_dim, num_heads * num_levels * num_points , r=r)
|
190 |
+
self.value_proj = lora.Linear(embed_dim, embed_dim , r=r)
|
191 |
+
self.output_proj = lora.Linear(embed_dim, embed_dim , r=r)
|
192 |
+
|
193 |
+
self.init_weights()
|
194 |
+
|
195 |
+
def _reset_parameters(self):
|
196 |
+
return self.init_weights()
|
197 |
+
|
198 |
+
def init_weights(self):
|
199 |
+
"""
|
200 |
+
Default initialization for Parameters of Module.
|
201 |
+
"""
|
202 |
+
constant_(self.sampling_offsets.weight.data, 0.0)
|
203 |
+
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
|
204 |
+
2.0 * math.pi / self.num_heads
|
205 |
+
)
|
206 |
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
207 |
+
grid_init = (
|
208 |
+
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
209 |
+
.view(self.num_heads, 1, 1, 2)
|
210 |
+
.repeat(1, self.num_levels, self.num_points, 1)
|
211 |
+
)
|
212 |
+
for i in range(self.num_points):
|
213 |
+
grid_init[:, :, i, :] *= i + 1
|
214 |
+
with torch.no_grad():
|
215 |
+
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
216 |
+
constant_(self.attention_weights.weight.data, 0.0)
|
217 |
+
constant_(self.attention_weights.bias.data, 0.0)
|
218 |
+
xavier_uniform_(self.value_proj.weight.data)
|
219 |
+
constant_(self.value_proj.bias.data, 0.0)
|
220 |
+
xavier_uniform_(self.output_proj.weight.data)
|
221 |
+
constant_(self.output_proj.bias.data, 0.0)
|
222 |
+
|
223 |
+
def freeze_sampling_offsets(self):
|
224 |
+
print("Freeze sampling offsets")
|
225 |
+
self.sampling_offsets.weight.requires_grad = False
|
226 |
+
self.sampling_offsets.bias.requires_grad = False
|
227 |
+
|
228 |
+
def freeze_attention_weights(self):
|
229 |
+
print("Freeze attention weights")
|
230 |
+
self.attention_weights.weight.requires_grad = False
|
231 |
+
self.attention_weights.bias.requires_grad = False
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self,
|
235 |
+
query: torch.Tensor,
|
236 |
+
key: Optional[torch.Tensor] = None,
|
237 |
+
value: Optional[torch.Tensor] = None,
|
238 |
+
query_pos: Optional[torch.Tensor] = None,
|
239 |
+
key_padding_mask: Optional[torch.Tensor] = None,
|
240 |
+
reference_points: Optional[torch.Tensor] = None,
|
241 |
+
spatial_shapes: Optional[torch.Tensor] = None,
|
242 |
+
level_start_index: Optional[torch.Tensor] = None,
|
243 |
+
**kwargs
|
244 |
+
) -> torch.Tensor:
|
245 |
+
|
246 |
+
"""Forward Function of MultiScaleDeformableAttention
|
247 |
+
|
248 |
+
Args:
|
249 |
+
query (torch.Tensor): Query embeddings with shape
|
250 |
+
`(num_query, bs, embed_dim)`
|
251 |
+
key (torch.Tensor): Key embeddings with shape
|
252 |
+
`(num_key, bs, embed_dim)`
|
253 |
+
value (torch.Tensor): Value embeddings with shape
|
254 |
+
`(num_key, bs, embed_dim)`
|
255 |
+
query_pos (torch.Tensor): The position embedding for `query`. Default: None.
|
256 |
+
key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`,
|
257 |
+
indicating which elements within `key` to be ignored in attention.
|
258 |
+
reference_points (torch.Tensor): The normalized reference points
|
259 |
+
with shape `(bs, num_query, num_levels, 2)`,
|
260 |
+
all elements is range in [0, 1], top-left (0, 0),
|
261 |
+
bottom-right (1, 1), including padding are.
|
262 |
+
or `(N, Length_{query}, num_levels, 4)`, add additional
|
263 |
+
two dimensions `(h, w)` to form reference boxes.
|
264 |
+
spatial_shapes (torch.Tensor): Spatial shape of features in different levels.
|
265 |
+
With shape `(num_levels, 2)`, last dimension represents `(h, w)`.
|
266 |
+
level_start_index (torch.Tensor): The start index of each level. A tensor with
|
267 |
+
shape `(num_levels, )` which can be represented as
|
268 |
+
`[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`.
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
torch.Tensor: forward results with shape `(num_query, bs, embed_dim)`
|
272 |
+
"""
|
273 |
+
|
274 |
+
if value is None:
|
275 |
+
value = query
|
276 |
+
|
277 |
+
if query_pos is not None:
|
278 |
+
query = query + query_pos
|
279 |
+
|
280 |
+
if not self.batch_first:
|
281 |
+
# change to (bs, num_query ,embed_dims)
|
282 |
+
query = query.permute(1, 0, 2)
|
283 |
+
value = value.permute(1, 0, 2)
|
284 |
+
|
285 |
+
bs, num_query, _ = query.shape
|
286 |
+
bs, num_value, _ = value.shape
|
287 |
+
|
288 |
+
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
|
289 |
+
|
290 |
+
value = self.value_proj(value)
|
291 |
+
if key_padding_mask is not None:
|
292 |
+
value = value.masked_fill(key_padding_mask[..., None], float(0))
|
293 |
+
value = value.view(bs, num_value, self.num_heads, -1)
|
294 |
+
sampling_offsets = self.sampling_offsets(query).view(
|
295 |
+
bs, num_query, self.num_heads, self.num_levels, self.num_points, 2
|
296 |
+
)
|
297 |
+
attention_weights = self.attention_weights(query).view(
|
298 |
+
bs, num_query, self.num_heads, self.num_levels * self.num_points
|
299 |
+
)
|
300 |
+
attention_weights = attention_weights.softmax(-1)
|
301 |
+
attention_weights = attention_weights.view(
|
302 |
+
bs,
|
303 |
+
num_query,
|
304 |
+
self.num_heads,
|
305 |
+
self.num_levels,
|
306 |
+
self.num_points,
|
307 |
+
)
|
308 |
+
|
309 |
+
# bs, num_query, num_heads, num_levels, num_points, 2
|
310 |
+
if reference_points.shape[-1] == 2:
|
311 |
+
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
312 |
+
sampling_locations = (
|
313 |
+
reference_points[:, :, None, :, None, :]
|
314 |
+
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
315 |
+
)
|
316 |
+
elif reference_points.shape[-1] == 4:
|
317 |
+
sampling_locations = (
|
318 |
+
reference_points[:, :, None, :, None, :2]
|
319 |
+
+ sampling_offsets
|
320 |
+
/ self.num_points
|
321 |
+
* reference_points[:, :, None, :, None, 2:]
|
322 |
+
* 0.5
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
raise ValueError(
|
326 |
+
"Last dim of reference_points must be 2 or 4, but get {} instead.".format(
|
327 |
+
reference_points.shape[-1]
|
328 |
+
)
|
329 |
+
)
|
330 |
+
|
331 |
+
if torch.cuda.is_available() and value.is_cuda:
|
332 |
+
halffloat = False
|
333 |
+
if value.dtype == torch.float16:
|
334 |
+
halffloat = True
|
335 |
+
value = value.float()
|
336 |
+
sampling_locations = sampling_locations.float()
|
337 |
+
attention_weights = attention_weights.float()
|
338 |
+
|
339 |
+
output = MultiScaleDeformableAttnFunction.apply(
|
340 |
+
value,
|
341 |
+
spatial_shapes,
|
342 |
+
level_start_index,
|
343 |
+
sampling_locations,
|
344 |
+
attention_weights,
|
345 |
+
self.im2col_step,
|
346 |
+
)
|
347 |
+
|
348 |
+
if halffloat:
|
349 |
+
output = output.half()
|
350 |
+
else:
|
351 |
+
output = multi_scale_deformable_attn_pytorch(
|
352 |
+
value, spatial_shapes, sampling_locations, attention_weights
|
353 |
+
)
|
354 |
+
|
355 |
+
output = self.output_proj(output)
|
356 |
+
|
357 |
+
if not self.batch_first:
|
358 |
+
output = output.permute(1, 0, 2)
|
359 |
+
|
360 |
+
return output
|
361 |
+
|
362 |
+
|
363 |
+
def create_dummy_class(klass, dependency, message=""):
|
364 |
+
"""
|
365 |
+
When a dependency of a class is not available, create a dummy class which throws ImportError
|
366 |
+
when used.
|
367 |
+
|
368 |
+
Args:
|
369 |
+
klass (str): name of the class.
|
370 |
+
dependency (str): name of the dependency.
|
371 |
+
message: extra message to print
|
372 |
+
Returns:
|
373 |
+
class: a class object
|
374 |
+
"""
|
375 |
+
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass)
|
376 |
+
if message:
|
377 |
+
err = err + " " + message
|
378 |
+
|
379 |
+
class _DummyMetaClass(type):
|
380 |
+
# throw error on class attribute access
|
381 |
+
def __getattr__(_, __): # noqa: B902
|
382 |
+
raise ImportError(err)
|
383 |
+
|
384 |
+
class _Dummy(object, metaclass=_DummyMetaClass):
|
385 |
+
# throw error on constructor
|
386 |
+
def __init__(self, *args, **kwargs):
|
387 |
+
raise ImportError(err)
|
388 |
+
|
389 |
+
return _Dummy
|
390 |
+
|
391 |
+
|
392 |
+
def create_dummy_func(func, dependency, message=""):
|
393 |
+
"""
|
394 |
+
When a dependency of a function is not available, create a dummy function which throws
|
395 |
+
ImportError when used.
|
396 |
+
|
397 |
+
Args:
|
398 |
+
func (str): name of the function.
|
399 |
+
dependency (str or list[str]): name(s) of the dependency.
|
400 |
+
message: extra message to print
|
401 |
+
Returns:
|
402 |
+
function: a function object
|
403 |
+
"""
|
404 |
+
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func)
|
405 |
+
if message:
|
406 |
+
err = err + " " + message
|
407 |
+
|
408 |
+
if isinstance(dependency, (list, tuple)):
|
409 |
+
dependency = ",".join(dependency)
|
410 |
+
|
411 |
+
def _dummy(*args, **kwargs):
|
412 |
+
raise ImportError(err)
|
413 |
+
|
414 |
+
return _dummy
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/transformer-checkpoint.py
ADDED
@@ -0,0 +1,961 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# DINO
|
8 |
+
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------
|
11 |
+
# Conditional DETR Transformer class.
|
12 |
+
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
13 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
16 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
from typing import Optional
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint as checkpoint
|
23 |
+
from torch import Tensor, nn
|
24 |
+
import loralib as lora
|
25 |
+
from groundingdino.util.misc import inverse_sigmoid
|
26 |
+
|
27 |
+
from .fuse_modules import BiAttentionBlock
|
28 |
+
from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn
|
29 |
+
from .transformer_vanilla import TransformerEncoderLayer
|
30 |
+
from .utils import (
|
31 |
+
MLP,
|
32 |
+
_get_activation_fn,
|
33 |
+
_get_clones,
|
34 |
+
gen_encoder_output_proposals,
|
35 |
+
gen_sineembed_for_position,
|
36 |
+
get_sine_pos_embed,
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
class Transformer(nn.Module):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
d_model=256,
|
44 |
+
nhead=8,
|
45 |
+
num_queries=300,
|
46 |
+
num_encoder_layers=6,
|
47 |
+
num_unicoder_layers=0,
|
48 |
+
num_decoder_layers=6,
|
49 |
+
dim_feedforward=2048,
|
50 |
+
dropout=0.0,
|
51 |
+
activation="relu",
|
52 |
+
normalize_before=False,
|
53 |
+
return_intermediate_dec=False,
|
54 |
+
query_dim=4,
|
55 |
+
num_patterns=0,
|
56 |
+
# for deformable encoder
|
57 |
+
num_feature_levels=1,
|
58 |
+
enc_n_points=4,
|
59 |
+
dec_n_points=4,
|
60 |
+
# init query
|
61 |
+
learnable_tgt_init=False,
|
62 |
+
# two stage
|
63 |
+
two_stage_type="no", # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']
|
64 |
+
embed_init_tgt=False,
|
65 |
+
# for text
|
66 |
+
use_text_enhancer=False,
|
67 |
+
use_fusion_layer=False,
|
68 |
+
use_checkpoint=False,
|
69 |
+
use_transformer_ckpt=False,
|
70 |
+
use_text_cross_attention=False,
|
71 |
+
text_dropout=0.1,
|
72 |
+
fusion_dropout=0.1,
|
73 |
+
fusion_droppath=0.0,
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
self.num_feature_levels = num_feature_levels
|
77 |
+
self.num_encoder_layers = num_encoder_layers
|
78 |
+
self.num_unicoder_layers = num_unicoder_layers
|
79 |
+
self.num_decoder_layers = num_decoder_layers
|
80 |
+
self.num_queries = num_queries
|
81 |
+
assert query_dim == 4
|
82 |
+
|
83 |
+
# choose encoder layer type
|
84 |
+
encoder_layer = DeformableTransformerEncoderLayer(
|
85 |
+
d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points
|
86 |
+
)
|
87 |
+
|
88 |
+
if use_text_enhancer:
|
89 |
+
text_enhance_layer = TransformerEncoderLayer(
|
90 |
+
d_model=d_model,
|
91 |
+
nhead=nhead // 2,
|
92 |
+
dim_feedforward=dim_feedforward // 2,
|
93 |
+
dropout=text_dropout,
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
text_enhance_layer = None
|
97 |
+
|
98 |
+
if use_fusion_layer:
|
99 |
+
feature_fusion_layer = BiAttentionBlock(
|
100 |
+
v_dim=d_model,
|
101 |
+
l_dim=d_model,
|
102 |
+
embed_dim=dim_feedforward // 2,
|
103 |
+
num_heads=nhead // 2,
|
104 |
+
dropout=fusion_dropout,
|
105 |
+
drop_path=fusion_droppath,
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
feature_fusion_layer = None
|
109 |
+
|
110 |
+
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
111 |
+
assert encoder_norm is None
|
112 |
+
self.encoder = TransformerEncoder(
|
113 |
+
encoder_layer,
|
114 |
+
num_encoder_layers,
|
115 |
+
d_model=d_model,
|
116 |
+
num_queries=num_queries,
|
117 |
+
text_enhance_layer=text_enhance_layer,
|
118 |
+
feature_fusion_layer=feature_fusion_layer,
|
119 |
+
use_checkpoint=use_checkpoint,
|
120 |
+
use_transformer_ckpt=use_transformer_ckpt,
|
121 |
+
)
|
122 |
+
|
123 |
+
# choose decoder layer type
|
124 |
+
decoder_layer = DeformableTransformerDecoderLayer(
|
125 |
+
d_model,
|
126 |
+
dim_feedforward,
|
127 |
+
dropout,
|
128 |
+
activation,
|
129 |
+
num_feature_levels,
|
130 |
+
nhead,
|
131 |
+
dec_n_points,
|
132 |
+
use_text_cross_attention=use_text_cross_attention,
|
133 |
+
)
|
134 |
+
|
135 |
+
decoder_norm = nn.LayerNorm(d_model)
|
136 |
+
self.decoder = TransformerDecoder(
|
137 |
+
decoder_layer,
|
138 |
+
num_decoder_layers,
|
139 |
+
decoder_norm,
|
140 |
+
return_intermediate=return_intermediate_dec,
|
141 |
+
d_model=d_model,
|
142 |
+
query_dim=query_dim,
|
143 |
+
num_feature_levels=num_feature_levels,
|
144 |
+
)
|
145 |
+
|
146 |
+
self.d_model = d_model
|
147 |
+
self.nhead = nhead
|
148 |
+
self.dec_layers = num_decoder_layers
|
149 |
+
self.num_queries = num_queries # useful for single stage model only
|
150 |
+
self.num_patterns = num_patterns
|
151 |
+
if not isinstance(num_patterns, int):
|
152 |
+
Warning("num_patterns should be int but {}".format(type(num_patterns)))
|
153 |
+
self.num_patterns = 0
|
154 |
+
|
155 |
+
if num_feature_levels > 1:
|
156 |
+
if self.num_encoder_layers > 0:
|
157 |
+
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
|
158 |
+
else:
|
159 |
+
self.level_embed = None
|
160 |
+
|
161 |
+
self.learnable_tgt_init = learnable_tgt_init
|
162 |
+
assert learnable_tgt_init, "why not learnable_tgt_init"
|
163 |
+
self.embed_init_tgt = embed_init_tgt
|
164 |
+
if (two_stage_type != "no" and embed_init_tgt) or (two_stage_type == "no"):
|
165 |
+
self.tgt_embed = nn.Embedding(self.num_queries, d_model)
|
166 |
+
nn.init.normal_(self.tgt_embed.weight.data)
|
167 |
+
else:
|
168 |
+
self.tgt_embed = None
|
169 |
+
|
170 |
+
# for two stage
|
171 |
+
self.two_stage_type = two_stage_type
|
172 |
+
assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
|
173 |
+
two_stage_type
|
174 |
+
)
|
175 |
+
if two_stage_type == "standard":
|
176 |
+
# anchor selection at the output of encoder
|
177 |
+
self.enc_output = nn.Linear(d_model, d_model)
|
178 |
+
self.enc_output_norm = nn.LayerNorm(d_model)
|
179 |
+
self.two_stage_wh_embedding = None
|
180 |
+
|
181 |
+
if two_stage_type == "no":
|
182 |
+
self.init_ref_points(num_queries) # init self.refpoint_embed
|
183 |
+
|
184 |
+
self.enc_out_class_embed = None
|
185 |
+
self.enc_out_bbox_embed = None
|
186 |
+
|
187 |
+
self._reset_parameters()
|
188 |
+
|
189 |
+
def _reset_parameters(self):
|
190 |
+
for p in self.parameters():
|
191 |
+
if p.dim() > 1:
|
192 |
+
nn.init.xavier_uniform_(p)
|
193 |
+
for m in self.modules():
|
194 |
+
if isinstance(m, MSDeformAttn):
|
195 |
+
m._reset_parameters()
|
196 |
+
if self.num_feature_levels > 1 and self.level_embed is not None:
|
197 |
+
nn.init.normal_(self.level_embed)
|
198 |
+
|
199 |
+
def get_valid_ratio(self, mask):
|
200 |
+
_, H, W = mask.shape
|
201 |
+
valid_H = torch.sum(~mask[:, :, 0], 1)
|
202 |
+
valid_W = torch.sum(~mask[:, 0, :], 1)
|
203 |
+
valid_ratio_h = valid_H.float() / H
|
204 |
+
valid_ratio_w = valid_W.float() / W
|
205 |
+
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
|
206 |
+
return valid_ratio
|
207 |
+
|
208 |
+
def init_ref_points(self, use_num_queries):
|
209 |
+
self.refpoint_embed = nn.Embedding(use_num_queries, 4)
|
210 |
+
|
211 |
+
def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None, text_dict=None):
|
212 |
+
"""
|
213 |
+
Input:
|
214 |
+
- srcs: List of multi features [bs, ci, hi, wi]
|
215 |
+
- masks: List of multi masks [bs, hi, wi]
|
216 |
+
- refpoint_embed: [bs, num_dn, 4]. None in infer
|
217 |
+
- pos_embeds: List of multi pos embeds [bs, ci, hi, wi]
|
218 |
+
- tgt: [bs, num_dn, d_model]. None in infer
|
219 |
+
|
220 |
+
"""
|
221 |
+
# prepare input for encoder
|
222 |
+
src_flatten = []
|
223 |
+
mask_flatten = []
|
224 |
+
lvl_pos_embed_flatten = []
|
225 |
+
spatial_shapes = []
|
226 |
+
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
|
227 |
+
bs, c, h, w = src.shape
|
228 |
+
spatial_shape = (h, w)
|
229 |
+
spatial_shapes.append(spatial_shape)
|
230 |
+
|
231 |
+
src = src.flatten(2).transpose(1, 2) # bs, hw, c
|
232 |
+
mask = mask.flatten(1) # bs, hw
|
233 |
+
pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c
|
234 |
+
if self.num_feature_levels > 1 and self.level_embed is not None:
|
235 |
+
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
|
236 |
+
else:
|
237 |
+
lvl_pos_embed = pos_embed
|
238 |
+
lvl_pos_embed_flatten.append(lvl_pos_embed)
|
239 |
+
src_flatten.append(src)
|
240 |
+
mask_flatten.append(mask)
|
241 |
+
src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c
|
242 |
+
mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw}
|
243 |
+
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c
|
244 |
+
spatial_shapes = torch.as_tensor(
|
245 |
+
spatial_shapes, dtype=torch.long, device=src_flatten.device
|
246 |
+
)
|
247 |
+
level_start_index = torch.cat(
|
248 |
+
(spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])
|
249 |
+
)
|
250 |
+
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
|
251 |
+
|
252 |
+
# two stage
|
253 |
+
enc_topk_proposals = enc_refpoint_embed = None
|
254 |
+
|
255 |
+
#########################################################
|
256 |
+
# Begin Encoder
|
257 |
+
#########################################################
|
258 |
+
memory, memory_text = self.encoder(
|
259 |
+
src_flatten,
|
260 |
+
pos=lvl_pos_embed_flatten,
|
261 |
+
level_start_index=level_start_index,
|
262 |
+
spatial_shapes=spatial_shapes,
|
263 |
+
valid_ratios=valid_ratios,
|
264 |
+
key_padding_mask=mask_flatten,
|
265 |
+
memory_text=text_dict["encoded_text"],
|
266 |
+
text_attention_mask=~text_dict["text_token_mask"],
|
267 |
+
# we ~ the mask . False means use the token; True means pad the token
|
268 |
+
position_ids=text_dict["position_ids"],
|
269 |
+
text_self_attention_masks=text_dict["text_self_attention_masks"],
|
270 |
+
)
|
271 |
+
#########################################################
|
272 |
+
# End Encoder
|
273 |
+
# - memory: bs, \sum{hw}, c
|
274 |
+
# - mask_flatten: bs, \sum{hw}
|
275 |
+
# - lvl_pos_embed_flatten: bs, \sum{hw}, c
|
276 |
+
# - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
|
277 |
+
# - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
|
278 |
+
#########################################################
|
279 |
+
text_dict["encoded_text"] = memory_text
|
280 |
+
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
281 |
+
# if memory.isnan().any() | memory.isinf().any():
|
282 |
+
# import ipdb; ipdb.set_trace()
|
283 |
+
|
284 |
+
if self.two_stage_type == "standard":
|
285 |
+
output_memory, output_proposals = gen_encoder_output_proposals(
|
286 |
+
memory, mask_flatten, spatial_shapes
|
287 |
+
)
|
288 |
+
output_memory = self.enc_output_norm(self.enc_output(output_memory))
|
289 |
+
|
290 |
+
if text_dict is not None:
|
291 |
+
enc_outputs_class_unselected = self.enc_out_class_embed(output_memory, text_dict)
|
292 |
+
else:
|
293 |
+
enc_outputs_class_unselected = self.enc_out_class_embed(output_memory)
|
294 |
+
|
295 |
+
topk_logits = enc_outputs_class_unselected.max(-1)[0]
|
296 |
+
enc_outputs_coord_unselected = (
|
297 |
+
self.enc_out_bbox_embed(output_memory) + output_proposals
|
298 |
+
) # (bs, \sum{hw}, 4) unsigmoid
|
299 |
+
topk = self.num_queries
|
300 |
+
|
301 |
+
topk_proposals = torch.topk(topk_logits, topk, dim=1)[1] # bs, nq
|
302 |
+
|
303 |
+
# gather boxes
|
304 |
+
refpoint_embed_undetach = torch.gather(
|
305 |
+
enc_outputs_coord_unselected, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
|
306 |
+
) # unsigmoid
|
307 |
+
refpoint_embed_ = refpoint_embed_undetach.detach()
|
308 |
+
init_box_proposal = torch.gather(
|
309 |
+
output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
|
310 |
+
).sigmoid() # sigmoid
|
311 |
+
|
312 |
+
# gather tgt
|
313 |
+
tgt_undetach = torch.gather(
|
314 |
+
output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model)
|
315 |
+
)
|
316 |
+
if self.embed_init_tgt:
|
317 |
+
tgt_ = (
|
318 |
+
self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
319 |
+
) # nq, bs, d_model
|
320 |
+
else:
|
321 |
+
tgt_ = tgt_undetach.detach()
|
322 |
+
|
323 |
+
if refpoint_embed is not None:
|
324 |
+
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
|
325 |
+
tgt = torch.cat([tgt, tgt_], dim=1)
|
326 |
+
else:
|
327 |
+
refpoint_embed, tgt = refpoint_embed_, tgt_
|
328 |
+
|
329 |
+
elif self.two_stage_type == "no":
|
330 |
+
tgt_ = (
|
331 |
+
self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
332 |
+
) # nq, bs, d_model
|
333 |
+
refpoint_embed_ = (
|
334 |
+
self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
335 |
+
) # nq, bs, 4
|
336 |
+
|
337 |
+
if refpoint_embed is not None:
|
338 |
+
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
|
339 |
+
tgt = torch.cat([tgt, tgt_], dim=1)
|
340 |
+
else:
|
341 |
+
refpoint_embed, tgt = refpoint_embed_, tgt_
|
342 |
+
|
343 |
+
if self.num_patterns > 0:
|
344 |
+
tgt_embed = tgt.repeat(1, self.num_patterns, 1)
|
345 |
+
refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1)
|
346 |
+
tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(
|
347 |
+
self.num_queries, 1
|
348 |
+
) # 1, n_q*n_pat, d_model
|
349 |
+
tgt = tgt_embed + tgt_pat
|
350 |
+
|
351 |
+
init_box_proposal = refpoint_embed_.sigmoid()
|
352 |
+
|
353 |
+
else:
|
354 |
+
raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type))
|
355 |
+
#########################################################
|
356 |
+
# End preparing tgt
|
357 |
+
# - tgt: bs, NQ, d_model
|
358 |
+
# - refpoint_embed(unsigmoid): bs, NQ, d_model
|
359 |
+
#########################################################
|
360 |
+
|
361 |
+
#########################################################
|
362 |
+
# Begin Decoder
|
363 |
+
#########################################################
|
364 |
+
hs, references = self.decoder(
|
365 |
+
tgt=tgt.transpose(0, 1),
|
366 |
+
memory=memory.transpose(0, 1),
|
367 |
+
memory_key_padding_mask=mask_flatten,
|
368 |
+
pos=lvl_pos_embed_flatten.transpose(0, 1),
|
369 |
+
refpoints_unsigmoid=refpoint_embed.transpose(0, 1),
|
370 |
+
level_start_index=level_start_index,
|
371 |
+
spatial_shapes=spatial_shapes,
|
372 |
+
valid_ratios=valid_ratios,
|
373 |
+
tgt_mask=attn_mask,
|
374 |
+
memory_text=text_dict["encoded_text"],
|
375 |
+
text_attention_mask=~text_dict["text_token_mask"],
|
376 |
+
# we ~ the mask . False means use the token; True means pad the token
|
377 |
+
)
|
378 |
+
#########################################################
|
379 |
+
# End Decoder
|
380 |
+
# hs: n_dec, bs, nq, d_model
|
381 |
+
# references: n_dec+1, bs, nq, query_dim
|
382 |
+
#########################################################
|
383 |
+
|
384 |
+
#########################################################
|
385 |
+
# Begin postprocess
|
386 |
+
#########################################################
|
387 |
+
if self.two_stage_type == "standard":
|
388 |
+
hs_enc = tgt_undetach.unsqueeze(0)
|
389 |
+
ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0)
|
390 |
+
else:
|
391 |
+
hs_enc = ref_enc = None
|
392 |
+
#########################################################
|
393 |
+
# End postprocess
|
394 |
+
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None
|
395 |
+
# ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None
|
396 |
+
#########################################################
|
397 |
+
|
398 |
+
return hs, references, hs_enc, ref_enc, init_box_proposal
|
399 |
+
# hs: (n_dec, bs, nq, d_model)
|
400 |
+
# references: sigmoid coordinates. (n_dec+1, bs, bq, 4)
|
401 |
+
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None
|
402 |
+
# ref_enc: sigmoid coordinates. \
|
403 |
+
# (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None
|
404 |
+
|
405 |
+
|
406 |
+
class TransformerEncoder(nn.Module):
|
407 |
+
def __init__(
|
408 |
+
self,
|
409 |
+
encoder_layer,
|
410 |
+
num_layers,
|
411 |
+
d_model=256,
|
412 |
+
num_queries=300,
|
413 |
+
enc_layer_share=False,
|
414 |
+
text_enhance_layer=None,
|
415 |
+
feature_fusion_layer=None,
|
416 |
+
use_checkpoint=False,
|
417 |
+
use_transformer_ckpt=False,
|
418 |
+
):
|
419 |
+
"""_summary_
|
420 |
+
|
421 |
+
Args:
|
422 |
+
encoder_layer (_type_): _description_
|
423 |
+
num_layers (_type_): _description_
|
424 |
+
norm (_type_, optional): _description_. Defaults to None.
|
425 |
+
d_model (int, optional): _description_. Defaults to 256.
|
426 |
+
num_queries (int, optional): _description_. Defaults to 300.
|
427 |
+
enc_layer_share (bool, optional): _description_. Defaults to False.
|
428 |
+
|
429 |
+
"""
|
430 |
+
super().__init__()
|
431 |
+
# prepare layers
|
432 |
+
self.layers = []
|
433 |
+
self.text_layers = []
|
434 |
+
self.fusion_layers = []
|
435 |
+
if num_layers > 0:
|
436 |
+
self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share)
|
437 |
+
|
438 |
+
if text_enhance_layer is not None:
|
439 |
+
self.text_layers = _get_clones(
|
440 |
+
text_enhance_layer, num_layers, layer_share=enc_layer_share
|
441 |
+
)
|
442 |
+
if feature_fusion_layer is not None:
|
443 |
+
self.fusion_layers = _get_clones(
|
444 |
+
feature_fusion_layer, num_layers, layer_share=enc_layer_share
|
445 |
+
)
|
446 |
+
else:
|
447 |
+
self.layers = []
|
448 |
+
del encoder_layer
|
449 |
+
|
450 |
+
if text_enhance_layer is not None:
|
451 |
+
self.text_layers = []
|
452 |
+
del text_enhance_layer
|
453 |
+
if feature_fusion_layer is not None:
|
454 |
+
self.fusion_layers = []
|
455 |
+
del feature_fusion_layer
|
456 |
+
|
457 |
+
self.query_scale = None
|
458 |
+
self.num_queries = num_queries
|
459 |
+
self.num_layers = num_layers
|
460 |
+
self.d_model = d_model
|
461 |
+
|
462 |
+
self.use_checkpoint = use_checkpoint
|
463 |
+
self.use_transformer_ckpt = use_transformer_ckpt
|
464 |
+
|
465 |
+
@staticmethod
|
466 |
+
def get_reference_points(spatial_shapes, valid_ratios, device):
|
467 |
+
reference_points_list = []
|
468 |
+
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
469 |
+
|
470 |
+
ref_y, ref_x = torch.meshgrid(
|
471 |
+
torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
|
472 |
+
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),
|
473 |
+
)
|
474 |
+
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
|
475 |
+
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
|
476 |
+
ref = torch.stack((ref_x, ref_y), -1)
|
477 |
+
reference_points_list.append(ref)
|
478 |
+
reference_points = torch.cat(reference_points_list, 1)
|
479 |
+
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
|
480 |
+
return reference_points
|
481 |
+
|
482 |
+
def forward(
|
483 |
+
self,
|
484 |
+
# for images
|
485 |
+
src: Tensor,
|
486 |
+
pos: Tensor,
|
487 |
+
spatial_shapes: Tensor,
|
488 |
+
level_start_index: Tensor,
|
489 |
+
valid_ratios: Tensor,
|
490 |
+
key_padding_mask: Tensor,
|
491 |
+
# for texts
|
492 |
+
memory_text: Tensor = None,
|
493 |
+
text_attention_mask: Tensor = None,
|
494 |
+
pos_text: Tensor = None,
|
495 |
+
text_self_attention_masks: Tensor = None,
|
496 |
+
position_ids: Tensor = None,
|
497 |
+
):
|
498 |
+
"""
|
499 |
+
Input:
|
500 |
+
- src: [bs, sum(hi*wi), 256]
|
501 |
+
- pos: pos embed for src. [bs, sum(hi*wi), 256]
|
502 |
+
- spatial_shapes: h,w of each level [num_level, 2]
|
503 |
+
- level_start_index: [num_level] start point of level in sum(hi*wi).
|
504 |
+
- valid_ratios: [bs, num_level, 2]
|
505 |
+
- key_padding_mask: [bs, sum(hi*wi)]
|
506 |
+
|
507 |
+
- memory_text: bs, n_text, 256
|
508 |
+
- text_attention_mask: bs, n_text
|
509 |
+
False for no padding; True for padding
|
510 |
+
- pos_text: bs, n_text, 256
|
511 |
+
|
512 |
+
- position_ids: bs, n_text
|
513 |
+
Intermedia:
|
514 |
+
- reference_points: [bs, sum(hi*wi), num_level, 2]
|
515 |
+
Outpus:
|
516 |
+
- output: [bs, sum(hi*wi), 256]
|
517 |
+
"""
|
518 |
+
|
519 |
+
output = src
|
520 |
+
|
521 |
+
# preparation and reshape
|
522 |
+
if self.num_layers > 0:
|
523 |
+
reference_points = self.get_reference_points(
|
524 |
+
spatial_shapes, valid_ratios, device=src.device
|
525 |
+
)
|
526 |
+
|
527 |
+
if self.text_layers:
|
528 |
+
# generate pos_text
|
529 |
+
bs, n_text, text_dim = memory_text.shape
|
530 |
+
if pos_text is None and position_ids is None:
|
531 |
+
pos_text = (
|
532 |
+
torch.arange(n_text, device=memory_text.device)
|
533 |
+
.float()
|
534 |
+
.unsqueeze(0)
|
535 |
+
.unsqueeze(-1)
|
536 |
+
.repeat(bs, 1, 1)
|
537 |
+
)
|
538 |
+
pos_text = get_sine_pos_embed(pos_text, num_pos_feats=256, exchange_xy=False)
|
539 |
+
if position_ids is not None:
|
540 |
+
pos_text = get_sine_pos_embed(
|
541 |
+
position_ids[..., None], num_pos_feats=256, exchange_xy=False
|
542 |
+
)
|
543 |
+
|
544 |
+
# main process
|
545 |
+
for layer_id, layer in enumerate(self.layers):
|
546 |
+
# if output.isnan().any() or memory_text.isnan().any():
|
547 |
+
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
548 |
+
# import ipdb; ipdb.set_trace()
|
549 |
+
if self.fusion_layers:
|
550 |
+
if self.use_checkpoint:
|
551 |
+
output, memory_text = checkpoint.checkpoint(
|
552 |
+
self.fusion_layers[layer_id],
|
553 |
+
output,
|
554 |
+
memory_text,
|
555 |
+
key_padding_mask,
|
556 |
+
text_attention_mask,
|
557 |
+
)
|
558 |
+
else:
|
559 |
+
output, memory_text = self.fusion_layers[layer_id](
|
560 |
+
v=output,
|
561 |
+
l=memory_text,
|
562 |
+
attention_mask_v=key_padding_mask,
|
563 |
+
attention_mask_l=text_attention_mask,
|
564 |
+
)
|
565 |
+
|
566 |
+
if self.text_layers:
|
567 |
+
memory_text = self.text_layers[layer_id](
|
568 |
+
src=memory_text.transpose(0, 1),
|
569 |
+
src_mask=~text_self_attention_masks, # note we use ~ for mask here
|
570 |
+
src_key_padding_mask=text_attention_mask,
|
571 |
+
pos=(pos_text.transpose(0, 1) if pos_text is not None else None),
|
572 |
+
).transpose(0, 1)
|
573 |
+
|
574 |
+
# main process
|
575 |
+
if self.use_transformer_ckpt:
|
576 |
+
output = checkpoint.checkpoint(
|
577 |
+
layer,
|
578 |
+
output,
|
579 |
+
pos,
|
580 |
+
reference_points,
|
581 |
+
spatial_shapes,
|
582 |
+
level_start_index,
|
583 |
+
key_padding_mask,
|
584 |
+
)
|
585 |
+
else:
|
586 |
+
output = layer(
|
587 |
+
src=output,
|
588 |
+
pos=pos,
|
589 |
+
reference_points=reference_points,
|
590 |
+
spatial_shapes=spatial_shapes,
|
591 |
+
level_start_index=level_start_index,
|
592 |
+
key_padding_mask=key_padding_mask,
|
593 |
+
)
|
594 |
+
|
595 |
+
return output, memory_text
|
596 |
+
|
597 |
+
|
598 |
+
class TransformerDecoder(nn.Module):
|
599 |
+
def __init__(
|
600 |
+
self,
|
601 |
+
decoder_layer,
|
602 |
+
num_layers,
|
603 |
+
norm=None,
|
604 |
+
return_intermediate=False,
|
605 |
+
d_model=256,
|
606 |
+
query_dim=4,
|
607 |
+
num_feature_levels=1,
|
608 |
+
):
|
609 |
+
super().__init__()
|
610 |
+
if num_layers > 0:
|
611 |
+
self.layers = _get_clones(decoder_layer, num_layers)
|
612 |
+
else:
|
613 |
+
self.layers = []
|
614 |
+
self.num_layers = num_layers
|
615 |
+
self.norm = norm
|
616 |
+
self.return_intermediate = return_intermediate
|
617 |
+
assert return_intermediate, "support return_intermediate only"
|
618 |
+
self.query_dim = query_dim
|
619 |
+
assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim)
|
620 |
+
self.num_feature_levels = num_feature_levels
|
621 |
+
|
622 |
+
self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2)
|
623 |
+
self.query_pos_sine_scale = None
|
624 |
+
|
625 |
+
self.query_scale = None
|
626 |
+
self.bbox_embed = None
|
627 |
+
self.class_embed = None
|
628 |
+
|
629 |
+
self.d_model = d_model
|
630 |
+
|
631 |
+
self.ref_anchor_head = None
|
632 |
+
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
tgt,
|
636 |
+
memory,
|
637 |
+
tgt_mask: Optional[Tensor] = None,
|
638 |
+
memory_mask: Optional[Tensor] = None,
|
639 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
640 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
641 |
+
pos: Optional[Tensor] = None,
|
642 |
+
refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2
|
643 |
+
# for memory
|
644 |
+
level_start_index: Optional[Tensor] = None, # num_levels
|
645 |
+
spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
|
646 |
+
valid_ratios: Optional[Tensor] = None,
|
647 |
+
# for text
|
648 |
+
memory_text: Optional[Tensor] = None,
|
649 |
+
text_attention_mask: Optional[Tensor] = None,
|
650 |
+
):
|
651 |
+
"""
|
652 |
+
Input:
|
653 |
+
- tgt: nq, bs, d_model
|
654 |
+
- memory: hw, bs, d_model
|
655 |
+
- pos: hw, bs, d_model
|
656 |
+
- refpoints_unsigmoid: nq, bs, 2/4
|
657 |
+
- valid_ratios/spatial_shapes: bs, nlevel, 2
|
658 |
+
"""
|
659 |
+
output = tgt
|
660 |
+
|
661 |
+
intermediate = []
|
662 |
+
reference_points = refpoints_unsigmoid.sigmoid()
|
663 |
+
ref_points = [reference_points]
|
664 |
+
|
665 |
+
for layer_id, layer in enumerate(self.layers):
|
666 |
+
|
667 |
+
if reference_points.shape[-1] == 4:
|
668 |
+
reference_points_input = (
|
669 |
+
reference_points[:, :, None]
|
670 |
+
* torch.cat([valid_ratios, valid_ratios], -1)[None, :]
|
671 |
+
) # nq, bs, nlevel, 4
|
672 |
+
else:
|
673 |
+
assert reference_points.shape[-1] == 2
|
674 |
+
reference_points_input = reference_points[:, :, None] * valid_ratios[None, :]
|
675 |
+
query_sine_embed = gen_sineembed_for_position(
|
676 |
+
reference_points_input[:, :, 0, :]
|
677 |
+
) # nq, bs, 256*2
|
678 |
+
|
679 |
+
# conditional query
|
680 |
+
raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256
|
681 |
+
pos_scale = self.query_scale(output) if self.query_scale is not None else 1
|
682 |
+
query_pos = pos_scale * raw_query_pos
|
683 |
+
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
684 |
+
# if query_pos.isnan().any() | query_pos.isinf().any():
|
685 |
+
# import ipdb; ipdb.set_trace()
|
686 |
+
|
687 |
+
# main process
|
688 |
+
output = layer(
|
689 |
+
tgt=output,
|
690 |
+
tgt_query_pos=query_pos,
|
691 |
+
tgt_query_sine_embed=query_sine_embed,
|
692 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
693 |
+
tgt_reference_points=reference_points_input,
|
694 |
+
memory_text=memory_text,
|
695 |
+
text_attention_mask=text_attention_mask,
|
696 |
+
memory=memory,
|
697 |
+
memory_key_padding_mask=memory_key_padding_mask,
|
698 |
+
memory_level_start_index=level_start_index,
|
699 |
+
memory_spatial_shapes=spatial_shapes,
|
700 |
+
memory_pos=pos,
|
701 |
+
self_attn_mask=tgt_mask,
|
702 |
+
cross_attn_mask=memory_mask,
|
703 |
+
)
|
704 |
+
if output.isnan().any() | output.isinf().any():
|
705 |
+
print(f"output layer_id {layer_id} is nan")
|
706 |
+
try:
|
707 |
+
num_nan = output.isnan().sum().item()
|
708 |
+
num_inf = output.isinf().sum().item()
|
709 |
+
print(f"num_nan {num_nan}, num_inf {num_inf}")
|
710 |
+
except Exception as e:
|
711 |
+
print(e)
|
712 |
+
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
713 |
+
# import ipdb; ipdb.set_trace()
|
714 |
+
|
715 |
+
# iter update
|
716 |
+
if self.bbox_embed is not None:
|
717 |
+
# box_holder = self.bbox_embed(output)
|
718 |
+
# box_holder[..., :self.query_dim] += inverse_sigmoid(reference_points)
|
719 |
+
# new_reference_points = box_holder[..., :self.query_dim].sigmoid()
|
720 |
+
|
721 |
+
reference_before_sigmoid = inverse_sigmoid(reference_points)
|
722 |
+
delta_unsig = self.bbox_embed[layer_id](output)
|
723 |
+
outputs_unsig = delta_unsig + reference_before_sigmoid
|
724 |
+
new_reference_points = outputs_unsig.sigmoid()
|
725 |
+
|
726 |
+
reference_points = new_reference_points.detach()
|
727 |
+
# if layer_id != self.num_layers - 1:
|
728 |
+
ref_points.append(new_reference_points)
|
729 |
+
|
730 |
+
intermediate.append(self.norm(output))
|
731 |
+
|
732 |
+
return [
|
733 |
+
[itm_out.transpose(0, 1) for itm_out in intermediate],
|
734 |
+
[itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points],
|
735 |
+
]
|
736 |
+
|
737 |
+
|
738 |
+
class DeformableTransformerEncoderLayer(nn.Module):
|
739 |
+
def __init__(
|
740 |
+
self,
|
741 |
+
d_model=256,
|
742 |
+
d_ffn=1024,
|
743 |
+
dropout=0.1,
|
744 |
+
activation="relu",
|
745 |
+
n_levels=4,
|
746 |
+
n_heads=8,
|
747 |
+
n_points=4,
|
748 |
+
):
|
749 |
+
super().__init__()
|
750 |
+
|
751 |
+
# self attention
|
752 |
+
self.self_attn = MSDeformAttn(
|
753 |
+
embed_dim=d_model,
|
754 |
+
num_levels=n_levels,
|
755 |
+
num_heads=n_heads,
|
756 |
+
num_points=n_points,
|
757 |
+
batch_first=True,
|
758 |
+
)
|
759 |
+
self.dropout1 = nn.Dropout(dropout)
|
760 |
+
self.norm1 = nn.LayerNorm(d_model)
|
761 |
+
|
762 |
+
# ffn
|
763 |
+
r = 16
|
764 |
+
self.linear1 = lora.Linear(d_model, d_ffn , r=r)
|
765 |
+
self.activation = _get_activation_fn(activation, d_model=d_ffn)
|
766 |
+
self.dropout2 = nn.Dropout(dropout)
|
767 |
+
self.linear2 = lora.Linear(d_ffn, d_model , r=r)
|
768 |
+
self.dropout3 = nn.Dropout(dropout)
|
769 |
+
self.norm2 = nn.LayerNorm(d_model)
|
770 |
+
|
771 |
+
@staticmethod
|
772 |
+
def with_pos_embed(tensor, pos):
|
773 |
+
return tensor if pos is None else tensor + pos
|
774 |
+
|
775 |
+
def forward_ffn(self, src):
|
776 |
+
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
777 |
+
src = src + self.dropout3(src2)
|
778 |
+
src = self.norm2(src)
|
779 |
+
return src
|
780 |
+
|
781 |
+
def forward(
|
782 |
+
self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None
|
783 |
+
):
|
784 |
+
# self attention
|
785 |
+
# import ipdb; ipdb.set_trace()
|
786 |
+
src2 = self.self_attn(
|
787 |
+
query=self.with_pos_embed(src, pos),
|
788 |
+
reference_points=reference_points,
|
789 |
+
value=src,
|
790 |
+
spatial_shapes=spatial_shapes,
|
791 |
+
level_start_index=level_start_index,
|
792 |
+
key_padding_mask=key_padding_mask,
|
793 |
+
)
|
794 |
+
src = src + self.dropout1(src2)
|
795 |
+
src = self.norm1(src)
|
796 |
+
|
797 |
+
# ffn
|
798 |
+
src = self.forward_ffn(src)
|
799 |
+
|
800 |
+
return src
|
801 |
+
|
802 |
+
|
803 |
+
class DeformableTransformerDecoderLayer(nn.Module):
|
804 |
+
def __init__(
|
805 |
+
self,
|
806 |
+
d_model=256,
|
807 |
+
d_ffn=1024,
|
808 |
+
dropout=0.1,
|
809 |
+
activation="relu",
|
810 |
+
n_levels=4,
|
811 |
+
n_heads=8,
|
812 |
+
n_points=4,
|
813 |
+
use_text_feat_guide=False,
|
814 |
+
use_text_cross_attention=False,
|
815 |
+
):
|
816 |
+
super().__init__()
|
817 |
+
|
818 |
+
# cross attention
|
819 |
+
self.cross_attn = MSDeformAttn(
|
820 |
+
embed_dim=d_model,
|
821 |
+
num_levels=n_levels,
|
822 |
+
num_heads=n_heads,
|
823 |
+
num_points=n_points,
|
824 |
+
batch_first=True,
|
825 |
+
)
|
826 |
+
self.dropout1 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
827 |
+
self.norm1 = nn.LayerNorm(d_model)
|
828 |
+
|
829 |
+
# cross attention text
|
830 |
+
if use_text_cross_attention:
|
831 |
+
self.ca_text = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
832 |
+
self.catext_dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
833 |
+
self.catext_norm = nn.LayerNorm(d_model)
|
834 |
+
|
835 |
+
# self attention
|
836 |
+
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
837 |
+
self.dropout2 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
838 |
+
self.norm2 = nn.LayerNorm(d_model)
|
839 |
+
|
840 |
+
# ffn
|
841 |
+
r = 16
|
842 |
+
self.linear1 = lora.Linear(d_model, d_ffn , r=r)
|
843 |
+
self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1)
|
844 |
+
self.dropout3 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
845 |
+
self.linear2 = lora.Linear(d_ffn, d_model , r=r)
|
846 |
+
self.dropout4 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
847 |
+
self.norm3 = nn.LayerNorm(d_model)
|
848 |
+
|
849 |
+
self.key_aware_proj = None
|
850 |
+
self.use_text_feat_guide = use_text_feat_guide
|
851 |
+
assert not use_text_feat_guide
|
852 |
+
self.use_text_cross_attention = use_text_cross_attention
|
853 |
+
|
854 |
+
def rm_self_attn_modules(self):
|
855 |
+
self.self_attn = None
|
856 |
+
self.dropout2 = None
|
857 |
+
self.norm2 = None
|
858 |
+
|
859 |
+
@staticmethod
|
860 |
+
def with_pos_embed(tensor, pos):
|
861 |
+
return tensor if pos is None else tensor + pos
|
862 |
+
|
863 |
+
def forward_ffn(self, tgt):
|
864 |
+
with torch.cuda.amp.autocast(enabled=False):
|
865 |
+
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
|
866 |
+
tgt = tgt + self.dropout4(tgt2)
|
867 |
+
tgt = self.norm3(tgt)
|
868 |
+
return tgt
|
869 |
+
|
870 |
+
def forward(
|
871 |
+
self,
|
872 |
+
# for tgt
|
873 |
+
tgt: Optional[Tensor], # nq, bs, d_model
|
874 |
+
tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
|
875 |
+
tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
|
876 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
877 |
+
tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
|
878 |
+
memory_text: Optional[Tensor] = None, # bs, num_token, d_model
|
879 |
+
text_attention_mask: Optional[Tensor] = None, # bs, num_token
|
880 |
+
# for memory
|
881 |
+
memory: Optional[Tensor] = None, # hw, bs, d_model
|
882 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
883 |
+
memory_level_start_index: Optional[Tensor] = None, # num_levels
|
884 |
+
memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
|
885 |
+
memory_pos: Optional[Tensor] = None, # pos for memory
|
886 |
+
# sa
|
887 |
+
self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
|
888 |
+
cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
|
889 |
+
):
|
890 |
+
"""
|
891 |
+
Input:
|
892 |
+
- tgt/tgt_query_pos: nq, bs, d_model
|
893 |
+
-
|
894 |
+
"""
|
895 |
+
assert cross_attn_mask is None
|
896 |
+
|
897 |
+
# self attention
|
898 |
+
if self.self_attn is not None:
|
899 |
+
# import ipdb; ipdb.set_trace()
|
900 |
+
q = k = self.with_pos_embed(tgt, tgt_query_pos)
|
901 |
+
tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
|
902 |
+
tgt = tgt + self.dropout2(tgt2)
|
903 |
+
tgt = self.norm2(tgt)
|
904 |
+
|
905 |
+
if self.use_text_cross_attention:
|
906 |
+
tgt2 = self.ca_text(
|
907 |
+
self.with_pos_embed(tgt, tgt_query_pos),
|
908 |
+
memory_text.transpose(0, 1),
|
909 |
+
memory_text.transpose(0, 1),
|
910 |
+
key_padding_mask=text_attention_mask,
|
911 |
+
)[0]
|
912 |
+
tgt = tgt + self.catext_dropout(tgt2)
|
913 |
+
tgt = self.catext_norm(tgt)
|
914 |
+
|
915 |
+
tgt2 = self.cross_attn(
|
916 |
+
query=self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
|
917 |
+
reference_points=tgt_reference_points.transpose(0, 1).contiguous(),
|
918 |
+
value=memory.transpose(0, 1),
|
919 |
+
spatial_shapes=memory_spatial_shapes,
|
920 |
+
level_start_index=memory_level_start_index,
|
921 |
+
key_padding_mask=memory_key_padding_mask,
|
922 |
+
).transpose(0, 1)
|
923 |
+
tgt = tgt + self.dropout1(tgt2)
|
924 |
+
tgt = self.norm1(tgt)
|
925 |
+
|
926 |
+
# ffn
|
927 |
+
tgt = self.forward_ffn(tgt)
|
928 |
+
|
929 |
+
return tgt
|
930 |
+
|
931 |
+
|
932 |
+
def build_transformer(args):
|
933 |
+
return Transformer(
|
934 |
+
d_model=args.hidden_dim,
|
935 |
+
dropout=args.dropout,
|
936 |
+
nhead=args.nheads,
|
937 |
+
num_queries=args.num_queries,
|
938 |
+
dim_feedforward=args.dim_feedforward,
|
939 |
+
num_encoder_layers=args.enc_layers,
|
940 |
+
num_decoder_layers=args.dec_layers,
|
941 |
+
normalize_before=args.pre_norm,
|
942 |
+
return_intermediate_dec=True,
|
943 |
+
query_dim=args.query_dim,
|
944 |
+
activation=args.transformer_activation,
|
945 |
+
num_patterns=args.num_patterns,
|
946 |
+
num_feature_levels=args.num_feature_levels,
|
947 |
+
enc_n_points=args.enc_n_points,
|
948 |
+
dec_n_points=args.dec_n_points,
|
949 |
+
learnable_tgt_init=True,
|
950 |
+
# two stage
|
951 |
+
two_stage_type=args.two_stage_type, # ['no', 'standard', 'early']
|
952 |
+
embed_init_tgt=args.embed_init_tgt,
|
953 |
+
use_text_enhancer=args.use_text_enhancer,
|
954 |
+
use_fusion_layer=args.use_fusion_layer,
|
955 |
+
use_checkpoint=args.use_checkpoint,
|
956 |
+
use_transformer_ckpt=args.use_transformer_ckpt,
|
957 |
+
use_text_cross_attention=args.use_text_cross_attention,
|
958 |
+
text_dropout=args.text_dropout,
|
959 |
+
fusion_dropout=args.fusion_dropout,
|
960 |
+
fusion_droppath=args.fusion_droppath,
|
961 |
+
)
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/transformer_vanilla-checkpoint.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
|
8 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
9 |
+
"""
|
10 |
+
DETR Transformer class.
|
11 |
+
|
12 |
+
Copy-paste from torch.nn.Transformer with modifications:
|
13 |
+
* positional encodings are passed in MHattention
|
14 |
+
* extra LN at the end of encoder is removed
|
15 |
+
* decoder returns a stack of activations from all decoding layers
|
16 |
+
"""
|
17 |
+
from typing import Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from torch import Tensor, nn
|
22 |
+
import loralib as lora
|
23 |
+
from .utils import (
|
24 |
+
MLP,
|
25 |
+
_get_activation_fn,
|
26 |
+
_get_clones,
|
27 |
+
gen_encoder_output_proposals,
|
28 |
+
gen_sineembed_for_position,
|
29 |
+
sigmoid_focal_loss,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
class TextTransformer(nn.Module):
|
34 |
+
def __init__(self, num_layers, d_model=256, nheads=8, dim_feedforward=2048, dropout=0.1):
|
35 |
+
super().__init__()
|
36 |
+
self.num_layers = num_layers
|
37 |
+
self.d_model = d_model
|
38 |
+
self.nheads = nheads
|
39 |
+
self.dim_feedforward = dim_feedforward
|
40 |
+
self.norm = None
|
41 |
+
|
42 |
+
single_encoder_layer = TransformerEncoderLayer(
|
43 |
+
d_model=d_model, nhead=nheads, dim_feedforward=dim_feedforward, dropout=dropout
|
44 |
+
)
|
45 |
+
self.layers = _get_clones(single_encoder_layer, num_layers)
|
46 |
+
|
47 |
+
def forward(self, memory_text: torch.Tensor, text_attention_mask: torch.Tensor):
|
48 |
+
"""
|
49 |
+
|
50 |
+
Args:
|
51 |
+
text_attention_mask: bs, num_token
|
52 |
+
memory_text: bs, num_token, d_model
|
53 |
+
|
54 |
+
Raises:
|
55 |
+
RuntimeError: _description_
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
output: bs, num_token, d_model
|
59 |
+
"""
|
60 |
+
|
61 |
+
output = memory_text.transpose(0, 1)
|
62 |
+
|
63 |
+
for layer in self.layers:
|
64 |
+
output = layer(output, src_key_padding_mask=text_attention_mask)
|
65 |
+
|
66 |
+
if self.norm is not None:
|
67 |
+
output = self.norm(output)
|
68 |
+
|
69 |
+
return output.transpose(0, 1)
|
70 |
+
|
71 |
+
|
72 |
+
class TransformerEncoderLayer(nn.Module):
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
d_model,
|
76 |
+
nhead,
|
77 |
+
dim_feedforward=2048,
|
78 |
+
dropout=0.1,
|
79 |
+
activation="relu",
|
80 |
+
normalize_before=False,
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
84 |
+
# Implementation of Feedforward model
|
85 |
+
r=16
|
86 |
+
self.linear1 = lora.Linear(d_model, dim_feedforward , r=r)
|
87 |
+
self.dropout = nn.Dropout(dropout)
|
88 |
+
self.linear2 = lora.Linear(dim_feedforward, d_model , r=r)
|
89 |
+
|
90 |
+
self.norm1 = nn.LayerNorm(d_model)
|
91 |
+
self.norm2 = nn.LayerNorm(d_model)
|
92 |
+
self.dropout1 = nn.Dropout(dropout)
|
93 |
+
self.dropout2 = nn.Dropout(dropout)
|
94 |
+
|
95 |
+
self.activation = _get_activation_fn(activation)
|
96 |
+
self.normalize_before = normalize_before
|
97 |
+
self.nhead = nhead
|
98 |
+
|
99 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
100 |
+
return tensor if pos is None else tensor + pos
|
101 |
+
|
102 |
+
def forward(
|
103 |
+
self,
|
104 |
+
src,
|
105 |
+
src_mask: Optional[Tensor] = None,
|
106 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
107 |
+
pos: Optional[Tensor] = None,
|
108 |
+
):
|
109 |
+
# repeat attn mask
|
110 |
+
if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]:
|
111 |
+
# bs, num_q, num_k
|
112 |
+
src_mask = src_mask.repeat(self.nhead, 1, 1)
|
113 |
+
|
114 |
+
q = k = self.with_pos_embed(src, pos)
|
115 |
+
|
116 |
+
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0]
|
117 |
+
|
118 |
+
# src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
119 |
+
src = src + self.dropout1(src2)
|
120 |
+
src = self.norm1(src)
|
121 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
122 |
+
src = src + self.dropout2(src2)
|
123 |
+
src = self.norm2(src)
|
124 |
+
return src
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/utils-checkpoint.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
|
8 |
+
import copy
|
9 |
+
import math
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import Tensor, nn
|
14 |
+
import loralib as lora
|
15 |
+
|
16 |
+
def _get_clones(module, N, layer_share=False):
|
17 |
+
# import ipdb; ipdb.set_trace()
|
18 |
+
if layer_share:
|
19 |
+
return nn.ModuleList([module for i in range(N)])
|
20 |
+
else:
|
21 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
22 |
+
|
23 |
+
|
24 |
+
def get_sine_pos_embed(
|
25 |
+
pos_tensor: torch.Tensor,
|
26 |
+
num_pos_feats: int = 128,
|
27 |
+
temperature: int = 10000,
|
28 |
+
exchange_xy: bool = True,
|
29 |
+
):
|
30 |
+
"""generate sine position embedding from a position tensor
|
31 |
+
Args:
|
32 |
+
pos_tensor (torch.Tensor): shape: [..., n].
|
33 |
+
num_pos_feats (int): projected shape for each float in the tensor.
|
34 |
+
temperature (int): temperature in the sine/cosine function.
|
35 |
+
exchange_xy (bool, optional): exchange pos x and pos y. \
|
36 |
+
For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True.
|
37 |
+
Returns:
|
38 |
+
pos_embed (torch.Tensor): shape: [..., n*num_pos_feats].
|
39 |
+
"""
|
40 |
+
scale = 2 * math.pi
|
41 |
+
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
|
42 |
+
dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
|
43 |
+
|
44 |
+
def sine_func(x: torch.Tensor):
|
45 |
+
sin_x = x * scale / dim_t
|
46 |
+
sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2)
|
47 |
+
return sin_x
|
48 |
+
|
49 |
+
pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)]
|
50 |
+
if exchange_xy:
|
51 |
+
pos_res[0], pos_res[1] = pos_res[1], pos_res[0]
|
52 |
+
pos_res = torch.cat(pos_res, dim=-1)
|
53 |
+
return pos_res
|
54 |
+
|
55 |
+
|
56 |
+
def gen_encoder_output_proposals(
|
57 |
+
memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None
|
58 |
+
):
|
59 |
+
"""
|
60 |
+
Input:
|
61 |
+
- memory: bs, \sum{hw}, d_model
|
62 |
+
- memory_padding_mask: bs, \sum{hw}
|
63 |
+
- spatial_shapes: nlevel, 2
|
64 |
+
- learnedwh: 2
|
65 |
+
Output:
|
66 |
+
- output_memory: bs, \sum{hw}, d_model
|
67 |
+
- output_proposals: bs, \sum{hw}, 4
|
68 |
+
"""
|
69 |
+
N_, S_, C_ = memory.shape
|
70 |
+
proposals = []
|
71 |
+
_cur = 0
|
72 |
+
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
73 |
+
mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view(N_, H_, W_, 1)
|
74 |
+
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
|
75 |
+
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
|
76 |
+
|
77 |
+
# import ipdb; ipdb.set_trace()
|
78 |
+
|
79 |
+
grid_y, grid_x = torch.meshgrid(
|
80 |
+
torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
|
81 |
+
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
|
82 |
+
)
|
83 |
+
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2
|
84 |
+
|
85 |
+
scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
|
86 |
+
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
|
87 |
+
|
88 |
+
if learnedwh is not None:
|
89 |
+
# import ipdb; ipdb.set_trace()
|
90 |
+
wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl)
|
91 |
+
else:
|
92 |
+
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
|
93 |
+
|
94 |
+
# scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1)
|
95 |
+
# grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
|
96 |
+
# wh = torch.ones_like(grid) / scale
|
97 |
+
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
|
98 |
+
proposals.append(proposal)
|
99 |
+
_cur += H_ * W_
|
100 |
+
# import ipdb; ipdb.set_trace()
|
101 |
+
output_proposals = torch.cat(proposals, 1)
|
102 |
+
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(
|
103 |
+
-1, keepdim=True
|
104 |
+
)
|
105 |
+
output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid
|
106 |
+
output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float("inf"))
|
107 |
+
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
|
108 |
+
|
109 |
+
output_memory = memory
|
110 |
+
output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
|
111 |
+
output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
|
112 |
+
|
113 |
+
# output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
|
114 |
+
# output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf'))
|
115 |
+
|
116 |
+
return output_memory, output_proposals
|
117 |
+
|
118 |
+
|
119 |
+
class RandomBoxPerturber:
|
120 |
+
def __init__(
|
121 |
+
self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2
|
122 |
+
) -> None:
|
123 |
+
self.noise_scale = torch.Tensor(
|
124 |
+
[x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale]
|
125 |
+
)
|
126 |
+
|
127 |
+
def __call__(self, refanchors: Tensor) -> Tensor:
|
128 |
+
nq, bs, query_dim = refanchors.shape
|
129 |
+
device = refanchors.device
|
130 |
+
|
131 |
+
noise_raw = torch.rand_like(refanchors)
|
132 |
+
noise_scale = self.noise_scale.to(device)[:query_dim]
|
133 |
+
|
134 |
+
new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale)
|
135 |
+
return new_refanchors.clamp_(0, 1)
|
136 |
+
|
137 |
+
|
138 |
+
def sigmoid_focal_loss(
|
139 |
+
inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, no_reduction=False
|
140 |
+
):
|
141 |
+
"""
|
142 |
+
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
|
143 |
+
Args:
|
144 |
+
inputs: A float tensor of arbitrary shape.
|
145 |
+
The predictions for each example.
|
146 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
147 |
+
classification label for each element in inputs
|
148 |
+
(0 for the negative class and 1 for the positive class).
|
149 |
+
alpha: (optional) Weighting factor in range (0,1) to balance
|
150 |
+
positive vs negative examples. Default = -1 (no weighting).
|
151 |
+
gamma: Exponent of the modulating factor (1 - p_t) to
|
152 |
+
balance easy vs hard examples.
|
153 |
+
Returns:
|
154 |
+
Loss tensor
|
155 |
+
"""
|
156 |
+
prob = inputs.sigmoid()
|
157 |
+
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
158 |
+
p_t = prob * targets + (1 - prob) * (1 - targets)
|
159 |
+
loss = ce_loss * ((1 - p_t) ** gamma)
|
160 |
+
|
161 |
+
if alpha >= 0:
|
162 |
+
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
|
163 |
+
loss = alpha_t * loss
|
164 |
+
|
165 |
+
if no_reduction:
|
166 |
+
return loss
|
167 |
+
|
168 |
+
return loss.mean(1).sum() / num_boxes
|
169 |
+
|
170 |
+
|
171 |
+
class MLP(nn.Module):
|
172 |
+
"""Very simple multi-layer perceptron (also called FFN)"""
|
173 |
+
|
174 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
175 |
+
super().__init__()
|
176 |
+
self.num_layers = num_layers
|
177 |
+
r=16
|
178 |
+
h = [hidden_dim] * (num_layers - 1)
|
179 |
+
self.layers = nn.ModuleList(
|
180 |
+
[lora.Linear(n, k, r=r) for n, k in zip([input_dim] + h, h + [output_dim])]
|
181 |
+
)
|
182 |
+
|
183 |
+
def forward(self, x):
|
184 |
+
for i, layer in enumerate(self.layers):
|
185 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
186 |
+
return x
|
187 |
+
|
188 |
+
|
189 |
+
def _get_activation_fn(activation, d_model=256, batch_dim=0):
|
190 |
+
"""Return an activation function given a string"""
|
191 |
+
if activation == "relu":
|
192 |
+
return F.relu
|
193 |
+
if activation == "gelu":
|
194 |
+
return F.gelu
|
195 |
+
if activation == "glu":
|
196 |
+
return F.glu
|
197 |
+
if activation == "prelu":
|
198 |
+
return nn.PReLU()
|
199 |
+
if activation == "selu":
|
200 |
+
return F.selu
|
201 |
+
|
202 |
+
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
203 |
+
|
204 |
+
|
205 |
+
def gen_sineembed_for_position(pos_tensor):
|
206 |
+
# n_query, bs, _ = pos_tensor.size()
|
207 |
+
# sineembed_tensor = torch.zeros(n_query, bs, 256)
|
208 |
+
scale = 2 * math.pi
|
209 |
+
dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device)
|
210 |
+
dim_t = 10000 ** (2 * (torch.div(dim_t, 2, rounding_mode='floor')) / 128)
|
211 |
+
x_embed = pos_tensor[:, :, 0] * scale
|
212 |
+
y_embed = pos_tensor[:, :, 1] * scale
|
213 |
+
pos_x = x_embed[:, :, None] / dim_t
|
214 |
+
pos_y = y_embed[:, :, None] / dim_t
|
215 |
+
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
|
216 |
+
pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2)
|
217 |
+
if pos_tensor.size(-1) == 2:
|
218 |
+
pos = torch.cat((pos_y, pos_x), dim=2)
|
219 |
+
elif pos_tensor.size(-1) == 4:
|
220 |
+
w_embed = pos_tensor[:, :, 2] * scale
|
221 |
+
pos_w = w_embed[:, :, None] / dim_t
|
222 |
+
pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2)
|
223 |
+
|
224 |
+
h_embed = pos_tensor[:, :, 3] * scale
|
225 |
+
pos_h = h_embed[:, :, None] / dim_t
|
226 |
+
pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2)
|
227 |
+
|
228 |
+
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
|
229 |
+
else:
|
230 |
+
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
|
231 |
+
return pos
|
232 |
+
|
233 |
+
|
234 |
+
class ContrastiveEmbed(nn.Module):
|
235 |
+
def __init__(self, max_text_len=256):
|
236 |
+
"""
|
237 |
+
Args:
|
238 |
+
max_text_len: max length of text.
|
239 |
+
"""
|
240 |
+
super().__init__()
|
241 |
+
self.max_text_len = max_text_len
|
242 |
+
|
243 |
+
def forward(self, x, text_dict):
|
244 |
+
"""_summary_
|
245 |
+
|
246 |
+
Args:
|
247 |
+
x (_type_): _description_
|
248 |
+
text_dict (_type_): _description_
|
249 |
+
{
|
250 |
+
'encoded_text': encoded_text, # bs, 195, d_model
|
251 |
+
'text_token_mask': text_token_mask, # bs, 195
|
252 |
+
# True for used tokens. False for padding tokens
|
253 |
+
}
|
254 |
+
Returns:
|
255 |
+
_type_: _description_
|
256 |
+
"""
|
257 |
+
assert isinstance(text_dict, dict)
|
258 |
+
|
259 |
+
y = text_dict["encoded_text"]
|
260 |
+
text_token_mask = text_dict["text_token_mask"]
|
261 |
+
|
262 |
+
res = x @ y.transpose(-1, -2)
|
263 |
+
res.masked_fill_(~text_token_mask[:, None, :], float("-inf"))
|
264 |
+
|
265 |
+
# padding to max_text_len
|
266 |
+
new_res = torch.full((*res.shape[:-1], self.max_text_len), float("-inf"), device=res.device)
|
267 |
+
new_res[..., : res.shape[-1]] = res
|
268 |
+
|
269 |
+
return new_res
|
groundingdino/models/GroundingDINO/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (260 Bytes). View file
|
|
groundingdino/models/GroundingDINO/__pycache__/bertwarper.cpython-310.pyc
ADDED
Binary file (7.23 kB). View file
|
|
groundingdino/models/GroundingDINO/__pycache__/fuse_modules.cpython-310.pyc
ADDED
Binary file (7.88 kB). View file
|
|
groundingdino/models/GroundingDINO/__pycache__/groundingdino.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
groundingdino/models/GroundingDINO/__pycache__/ms_deform_attn.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
groundingdino/models/GroundingDINO/__pycache__/transformer.cpython-310.pyc
ADDED
Binary file (19.4 kB). View file
|
|
groundingdino/models/GroundingDINO/__pycache__/transformer_vanilla.cpython-310.pyc
ADDED
Binary file (3.52 kB). View file
|
|
groundingdino/models/GroundingDINO/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (9.61 kB). View file
|
|
groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/backbone-checkpoint.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Conditional DETR
|
8 |
+
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------
|
11 |
+
# Copied from DETR (https://github.com/facebookresearch/detr)
|
12 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
13 |
+
# ------------------------------------------------------------------------
|
14 |
+
|
15 |
+
|
16 |
+
# Backbone modules.
|
17 |
+
|
18 |
+
from typing import Dict, List
|
19 |
+
import loralib as lora
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
import torchvision
|
23 |
+
from torch import nn
|
24 |
+
from torchvision.models._utils import IntermediateLayerGetter
|
25 |
+
import loralib as lora
|
26 |
+
from groundingdino.util.misc import NestedTensor, clean_state_dict, is_main_process
|
27 |
+
|
28 |
+
from .position_encoding import build_position_encoding
|
29 |
+
from .swin_transformer import build_swin_transformer
|
30 |
+
|
31 |
+
|
32 |
+
class FrozenBatchNorm2d(torch.nn.Module):
|
33 |
+
"""
|
34 |
+
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
35 |
+
|
36 |
+
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
|
37 |
+
without which any other models than torchvision.models.resnet[18,34,50,101]
|
38 |
+
produce nans.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, n):
|
42 |
+
super(FrozenBatchNorm2d, self).__init__()
|
43 |
+
self.register_buffer("weight", torch.ones(n))
|
44 |
+
self.register_buffer("bias", torch.zeros(n))
|
45 |
+
self.register_buffer("running_mean", torch.zeros(n))
|
46 |
+
self.register_buffer("running_var", torch.ones(n))
|
47 |
+
|
48 |
+
def _load_from_state_dict(
|
49 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
50 |
+
):
|
51 |
+
num_batches_tracked_key = prefix + "num_batches_tracked"
|
52 |
+
if num_batches_tracked_key in state_dict:
|
53 |
+
del state_dict[num_batches_tracked_key]
|
54 |
+
|
55 |
+
super(FrozenBatchNorm2d, self)._load_from_state_dict(
|
56 |
+
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
57 |
+
)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
# move reshapes to the beginning
|
61 |
+
# to make it fuser-friendly
|
62 |
+
w = self.weight.reshape(1, -1, 1, 1)
|
63 |
+
b = self.bias.reshape(1, -1, 1, 1)
|
64 |
+
rv = self.running_var.reshape(1, -1, 1, 1)
|
65 |
+
rm = self.running_mean.reshape(1, -1, 1, 1)
|
66 |
+
eps = 1e-5
|
67 |
+
scale = w * (rv + eps).rsqrt()
|
68 |
+
bias = b - rm * scale
|
69 |
+
return x * scale + bias
|
70 |
+
|
71 |
+
|
72 |
+
class BackboneBase(nn.Module):
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
backbone: nn.Module,
|
76 |
+
train_backbone: bool,
|
77 |
+
num_channels: int,
|
78 |
+
return_interm_indices: list,
|
79 |
+
):
|
80 |
+
super().__init__()
|
81 |
+
for name, parameter in backbone.named_parameters():
|
82 |
+
if (
|
83 |
+
not train_backbone
|
84 |
+
or "layer2" not in name
|
85 |
+
and "layer3" not in name
|
86 |
+
and "layer4" not in name
|
87 |
+
):
|
88 |
+
parameter.requires_grad_(False)
|
89 |
+
|
90 |
+
return_layers = {}
|
91 |
+
for idx, layer_index in enumerate(return_interm_indices):
|
92 |
+
return_layers.update(
|
93 |
+
{"layer{}".format(5 - len(return_interm_indices) + idx): "{}".format(layer_index)}
|
94 |
+
)
|
95 |
+
|
96 |
+
# if len:
|
97 |
+
# if use_stage1_feature:
|
98 |
+
# return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
|
99 |
+
# else:
|
100 |
+
# return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"}
|
101 |
+
# else:
|
102 |
+
# return_layers = {'layer4': "0"}
|
103 |
+
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
|
104 |
+
self.num_channels = num_channels
|
105 |
+
|
106 |
+
def forward(self, tensor_list: NestedTensor):
|
107 |
+
xs = self.body(tensor_list.tensors)
|
108 |
+
out: Dict[str, NestedTensor] = {}
|
109 |
+
for name, x in xs.items():
|
110 |
+
m = tensor_list.mask
|
111 |
+
assert m is not None
|
112 |
+
mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
113 |
+
out[name] = NestedTensor(x, mask)
|
114 |
+
# import ipdb; ipdb.set_trace()
|
115 |
+
return out
|
116 |
+
|
117 |
+
|
118 |
+
class Backbone(BackboneBase):
|
119 |
+
"""ResNet backbone with frozen BatchNorm."""
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
name: str,
|
124 |
+
train_backbone: bool,
|
125 |
+
dilation: bool,
|
126 |
+
return_interm_indices: list,
|
127 |
+
batch_norm=FrozenBatchNorm2d,
|
128 |
+
):
|
129 |
+
if name in ["resnet18", "resnet34", "resnet50", "resnet101"]:
|
130 |
+
backbone = getattr(torchvision.models, name)(
|
131 |
+
replace_stride_with_dilation=[False, False, dilation],
|
132 |
+
pretrained=is_main_process(),
|
133 |
+
norm_layer=batch_norm,
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
raise NotImplementedError("Why you can get here with name {}".format(name))
|
137 |
+
# num_channels = 512 if name in ('resnet18', 'resnet34') else 2048
|
138 |
+
assert name not in ("resnet18", "resnet34"), "Only resnet50 and resnet101 are available."
|
139 |
+
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
|
140 |
+
num_channels_all = [256, 512, 1024, 2048]
|
141 |
+
num_channels = num_channels_all[4 - len(return_interm_indices) :]
|
142 |
+
super().__init__(backbone, train_backbone, num_channels, return_interm_indices)
|
143 |
+
|
144 |
+
|
145 |
+
class Joiner(nn.Sequential):
|
146 |
+
def __init__(self, backbone, position_embedding):
|
147 |
+
super().__init__(backbone, position_embedding)
|
148 |
+
|
149 |
+
def forward(self, tensor_list: NestedTensor):
|
150 |
+
xs = self[0](tensor_list)
|
151 |
+
out: List[NestedTensor] = []
|
152 |
+
pos = []
|
153 |
+
for name, x in xs.items():
|
154 |
+
out.append(x)
|
155 |
+
# position encoding
|
156 |
+
pos.append(self[1](x).to(x.tensors.dtype))
|
157 |
+
|
158 |
+
return out, pos
|
159 |
+
|
160 |
+
|
161 |
+
def build_backbone(args):
|
162 |
+
"""
|
163 |
+
Useful args:
|
164 |
+
- backbone: backbone name
|
165 |
+
- lr_backbone:
|
166 |
+
- dilation
|
167 |
+
- return_interm_indices: available: [0,1,2,3], [1,2,3], [3]
|
168 |
+
- backbone_freeze_keywords:
|
169 |
+
- use_checkpoint: for swin only for now
|
170 |
+
|
171 |
+
"""
|
172 |
+
position_embedding = build_position_encoding(args)
|
173 |
+
train_backbone = True
|
174 |
+
if not train_backbone:
|
175 |
+
raise ValueError("Please set lr_backbone > 0")
|
176 |
+
return_interm_indices = args.return_interm_indices
|
177 |
+
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
|
178 |
+
args.backbone_freeze_keywords
|
179 |
+
use_checkpoint = getattr(args, "use_checkpoint", False)
|
180 |
+
|
181 |
+
if args.backbone in ["resnet50", "resnet101"]:
|
182 |
+
backbone = Backbone(
|
183 |
+
args.backbone,
|
184 |
+
train_backbone,
|
185 |
+
args.dilation,
|
186 |
+
return_interm_indices,
|
187 |
+
batch_norm=FrozenBatchNorm2d,
|
188 |
+
)
|
189 |
+
bb_num_channels = backbone.num_channels
|
190 |
+
elif args.backbone in [
|
191 |
+
"swin_T_224_1k",
|
192 |
+
"swin_B_224_22k",
|
193 |
+
"swin_B_384_22k",
|
194 |
+
"swin_L_224_22k",
|
195 |
+
"swin_L_384_22k",
|
196 |
+
]:
|
197 |
+
pretrain_img_size = int(args.backbone.split("_")[-2])
|
198 |
+
backbone = build_swin_transformer(
|
199 |
+
args.backbone,
|
200 |
+
pretrain_img_size=pretrain_img_size,
|
201 |
+
out_indices=tuple(return_interm_indices),
|
202 |
+
dilation=False,
|
203 |
+
use_checkpoint=use_checkpoint,
|
204 |
+
)
|
205 |
+
|
206 |
+
bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :]
|
207 |
+
else:
|
208 |
+
raise NotImplementedError("Unknown backbone {}".format(args.backbone))
|
209 |
+
|
210 |
+
assert len(bb_num_channels) == len(
|
211 |
+
return_interm_indices
|
212 |
+
), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}"
|
213 |
+
|
214 |
+
model = Joiner(backbone, position_embedding)
|
215 |
+
model.num_channels = bb_num_channels
|
216 |
+
assert isinstance(
|
217 |
+
bb_num_channels, List
|
218 |
+
), "bb_num_channels is expected to be a List but {}".format(type(bb_num_channels))
|
219 |
+
# import ipdb; ipdb.set_trace()
|
220 |
+
return model
|
groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/position_encoding-checkpoint.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# DINO
|
8 |
+
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------
|
11 |
+
# Conditional DETR
|
12 |
+
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
13 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Copied from DETR (https://github.com/facebookresearch/detr)
|
16 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
"""
|
20 |
+
Various positional encodings for the transformer.
|
21 |
+
"""
|
22 |
+
import math
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from torch import nn
|
26 |
+
import loralib as lora
|
27 |
+
from groundingdino.util.misc import NestedTensor
|
28 |
+
|
29 |
+
|
30 |
+
class PositionEmbeddingSine(nn.Module):
|
31 |
+
"""
|
32 |
+
This is a more standard version of the position embedding, very similar to the one
|
33 |
+
used by the Attention is all you need paper, generalized to work on images.
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
37 |
+
super().__init__()
|
38 |
+
self.num_pos_feats = num_pos_feats
|
39 |
+
self.temperature = temperature
|
40 |
+
self.normalize = normalize
|
41 |
+
if scale is not None and normalize is False:
|
42 |
+
raise ValueError("normalize should be True if scale is passed")
|
43 |
+
if scale is None:
|
44 |
+
scale = 2 * math.pi
|
45 |
+
self.scale = scale
|
46 |
+
|
47 |
+
def forward(self, tensor_list: NestedTensor):
|
48 |
+
x = tensor_list.tensors
|
49 |
+
mask = tensor_list.mask
|
50 |
+
assert mask is not None
|
51 |
+
not_mask = ~mask
|
52 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
53 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
54 |
+
if self.normalize:
|
55 |
+
eps = 1e-6
|
56 |
+
# if os.environ.get("SHILONG_AMP", None) == '1':
|
57 |
+
# eps = 1e-4
|
58 |
+
# else:
|
59 |
+
# eps = 1e-6
|
60 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
61 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
62 |
+
|
63 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
64 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
65 |
+
|
66 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
67 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
68 |
+
pos_x = torch.stack(
|
69 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
70 |
+
).flatten(3)
|
71 |
+
pos_y = torch.stack(
|
72 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
73 |
+
).flatten(3)
|
74 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
75 |
+
return pos
|
76 |
+
|
77 |
+
|
78 |
+
class PositionEmbeddingSineHW(nn.Module):
|
79 |
+
"""
|
80 |
+
This is a more standard version of the position embedding, very similar to the one
|
81 |
+
used by the Attention is all you need paper, generalized to work on images.
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self, num_pos_feats=64, temperatureH=10000, temperatureW=10000, normalize=False, scale=None
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
self.num_pos_feats = num_pos_feats
|
89 |
+
self.temperatureH = temperatureH
|
90 |
+
self.temperatureW = temperatureW
|
91 |
+
self.normalize = normalize
|
92 |
+
if scale is not None and normalize is False:
|
93 |
+
raise ValueError("normalize should be True if scale is passed")
|
94 |
+
if scale is None:
|
95 |
+
scale = 2 * math.pi
|
96 |
+
self.scale = scale
|
97 |
+
|
98 |
+
def forward(self, tensor_list: NestedTensor):
|
99 |
+
x = tensor_list.tensors
|
100 |
+
mask = tensor_list.mask
|
101 |
+
assert mask is not None
|
102 |
+
not_mask = ~mask
|
103 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
104 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
105 |
+
|
106 |
+
# import ipdb; ipdb.set_trace()
|
107 |
+
|
108 |
+
if self.normalize:
|
109 |
+
eps = 1e-6
|
110 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
111 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
112 |
+
|
113 |
+
dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
114 |
+
dim_tx = self.temperatureW ** (2 * (torch.div(dim_tx, 2, rounding_mode='floor')) / self.num_pos_feats)
|
115 |
+
pos_x = x_embed[:, :, :, None] / dim_tx
|
116 |
+
|
117 |
+
dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
118 |
+
dim_ty = self.temperatureH ** (2 * (torch.div(dim_ty, 2, rounding_mode='floor')) / self.num_pos_feats)
|
119 |
+
pos_y = y_embed[:, :, :, None] / dim_ty
|
120 |
+
|
121 |
+
pos_x = torch.stack(
|
122 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
123 |
+
).flatten(3)
|
124 |
+
pos_y = torch.stack(
|
125 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
126 |
+
).flatten(3)
|
127 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
128 |
+
|
129 |
+
# import ipdb; ipdb.set_trace()
|
130 |
+
|
131 |
+
return pos
|
132 |
+
|
133 |
+
|
134 |
+
class PositionEmbeddingLearned(nn.Module):
|
135 |
+
"""
|
136 |
+
Absolute pos embedding, learned.
|
137 |
+
"""
|
138 |
+
|
139 |
+
def __init__(self, num_pos_feats=256):
|
140 |
+
super().__init__()
|
141 |
+
self.row_embed = nn.Embedding(50, num_pos_feats)
|
142 |
+
self.col_embed = nn.Embedding(50, num_pos_feats)
|
143 |
+
self.reset_parameters()
|
144 |
+
|
145 |
+
def reset_parameters(self):
|
146 |
+
nn.init.uniform_(self.row_embed.weight)
|
147 |
+
nn.init.uniform_(self.col_embed.weight)
|
148 |
+
|
149 |
+
def forward(self, tensor_list: NestedTensor):
|
150 |
+
x = tensor_list.tensors
|
151 |
+
h, w = x.shape[-2:]
|
152 |
+
i = torch.arange(w, device=x.device)
|
153 |
+
j = torch.arange(h, device=x.device)
|
154 |
+
x_emb = self.col_embed(i)
|
155 |
+
y_emb = self.row_embed(j)
|
156 |
+
pos = (
|
157 |
+
torch.cat(
|
158 |
+
[
|
159 |
+
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
160 |
+
y_emb.unsqueeze(1).repeat(1, w, 1),
|
161 |
+
],
|
162 |
+
dim=-1,
|
163 |
+
)
|
164 |
+
.permute(2, 0, 1)
|
165 |
+
.unsqueeze(0)
|
166 |
+
.repeat(x.shape[0], 1, 1, 1)
|
167 |
+
)
|
168 |
+
return pos
|
169 |
+
|
170 |
+
|
171 |
+
def build_position_encoding(args):
|
172 |
+
N_steps = args.hidden_dim // 2
|
173 |
+
if args.position_embedding in ("v2", "sine"):
|
174 |
+
# TODO find a better way of exposing other arguments
|
175 |
+
position_embedding = PositionEmbeddingSineHW(
|
176 |
+
N_steps,
|
177 |
+
temperatureH=args.pe_temperatureH,
|
178 |
+
temperatureW=args.pe_temperatureW,
|
179 |
+
normalize=True,
|
180 |
+
)
|
181 |
+
elif args.position_embedding in ("v3", "learned"):
|
182 |
+
position_embedding = PositionEmbeddingLearned(N_steps)
|
183 |
+
else:
|
184 |
+
raise ValueError(f"not supported {args.position_embedding}")
|
185 |
+
|
186 |
+
return position_embedding
|
groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/swin_transformer-checkpoint.py
ADDED
@@ -0,0 +1,804 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# DINO
|
8 |
+
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# --------------------------------------------------------
|
11 |
+
# modified from https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/master/mmdet/models/backbones/swin_transformer.py
|
12 |
+
# --------------------------------------------------------
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torch.utils.checkpoint as checkpoint
|
19 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
20 |
+
import loralib as lora
|
21 |
+
from groundingdino.util.misc import NestedTensor
|
22 |
+
|
23 |
+
|
24 |
+
class Mlp(nn.Module):
|
25 |
+
"""Multilayer perceptron."""
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
|
29 |
+
):
|
30 |
+
super().__init__()
|
31 |
+
out_features = out_features or in_features
|
32 |
+
hidden_features = hidden_features or in_features
|
33 |
+
r = 16
|
34 |
+
self.fc1 = lora.Linear(in_features, hidden_features , r=r)
|
35 |
+
self.act = act_layer()
|
36 |
+
self.fc2 = lora.Linear(hidden_features, out_features , r=r)
|
37 |
+
self.drop = nn.Dropout(drop)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.fc1(x)
|
41 |
+
x = self.act(x)
|
42 |
+
x = self.drop(x)
|
43 |
+
x = self.fc2(x)
|
44 |
+
x = self.drop(x)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
def window_partition(x, window_size):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
x: (B, H, W, C)
|
52 |
+
window_size (int): window size
|
53 |
+
Returns:
|
54 |
+
windows: (num_windows*B, window_size, window_size, C)
|
55 |
+
"""
|
56 |
+
B, H, W, C = x.shape
|
57 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
58 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
59 |
+
return windows
|
60 |
+
|
61 |
+
|
62 |
+
def window_reverse(windows, window_size, H, W):
|
63 |
+
"""
|
64 |
+
Args:
|
65 |
+
windows: (num_windows*B, window_size, window_size, C)
|
66 |
+
window_size (int): Window size
|
67 |
+
H (int): Height of image
|
68 |
+
W (int): Width of image
|
69 |
+
Returns:
|
70 |
+
x: (B, H, W, C)
|
71 |
+
"""
|
72 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
73 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
74 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
class WindowAttention(nn.Module):
|
79 |
+
"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
80 |
+
It supports both of shifted and non-shifted window.
|
81 |
+
Args:
|
82 |
+
dim (int): Number of input channels.
|
83 |
+
window_size (tuple[int]): The height and width of the window.
|
84 |
+
num_heads (int): Number of attention heads.
|
85 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
86 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
87 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
88 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
dim,
|
94 |
+
window_size,
|
95 |
+
num_heads,
|
96 |
+
qkv_bias=True,
|
97 |
+
qk_scale=None,
|
98 |
+
attn_drop=0.0,
|
99 |
+
proj_drop=0.0,
|
100 |
+
):
|
101 |
+
|
102 |
+
super().__init__()
|
103 |
+
self.dim = dim
|
104 |
+
self.window_size = window_size # Wh, Ww
|
105 |
+
self.num_heads = num_heads
|
106 |
+
head_dim = dim // num_heads
|
107 |
+
self.scale = qk_scale or head_dim**-0.5
|
108 |
+
r =16
|
109 |
+
# define a parameter table of relative position bias
|
110 |
+
self.relative_position_bias_table = nn.Parameter(
|
111 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
112 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
113 |
+
|
114 |
+
# get pair-wise relative position index for each token inside the window
|
115 |
+
coords_h = torch.arange(self.window_size[0])
|
116 |
+
coords_w = torch.arange(self.window_size[1])
|
117 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
118 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
119 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
120 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
121 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
122 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
123 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
124 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
125 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
126 |
+
|
127 |
+
self.qkv = lora.Linear(dim, dim * 3,r=r , bias=qkv_bias)
|
128 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
129 |
+
self.proj = lora.Linear(dim, dim , r=r)
|
130 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
131 |
+
|
132 |
+
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
133 |
+
self.softmax = nn.Softmax(dim=-1)
|
134 |
+
|
135 |
+
def forward(self, x, mask=None):
|
136 |
+
"""Forward function.
|
137 |
+
Args:
|
138 |
+
x: input features with shape of (num_windows*B, N, C)
|
139 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
140 |
+
"""
|
141 |
+
B_, N, C = x.shape
|
142 |
+
qkv = (
|
143 |
+
self.qkv(x)
|
144 |
+
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
|
145 |
+
.permute(2, 0, 3, 1, 4)
|
146 |
+
)
|
147 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
148 |
+
|
149 |
+
q = q * self.scale
|
150 |
+
attn = q @ k.transpose(-2, -1)
|
151 |
+
|
152 |
+
relative_position_bias = self.relative_position_bias_table[
|
153 |
+
self.relative_position_index.view(-1)
|
154 |
+
].view(
|
155 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
156 |
+
) # Wh*Ww,Wh*Ww,nH
|
157 |
+
relative_position_bias = relative_position_bias.permute(
|
158 |
+
2, 0, 1
|
159 |
+
).contiguous() # nH, Wh*Ww, Wh*Ww
|
160 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
161 |
+
|
162 |
+
if mask is not None:
|
163 |
+
nW = mask.shape[0]
|
164 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
165 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
166 |
+
attn = self.softmax(attn)
|
167 |
+
else:
|
168 |
+
attn = self.softmax(attn)
|
169 |
+
|
170 |
+
attn = self.attn_drop(attn)
|
171 |
+
|
172 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
173 |
+
x = self.proj(x)
|
174 |
+
x = self.proj_drop(x)
|
175 |
+
return x
|
176 |
+
|
177 |
+
|
178 |
+
class SwinTransformerBlock(nn.Module):
|
179 |
+
"""Swin Transformer Block.
|
180 |
+
Args:
|
181 |
+
dim (int): Number of input channels.
|
182 |
+
num_heads (int): Number of attention heads.
|
183 |
+
window_size (int): Window size.
|
184 |
+
shift_size (int): Shift size for SW-MSA.
|
185 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
186 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
187 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
188 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
189 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
190 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
191 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
192 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
193 |
+
"""
|
194 |
+
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
dim,
|
198 |
+
num_heads,
|
199 |
+
window_size=7,
|
200 |
+
shift_size=0,
|
201 |
+
mlp_ratio=4.0,
|
202 |
+
qkv_bias=True,
|
203 |
+
qk_scale=None,
|
204 |
+
drop=0.0,
|
205 |
+
attn_drop=0.0,
|
206 |
+
drop_path=0.0,
|
207 |
+
act_layer=nn.GELU,
|
208 |
+
norm_layer=nn.LayerNorm,
|
209 |
+
):
|
210 |
+
super().__init__()
|
211 |
+
self.dim = dim
|
212 |
+
self.num_heads = num_heads
|
213 |
+
self.window_size = window_size
|
214 |
+
self.shift_size = shift_size
|
215 |
+
self.mlp_ratio = mlp_ratio
|
216 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
217 |
+
|
218 |
+
self.norm1 = norm_layer(dim)
|
219 |
+
self.attn = WindowAttention(
|
220 |
+
dim,
|
221 |
+
window_size=to_2tuple(self.window_size),
|
222 |
+
num_heads=num_heads,
|
223 |
+
qkv_bias=qkv_bias,
|
224 |
+
qk_scale=qk_scale,
|
225 |
+
attn_drop=attn_drop,
|
226 |
+
proj_drop=drop,
|
227 |
+
)
|
228 |
+
|
229 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
230 |
+
self.norm2 = norm_layer(dim)
|
231 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
232 |
+
self.mlp = Mlp(
|
233 |
+
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
|
234 |
+
)
|
235 |
+
|
236 |
+
self.H = None
|
237 |
+
self.W = None
|
238 |
+
|
239 |
+
def forward(self, x, mask_matrix):
|
240 |
+
"""Forward function.
|
241 |
+
Args:
|
242 |
+
x: Input feature, tensor size (B, H*W, C).
|
243 |
+
H, W: Spatial resolution of the input feature.
|
244 |
+
mask_matrix: Attention mask for cyclic shift.
|
245 |
+
"""
|
246 |
+
B, L, C = x.shape
|
247 |
+
H, W = self.H, self.W
|
248 |
+
assert L == H * W, "input feature has wrong size"
|
249 |
+
|
250 |
+
shortcut = x
|
251 |
+
x = self.norm1(x)
|
252 |
+
x = x.view(B, H, W, C)
|
253 |
+
|
254 |
+
# pad feature maps to multiples of window size
|
255 |
+
pad_l = pad_t = 0
|
256 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
257 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
258 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
259 |
+
_, Hp, Wp, _ = x.shape
|
260 |
+
|
261 |
+
# cyclic shift
|
262 |
+
if self.shift_size > 0:
|
263 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
264 |
+
attn_mask = mask_matrix
|
265 |
+
else:
|
266 |
+
shifted_x = x
|
267 |
+
attn_mask = None
|
268 |
+
|
269 |
+
# partition windows
|
270 |
+
x_windows = window_partition(
|
271 |
+
shifted_x, self.window_size
|
272 |
+
) # nW*B, window_size, window_size, C
|
273 |
+
x_windows = x_windows.view(
|
274 |
+
-1, self.window_size * self.window_size, C
|
275 |
+
) # nW*B, window_size*window_size, C
|
276 |
+
|
277 |
+
# W-MSA/SW-MSA
|
278 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
279 |
+
|
280 |
+
# merge windows
|
281 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
282 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
283 |
+
|
284 |
+
# reverse cyclic shift
|
285 |
+
if self.shift_size > 0:
|
286 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
287 |
+
else:
|
288 |
+
x = shifted_x
|
289 |
+
|
290 |
+
if pad_r > 0 or pad_b > 0:
|
291 |
+
x = x[:, :H, :W, :].contiguous()
|
292 |
+
|
293 |
+
x = x.view(B, H * W, C)
|
294 |
+
|
295 |
+
# FFN
|
296 |
+
x = shortcut + self.drop_path(x)
|
297 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
298 |
+
|
299 |
+
return x
|
300 |
+
|
301 |
+
|
302 |
+
class PatchMerging(nn.Module):
|
303 |
+
"""Patch Merging Layer
|
304 |
+
Args:
|
305 |
+
dim (int): Number of input channels.
|
306 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
307 |
+
"""
|
308 |
+
|
309 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
310 |
+
super().__init__()
|
311 |
+
self.dim = dim
|
312 |
+
r = 16
|
313 |
+
self.reduction = lora.Linear(4 * dim, 2 * dim, r=r, bias=False)
|
314 |
+
self.norm = norm_layer(4 * dim)
|
315 |
+
|
316 |
+
def forward(self, x, H, W):
|
317 |
+
"""Forward function.
|
318 |
+
Args:
|
319 |
+
x: Input feature, tensor size (B, H*W, C).
|
320 |
+
H, W: Spatial resolution of the input feature.
|
321 |
+
"""
|
322 |
+
B, L, C = x.shape
|
323 |
+
assert L == H * W, "input feature has wrong size"
|
324 |
+
|
325 |
+
x = x.view(B, H, W, C)
|
326 |
+
|
327 |
+
# padding
|
328 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
329 |
+
if pad_input:
|
330 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
331 |
+
|
332 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
333 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
334 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
335 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
336 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
337 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
338 |
+
|
339 |
+
x = self.norm(x)
|
340 |
+
x = self.reduction(x)
|
341 |
+
|
342 |
+
return x
|
343 |
+
|
344 |
+
|
345 |
+
class BasicLayer(nn.Module):
|
346 |
+
"""A basic Swin Transformer layer for one stage.
|
347 |
+
Args:
|
348 |
+
dim (int): Number of feature channels
|
349 |
+
depth (int): Depths of this stage.
|
350 |
+
num_heads (int): Number of attention head.
|
351 |
+
window_size (int): Local window size. Default: 7.
|
352 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
353 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
354 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
355 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
356 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
357 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
358 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
359 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
360 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
361 |
+
"""
|
362 |
+
|
363 |
+
def __init__(
|
364 |
+
self,
|
365 |
+
dim,
|
366 |
+
depth,
|
367 |
+
num_heads,
|
368 |
+
window_size=7,
|
369 |
+
mlp_ratio=4.0,
|
370 |
+
qkv_bias=True,
|
371 |
+
qk_scale=None,
|
372 |
+
drop=0.0,
|
373 |
+
attn_drop=0.0,
|
374 |
+
drop_path=0.0,
|
375 |
+
norm_layer=nn.LayerNorm,
|
376 |
+
downsample=None,
|
377 |
+
use_checkpoint=False,
|
378 |
+
):
|
379 |
+
super().__init__()
|
380 |
+
self.window_size = window_size
|
381 |
+
self.shift_size = window_size // 2
|
382 |
+
self.depth = depth
|
383 |
+
self.use_checkpoint = use_checkpoint
|
384 |
+
|
385 |
+
# build blocks
|
386 |
+
self.blocks = nn.ModuleList(
|
387 |
+
[
|
388 |
+
SwinTransformerBlock(
|
389 |
+
dim=dim,
|
390 |
+
num_heads=num_heads,
|
391 |
+
window_size=window_size,
|
392 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
393 |
+
mlp_ratio=mlp_ratio,
|
394 |
+
qkv_bias=qkv_bias,
|
395 |
+
qk_scale=qk_scale,
|
396 |
+
drop=drop,
|
397 |
+
attn_drop=attn_drop,
|
398 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
399 |
+
norm_layer=norm_layer,
|
400 |
+
)
|
401 |
+
for i in range(depth)
|
402 |
+
]
|
403 |
+
)
|
404 |
+
|
405 |
+
# patch merging layer
|
406 |
+
if downsample is not None:
|
407 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
408 |
+
else:
|
409 |
+
self.downsample = None
|
410 |
+
|
411 |
+
def forward(self, x, H, W):
|
412 |
+
"""Forward function.
|
413 |
+
Args:
|
414 |
+
x: Input feature, tensor size (B, H*W, C).
|
415 |
+
H, W: Spatial resolution of the input feature.
|
416 |
+
"""
|
417 |
+
|
418 |
+
# calculate attention mask for SW-MSA
|
419 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
420 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
421 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
422 |
+
h_slices = (
|
423 |
+
slice(0, -self.window_size),
|
424 |
+
slice(-self.window_size, -self.shift_size),
|
425 |
+
slice(-self.shift_size, None),
|
426 |
+
)
|
427 |
+
w_slices = (
|
428 |
+
slice(0, -self.window_size),
|
429 |
+
slice(-self.window_size, -self.shift_size),
|
430 |
+
slice(-self.shift_size, None),
|
431 |
+
)
|
432 |
+
cnt = 0
|
433 |
+
for h in h_slices:
|
434 |
+
for w in w_slices:
|
435 |
+
img_mask[:, h, w, :] = cnt
|
436 |
+
cnt += 1
|
437 |
+
|
438 |
+
mask_windows = window_partition(
|
439 |
+
img_mask, self.window_size
|
440 |
+
) # nW, window_size, window_size, 1
|
441 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
442 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
443 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
|
444 |
+
attn_mask == 0, float(0.0)
|
445 |
+
)
|
446 |
+
|
447 |
+
for blk in self.blocks:
|
448 |
+
blk.H, blk.W = H, W
|
449 |
+
if self.use_checkpoint:
|
450 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
451 |
+
else:
|
452 |
+
x = blk(x, attn_mask)
|
453 |
+
if self.downsample is not None:
|
454 |
+
x_down = self.downsample(x, H, W)
|
455 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
456 |
+
return x, H, W, x_down, Wh, Ww
|
457 |
+
else:
|
458 |
+
return x, H, W, x, H, W
|
459 |
+
|
460 |
+
|
461 |
+
class PatchEmbed(nn.Module):
|
462 |
+
"""Image to Patch Embedding
|
463 |
+
Args:
|
464 |
+
patch_size (int): Patch token size. Default: 4.
|
465 |
+
in_chans (int): Number of input image channels. Default: 3.
|
466 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
467 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
468 |
+
"""
|
469 |
+
|
470 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
471 |
+
super().__init__()
|
472 |
+
patch_size = to_2tuple(patch_size)
|
473 |
+
self.patch_size = patch_size
|
474 |
+
|
475 |
+
self.in_chans = in_chans
|
476 |
+
self.embed_dim = embed_dim
|
477 |
+
|
478 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
479 |
+
if norm_layer is not None:
|
480 |
+
self.norm = norm_layer(embed_dim)
|
481 |
+
else:
|
482 |
+
self.norm = None
|
483 |
+
|
484 |
+
def forward(self, x):
|
485 |
+
"""Forward function."""
|
486 |
+
# padding
|
487 |
+
_, _, H, W = x.size()
|
488 |
+
if W % self.patch_size[1] != 0:
|
489 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
490 |
+
if H % self.patch_size[0] != 0:
|
491 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
492 |
+
|
493 |
+
x = self.proj(x) # B C Wh Ww
|
494 |
+
if self.norm is not None:
|
495 |
+
Wh, Ww = x.size(2), x.size(3)
|
496 |
+
x = x.flatten(2).transpose(1, 2)
|
497 |
+
x = self.norm(x)
|
498 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
499 |
+
|
500 |
+
return x
|
501 |
+
|
502 |
+
|
503 |
+
class SwinTransformer(nn.Module):
|
504 |
+
"""Swin Transformer backbone.
|
505 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
506 |
+
https://arxiv.org/pdf/2103.14030
|
507 |
+
Args:
|
508 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
509 |
+
used in absolute postion embedding. Default 224.
|
510 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
511 |
+
in_chans (int): Number of input image channels. Default: 3.
|
512 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
513 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
514 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
515 |
+
window_size (int): Window size. Default: 7.
|
516 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
517 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
518 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
519 |
+
drop_rate (float): Dropout rate.
|
520 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
521 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
522 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
523 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
524 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
525 |
+
out_indices (Sequence[int]): Output from which stages.
|
526 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
527 |
+
-1 means not freezing any parameters.
|
528 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
529 |
+
dilation (bool): if True, the output size if 16x downsample, ow 32x downsample.
|
530 |
+
"""
|
531 |
+
|
532 |
+
def __init__(
|
533 |
+
self,
|
534 |
+
pretrain_img_size=224,
|
535 |
+
patch_size=4,
|
536 |
+
in_chans=3,
|
537 |
+
embed_dim=96,
|
538 |
+
depths=[2, 2, 6, 2],
|
539 |
+
num_heads=[3, 6, 12, 24],
|
540 |
+
window_size=7,
|
541 |
+
mlp_ratio=4.0,
|
542 |
+
qkv_bias=True,
|
543 |
+
qk_scale=None,
|
544 |
+
drop_rate=0.0,
|
545 |
+
attn_drop_rate=0.0,
|
546 |
+
drop_path_rate=0.2,
|
547 |
+
norm_layer=nn.LayerNorm,
|
548 |
+
ape=False,
|
549 |
+
patch_norm=True,
|
550 |
+
out_indices=(0, 1, 2, 3),
|
551 |
+
frozen_stages=-1,
|
552 |
+
dilation=False,
|
553 |
+
use_checkpoint=False,
|
554 |
+
):
|
555 |
+
super().__init__()
|
556 |
+
|
557 |
+
self.pretrain_img_size = pretrain_img_size
|
558 |
+
self.num_layers = len(depths)
|
559 |
+
self.embed_dim = embed_dim
|
560 |
+
self.ape = ape
|
561 |
+
self.patch_norm = patch_norm
|
562 |
+
self.out_indices = out_indices
|
563 |
+
self.frozen_stages = frozen_stages
|
564 |
+
self.dilation = dilation
|
565 |
+
|
566 |
+
# if use_checkpoint:
|
567 |
+
# print("use_checkpoint!!!!!!!!!!!!!!!!!!!!!!!!")
|
568 |
+
|
569 |
+
# split image into non-overlapping patches
|
570 |
+
self.patch_embed = PatchEmbed(
|
571 |
+
patch_size=patch_size,
|
572 |
+
in_chans=in_chans,
|
573 |
+
embed_dim=embed_dim,
|
574 |
+
norm_layer=norm_layer if self.patch_norm else None,
|
575 |
+
)
|
576 |
+
|
577 |
+
# absolute position embedding
|
578 |
+
if self.ape:
|
579 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
580 |
+
patch_size = to_2tuple(patch_size)
|
581 |
+
patches_resolution = [
|
582 |
+
pretrain_img_size[0] // patch_size[0],
|
583 |
+
pretrain_img_size[1] // patch_size[1],
|
584 |
+
]
|
585 |
+
|
586 |
+
self.absolute_pos_embed = nn.Parameter(
|
587 |
+
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
|
588 |
+
)
|
589 |
+
trunc_normal_(self.absolute_pos_embed, std=0.02)
|
590 |
+
|
591 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
592 |
+
|
593 |
+
# stochastic depth
|
594 |
+
dpr = [
|
595 |
+
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
596 |
+
] # stochastic depth decay rule
|
597 |
+
|
598 |
+
# build layers
|
599 |
+
self.layers = nn.ModuleList()
|
600 |
+
# prepare downsample list
|
601 |
+
downsamplelist = [PatchMerging for i in range(self.num_layers)]
|
602 |
+
downsamplelist[-1] = None
|
603 |
+
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
|
604 |
+
if self.dilation:
|
605 |
+
downsamplelist[-2] = None
|
606 |
+
num_features[-1] = int(embed_dim * 2 ** (self.num_layers - 1)) // 2
|
607 |
+
for i_layer in range(self.num_layers):
|
608 |
+
layer = BasicLayer(
|
609 |
+
# dim=int(embed_dim * 2 ** i_layer),
|
610 |
+
dim=num_features[i_layer],
|
611 |
+
depth=depths[i_layer],
|
612 |
+
num_heads=num_heads[i_layer],
|
613 |
+
window_size=window_size,
|
614 |
+
mlp_ratio=mlp_ratio,
|
615 |
+
qkv_bias=qkv_bias,
|
616 |
+
qk_scale=qk_scale,
|
617 |
+
drop=drop_rate,
|
618 |
+
attn_drop=attn_drop_rate,
|
619 |
+
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
|
620 |
+
norm_layer=norm_layer,
|
621 |
+
# downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
622 |
+
downsample=downsamplelist[i_layer],
|
623 |
+
use_checkpoint=use_checkpoint,
|
624 |
+
)
|
625 |
+
self.layers.append(layer)
|
626 |
+
|
627 |
+
# num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
628 |
+
self.num_features = num_features
|
629 |
+
|
630 |
+
# add a norm layer for each output
|
631 |
+
for i_layer in out_indices:
|
632 |
+
layer = norm_layer(num_features[i_layer])
|
633 |
+
layer_name = f"norm{i_layer}"
|
634 |
+
self.add_module(layer_name, layer)
|
635 |
+
|
636 |
+
self._freeze_stages()
|
637 |
+
|
638 |
+
def _freeze_stages(self):
|
639 |
+
if self.frozen_stages >= 0:
|
640 |
+
self.patch_embed.eval()
|
641 |
+
for param in self.patch_embed.parameters():
|
642 |
+
param.requires_grad = False
|
643 |
+
|
644 |
+
if self.frozen_stages >= 1 and self.ape:
|
645 |
+
self.absolute_pos_embed.requires_grad = False
|
646 |
+
|
647 |
+
if self.frozen_stages >= 2:
|
648 |
+
self.pos_drop.eval()
|
649 |
+
for i in range(0, self.frozen_stages - 1):
|
650 |
+
m = self.layers[i]
|
651 |
+
m.eval()
|
652 |
+
for param in m.parameters():
|
653 |
+
param.requires_grad = False
|
654 |
+
|
655 |
+
# def init_weights(self, pretrained=None):
|
656 |
+
# """Initialize the weights in backbone.
|
657 |
+
# Args:
|
658 |
+
# pretrained (str, optional): Path to pre-trained weights.
|
659 |
+
# Defaults to None.
|
660 |
+
# """
|
661 |
+
|
662 |
+
# def _init_weights(m):
|
663 |
+
# if isinstance(m, nn.Linear):
|
664 |
+
# trunc_normal_(m.weight, std=.02)
|
665 |
+
# if isinstance(m, nn.Linear) and m.bias is not None:
|
666 |
+
# nn.init.constant_(m.bias, 0)
|
667 |
+
# elif isinstance(m, nn.LayerNorm):
|
668 |
+
# nn.init.constant_(m.bias, 0)
|
669 |
+
# nn.init.constant_(m.weight, 1.0)
|
670 |
+
|
671 |
+
# if isinstance(pretrained, str):
|
672 |
+
# self.apply(_init_weights)
|
673 |
+
# logger = get_root_logger()
|
674 |
+
# load_checkpoint(self, pretrained, strict=False, logger=logger)
|
675 |
+
# elif pretrained is None:
|
676 |
+
# self.apply(_init_weights)
|
677 |
+
# else:
|
678 |
+
# raise TypeError('pretrained must be a str or None')
|
679 |
+
|
680 |
+
def forward_raw(self, x):
|
681 |
+
"""Forward function."""
|
682 |
+
x = self.patch_embed(x)
|
683 |
+
|
684 |
+
Wh, Ww = x.size(2), x.size(3)
|
685 |
+
if self.ape:
|
686 |
+
# interpolate the position embedding to the corresponding size
|
687 |
+
absolute_pos_embed = F.interpolate(
|
688 |
+
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
689 |
+
)
|
690 |
+
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
691 |
+
else:
|
692 |
+
x = x.flatten(2).transpose(1, 2)
|
693 |
+
x = self.pos_drop(x)
|
694 |
+
|
695 |
+
outs = []
|
696 |
+
for i in range(self.num_layers):
|
697 |
+
layer = self.layers[i]
|
698 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
699 |
+
# import ipdb; ipdb.set_trace()
|
700 |
+
|
701 |
+
if i in self.out_indices:
|
702 |
+
norm_layer = getattr(self, f"norm{i}")
|
703 |
+
x_out = norm_layer(x_out)
|
704 |
+
|
705 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
706 |
+
outs.append(out)
|
707 |
+
# in:
|
708 |
+
# torch.Size([2, 3, 1024, 1024])
|
709 |
+
# outs:
|
710 |
+
# [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
|
711 |
+
# torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
|
712 |
+
return tuple(outs)
|
713 |
+
|
714 |
+
def forward(self, tensor_list: NestedTensor):
|
715 |
+
x = tensor_list.tensors
|
716 |
+
|
717 |
+
"""Forward function."""
|
718 |
+
x = self.patch_embed(x)
|
719 |
+
|
720 |
+
Wh, Ww = x.size(2), x.size(3)
|
721 |
+
if self.ape:
|
722 |
+
# interpolate the position embedding to the corresponding size
|
723 |
+
absolute_pos_embed = F.interpolate(
|
724 |
+
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
725 |
+
)
|
726 |
+
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
727 |
+
else:
|
728 |
+
x = x.flatten(2).transpose(1, 2)
|
729 |
+
x = self.pos_drop(x)
|
730 |
+
|
731 |
+
outs = []
|
732 |
+
for i in range(self.num_layers):
|
733 |
+
layer = self.layers[i]
|
734 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
735 |
+
|
736 |
+
if i in self.out_indices:
|
737 |
+
norm_layer = getattr(self, f"norm{i}")
|
738 |
+
x_out = norm_layer(x_out)
|
739 |
+
|
740 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
741 |
+
outs.append(out)
|
742 |
+
# in:
|
743 |
+
# torch.Size([2, 3, 1024, 1024])
|
744 |
+
# out:
|
745 |
+
# [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
|
746 |
+
# torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
|
747 |
+
|
748 |
+
# collect for nesttensors
|
749 |
+
outs_dict = {}
|
750 |
+
for idx, out_i in enumerate(outs):
|
751 |
+
m = tensor_list.mask
|
752 |
+
assert m is not None
|
753 |
+
mask = F.interpolate(m[None].float(), size=out_i.shape[-2:]).to(torch.bool)[0]
|
754 |
+
outs_dict[idx] = NestedTensor(out_i, mask)
|
755 |
+
|
756 |
+
return outs_dict
|
757 |
+
|
758 |
+
def train(self, mode=True):
|
759 |
+
"""Convert the model into training mode while keep layers freezed."""
|
760 |
+
super(SwinTransformer, self).train(mode)
|
761 |
+
self._freeze_stages()
|
762 |
+
|
763 |
+
|
764 |
+
def build_swin_transformer(modelname, pretrain_img_size, **kw):
|
765 |
+
assert modelname in [
|
766 |
+
"swin_T_224_1k",
|
767 |
+
"swin_B_224_22k",
|
768 |
+
"swin_B_384_22k",
|
769 |
+
"swin_L_224_22k",
|
770 |
+
"swin_L_384_22k",
|
771 |
+
]
|
772 |
+
|
773 |
+
model_para_dict = {
|
774 |
+
"swin_T_224_1k": dict(
|
775 |
+
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7
|
776 |
+
),
|
777 |
+
"swin_B_224_22k": dict(
|
778 |
+
embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7
|
779 |
+
),
|
780 |
+
"swin_B_384_22k": dict(
|
781 |
+
embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12
|
782 |
+
),
|
783 |
+
"swin_L_224_22k": dict(
|
784 |
+
embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7
|
785 |
+
),
|
786 |
+
"swin_L_384_22k": dict(
|
787 |
+
embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12
|
788 |
+
),
|
789 |
+
}
|
790 |
+
kw_cgf = model_para_dict[modelname]
|
791 |
+
kw_cgf.update(kw)
|
792 |
+
model = SwinTransformer(pretrain_img_size=pretrain_img_size, **kw_cgf)
|
793 |
+
return model
|
794 |
+
|
795 |
+
|
796 |
+
if __name__ == "__main__":
|
797 |
+
model = build_swin_transformer("swin_L_384_22k", 384, dilation=True)
|
798 |
+
x = torch.rand(2, 3, 1024, 1024)
|
799 |
+
y = model.forward_raw(x)
|
800 |
+
import ipdb
|
801 |
+
|
802 |
+
ipdb.set_trace()
|
803 |
+
x = torch.rand(2, 3, 384, 384)
|
804 |
+
y = model.forward_raw(x)
|
groundingdino/models/GroundingDINO/backbone/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (259 Bytes). View file
|
|
groundingdino/models/GroundingDINO/backbone/__pycache__/backbone.cpython-310.pyc
ADDED
Binary file (6.26 kB). View file
|
|
groundingdino/models/GroundingDINO/backbone/__pycache__/position_encoding.cpython-310.pyc
ADDED
Binary file (5.18 kB). View file
|
|
groundingdino/models/GroundingDINO/backbone/__pycache__/swin_transformer.cpython-310.pyc
ADDED
Binary file (20.7 kB). View file
|
|
groundingdino/models/GroundingDINO/backbone/backbone.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Conditional DETR
|
8 |
+
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------
|
11 |
+
# Copied from DETR (https://github.com/facebookresearch/detr)
|
12 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
13 |
+
# ------------------------------------------------------------------------
|
14 |
+
|
15 |
+
|
16 |
+
# Backbone modules.
|
17 |
+
|
18 |
+
from typing import Dict, List
|
19 |
+
import loralib as lora
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
import torchvision
|
23 |
+
from torch import nn
|
24 |
+
from torchvision.models._utils import IntermediateLayerGetter
|
25 |
+
import loralib as lora
|
26 |
+
from groundingdino.util.misc import NestedTensor, clean_state_dict, is_main_process
|
27 |
+
|
28 |
+
from .position_encoding import build_position_encoding
|
29 |
+
from .swin_transformer import build_swin_transformer
|
30 |
+
|
31 |
+
|
32 |
+
class FrozenBatchNorm2d(torch.nn.Module):
|
33 |
+
"""
|
34 |
+
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
35 |
+
|
36 |
+
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
|
37 |
+
without which any other models than torchvision.models.resnet[18,34,50,101]
|
38 |
+
produce nans.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, n):
|
42 |
+
super(FrozenBatchNorm2d, self).__init__()
|
43 |
+
self.register_buffer("weight", torch.ones(n))
|
44 |
+
self.register_buffer("bias", torch.zeros(n))
|
45 |
+
self.register_buffer("running_mean", torch.zeros(n))
|
46 |
+
self.register_buffer("running_var", torch.ones(n))
|
47 |
+
|
48 |
+
def _load_from_state_dict(
|
49 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
50 |
+
):
|
51 |
+
num_batches_tracked_key = prefix + "num_batches_tracked"
|
52 |
+
if num_batches_tracked_key in state_dict:
|
53 |
+
del state_dict[num_batches_tracked_key]
|
54 |
+
|
55 |
+
super(FrozenBatchNorm2d, self)._load_from_state_dict(
|
56 |
+
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
57 |
+
)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
# move reshapes to the beginning
|
61 |
+
# to make it fuser-friendly
|
62 |
+
w = self.weight.reshape(1, -1, 1, 1)
|
63 |
+
b = self.bias.reshape(1, -1, 1, 1)
|
64 |
+
rv = self.running_var.reshape(1, -1, 1, 1)
|
65 |
+
rm = self.running_mean.reshape(1, -1, 1, 1)
|
66 |
+
eps = 1e-5
|
67 |
+
scale = w * (rv + eps).rsqrt()
|
68 |
+
bias = b - rm * scale
|
69 |
+
return x * scale + bias
|
70 |
+
|
71 |
+
|
72 |
+
class BackboneBase(nn.Module):
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
backbone: nn.Module,
|
76 |
+
train_backbone: bool,
|
77 |
+
num_channels: int,
|
78 |
+
return_interm_indices: list,
|
79 |
+
):
|
80 |
+
super().__init__()
|
81 |
+
for name, parameter in backbone.named_parameters():
|
82 |
+
if (
|
83 |
+
not train_backbone
|
84 |
+
or "layer2" not in name
|
85 |
+
and "layer3" not in name
|
86 |
+
and "layer4" not in name
|
87 |
+
):
|
88 |
+
parameter.requires_grad_(False)
|
89 |
+
|
90 |
+
return_layers = {}
|
91 |
+
for idx, layer_index in enumerate(return_interm_indices):
|
92 |
+
return_layers.update(
|
93 |
+
{"layer{}".format(5 - len(return_interm_indices) + idx): "{}".format(layer_index)}
|
94 |
+
)
|
95 |
+
|
96 |
+
# if len:
|
97 |
+
# if use_stage1_feature:
|
98 |
+
# return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
|
99 |
+
# else:
|
100 |
+
# return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"}
|
101 |
+
# else:
|
102 |
+
# return_layers = {'layer4': "0"}
|
103 |
+
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
|
104 |
+
self.num_channels = num_channels
|
105 |
+
|
106 |
+
def forward(self, tensor_list: NestedTensor):
|
107 |
+
xs = self.body(tensor_list.tensors)
|
108 |
+
out: Dict[str, NestedTensor] = {}
|
109 |
+
for name, x in xs.items():
|
110 |
+
m = tensor_list.mask
|
111 |
+
assert m is not None
|
112 |
+
mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
113 |
+
out[name] = NestedTensor(x, mask)
|
114 |
+
# import ipdb; ipdb.set_trace()
|
115 |
+
return out
|
116 |
+
|
117 |
+
|
118 |
+
class Backbone(BackboneBase):
|
119 |
+
"""ResNet backbone with frozen BatchNorm."""
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
name: str,
|
124 |
+
train_backbone: bool,
|
125 |
+
dilation: bool,
|
126 |
+
return_interm_indices: list,
|
127 |
+
batch_norm=FrozenBatchNorm2d,
|
128 |
+
):
|
129 |
+
if name in ["resnet18", "resnet34", "resnet50", "resnet101"]:
|
130 |
+
backbone = getattr(torchvision.models, name)(
|
131 |
+
replace_stride_with_dilation=[False, False, dilation],
|
132 |
+
pretrained=is_main_process(),
|
133 |
+
norm_layer=batch_norm,
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
raise NotImplementedError("Why you can get here with name {}".format(name))
|
137 |
+
# num_channels = 512 if name in ('resnet18', 'resnet34') else 2048
|
138 |
+
assert name not in ("resnet18", "resnet34"), "Only resnet50 and resnet101 are available."
|
139 |
+
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
|
140 |
+
num_channels_all = [256, 512, 1024, 2048]
|
141 |
+
num_channels = num_channels_all[4 - len(return_interm_indices) :]
|
142 |
+
super().__init__(backbone, train_backbone, num_channels, return_interm_indices)
|
143 |
+
|
144 |
+
|
145 |
+
class Joiner(nn.Sequential):
|
146 |
+
def __init__(self, backbone, position_embedding):
|
147 |
+
super().__init__(backbone, position_embedding)
|
148 |
+
|
149 |
+
def forward(self, tensor_list: NestedTensor):
|
150 |
+
xs = self[0](tensor_list)
|
151 |
+
out: List[NestedTensor] = []
|
152 |
+
pos = []
|
153 |
+
for name, x in xs.items():
|
154 |
+
out.append(x)
|
155 |
+
# position encoding
|
156 |
+
pos.append(self[1](x).to(x.tensors.dtype))
|
157 |
+
|
158 |
+
return out, pos
|
159 |
+
|
160 |
+
|
161 |
+
def build_backbone(args):
|
162 |
+
"""
|
163 |
+
Useful args:
|
164 |
+
- backbone: backbone name
|
165 |
+
- lr_backbone:
|
166 |
+
- dilation
|
167 |
+
- return_interm_indices: available: [0,1,2,3], [1,2,3], [3]
|
168 |
+
- backbone_freeze_keywords:
|
169 |
+
- use_checkpoint: for swin only for now
|
170 |
+
|
171 |
+
"""
|
172 |
+
position_embedding = build_position_encoding(args)
|
173 |
+
train_backbone = True
|
174 |
+
if not train_backbone:
|
175 |
+
raise ValueError("Please set lr_backbone > 0")
|
176 |
+
return_interm_indices = args.return_interm_indices
|
177 |
+
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
|
178 |
+
args.backbone_freeze_keywords
|
179 |
+
use_checkpoint = getattr(args, "use_checkpoint", False)
|
180 |
+
|
181 |
+
if args.backbone in ["resnet50", "resnet101"]:
|
182 |
+
backbone = Backbone(
|
183 |
+
args.backbone,
|
184 |
+
train_backbone,
|
185 |
+
args.dilation,
|
186 |
+
return_interm_indices,
|
187 |
+
batch_norm=FrozenBatchNorm2d,
|
188 |
+
)
|
189 |
+
bb_num_channels = backbone.num_channels
|
190 |
+
elif args.backbone in [
|
191 |
+
"swin_T_224_1k",
|
192 |
+
"swin_B_224_22k",
|
193 |
+
"swin_B_384_22k",
|
194 |
+
"swin_L_224_22k",
|
195 |
+
"swin_L_384_22k",
|
196 |
+
]:
|
197 |
+
pretrain_img_size = int(args.backbone.split("_")[-2])
|
198 |
+
backbone = build_swin_transformer(
|
199 |
+
args.backbone,
|
200 |
+
pretrain_img_size=pretrain_img_size,
|
201 |
+
out_indices=tuple(return_interm_indices),
|
202 |
+
dilation=False,
|
203 |
+
use_checkpoint=use_checkpoint,
|
204 |
+
)
|
205 |
+
|
206 |
+
bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :]
|
207 |
+
else:
|
208 |
+
raise NotImplementedError("Unknown backbone {}".format(args.backbone))
|
209 |
+
|
210 |
+
assert len(bb_num_channels) == len(
|
211 |
+
return_interm_indices
|
212 |
+
), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}"
|
213 |
+
|
214 |
+
model = Joiner(backbone, position_embedding)
|
215 |
+
model.num_channels = bb_num_channels
|
216 |
+
assert isinstance(
|
217 |
+
bb_num_channels, List
|
218 |
+
), "bb_num_channels is expected to be a List but {}".format(type(bb_num_channels))
|
219 |
+
# import ipdb; ipdb.set_trace()
|
220 |
+
return model
|
groundingdino/models/GroundingDINO/backbone/position_encoding.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# DINO
|
8 |
+
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------
|
11 |
+
# Conditional DETR
|
12 |
+
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
13 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Copied from DETR (https://github.com/facebookresearch/detr)
|
16 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
"""
|
20 |
+
Various positional encodings for the transformer.
|
21 |
+
"""
|
22 |
+
import math
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from torch import nn
|
26 |
+
import loralib as lora
|
27 |
+
from groundingdino.util.misc import NestedTensor
|
28 |
+
|
29 |
+
|
30 |
+
class PositionEmbeddingSine(nn.Module):
|
31 |
+
"""
|
32 |
+
This is a more standard version of the position embedding, very similar to the one
|
33 |
+
used by the Attention is all you need paper, generalized to work on images.
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
37 |
+
super().__init__()
|
38 |
+
self.num_pos_feats = num_pos_feats
|
39 |
+
self.temperature = temperature
|
40 |
+
self.normalize = normalize
|
41 |
+
if scale is not None and normalize is False:
|
42 |
+
raise ValueError("normalize should be True if scale is passed")
|
43 |
+
if scale is None:
|
44 |
+
scale = 2 * math.pi
|
45 |
+
self.scale = scale
|
46 |
+
|
47 |
+
def forward(self, tensor_list: NestedTensor):
|
48 |
+
x = tensor_list.tensors
|
49 |
+
mask = tensor_list.mask
|
50 |
+
assert mask is not None
|
51 |
+
not_mask = ~mask
|
52 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
53 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
54 |
+
if self.normalize:
|
55 |
+
eps = 1e-6
|
56 |
+
# if os.environ.get("SHILONG_AMP", None) == '1':
|
57 |
+
# eps = 1e-4
|
58 |
+
# else:
|
59 |
+
# eps = 1e-6
|
60 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
61 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
62 |
+
|
63 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
64 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
65 |
+
|
66 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
67 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
68 |
+
pos_x = torch.stack(
|
69 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
70 |
+
).flatten(3)
|
71 |
+
pos_y = torch.stack(
|
72 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
73 |
+
).flatten(3)
|
74 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
75 |
+
return pos
|
76 |
+
|
77 |
+
|
78 |
+
class PositionEmbeddingSineHW(nn.Module):
|
79 |
+
"""
|
80 |
+
This is a more standard version of the position embedding, very similar to the one
|
81 |
+
used by the Attention is all you need paper, generalized to work on images.
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self, num_pos_feats=64, temperatureH=10000, temperatureW=10000, normalize=False, scale=None
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
self.num_pos_feats = num_pos_feats
|
89 |
+
self.temperatureH = temperatureH
|
90 |
+
self.temperatureW = temperatureW
|
91 |
+
self.normalize = normalize
|
92 |
+
if scale is not None and normalize is False:
|
93 |
+
raise ValueError("normalize should be True if scale is passed")
|
94 |
+
if scale is None:
|
95 |
+
scale = 2 * math.pi
|
96 |
+
self.scale = scale
|
97 |
+
|
98 |
+
def forward(self, tensor_list: NestedTensor):
|
99 |
+
x = tensor_list.tensors
|
100 |
+
mask = tensor_list.mask
|
101 |
+
assert mask is not None
|
102 |
+
not_mask = ~mask
|
103 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
104 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
105 |
+
|
106 |
+
# import ipdb; ipdb.set_trace()
|
107 |
+
|
108 |
+
if self.normalize:
|
109 |
+
eps = 1e-6
|
110 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
111 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
112 |
+
|
113 |
+
dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
114 |
+
dim_tx = self.temperatureW ** (2 * (torch.div(dim_tx, 2, rounding_mode='floor')) / self.num_pos_feats)
|
115 |
+
pos_x = x_embed[:, :, :, None] / dim_tx
|
116 |
+
|
117 |
+
dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
118 |
+
dim_ty = self.temperatureH ** (2 * (torch.div(dim_ty, 2, rounding_mode='floor')) / self.num_pos_feats)
|
119 |
+
pos_y = y_embed[:, :, :, None] / dim_ty
|
120 |
+
|
121 |
+
pos_x = torch.stack(
|
122 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
123 |
+
).flatten(3)
|
124 |
+
pos_y = torch.stack(
|
125 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
126 |
+
).flatten(3)
|
127 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
128 |
+
|
129 |
+
# import ipdb; ipdb.set_trace()
|
130 |
+
|
131 |
+
return pos
|
132 |
+
|
133 |
+
|
134 |
+
class PositionEmbeddingLearned(nn.Module):
|
135 |
+
"""
|
136 |
+
Absolute pos embedding, learned.
|
137 |
+
"""
|
138 |
+
|
139 |
+
def __init__(self, num_pos_feats=256):
|
140 |
+
super().__init__()
|
141 |
+
self.row_embed = nn.Embedding(50, num_pos_feats)
|
142 |
+
self.col_embed = nn.Embedding(50, num_pos_feats)
|
143 |
+
self.reset_parameters()
|
144 |
+
|
145 |
+
def reset_parameters(self):
|
146 |
+
nn.init.uniform_(self.row_embed.weight)
|
147 |
+
nn.init.uniform_(self.col_embed.weight)
|
148 |
+
|
149 |
+
def forward(self, tensor_list: NestedTensor):
|
150 |
+
x = tensor_list.tensors
|
151 |
+
h, w = x.shape[-2:]
|
152 |
+
i = torch.arange(w, device=x.device)
|
153 |
+
j = torch.arange(h, device=x.device)
|
154 |
+
x_emb = self.col_embed(i)
|
155 |
+
y_emb = self.row_embed(j)
|
156 |
+
pos = (
|
157 |
+
torch.cat(
|
158 |
+
[
|
159 |
+
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
160 |
+
y_emb.unsqueeze(1).repeat(1, w, 1),
|
161 |
+
],
|
162 |
+
dim=-1,
|
163 |
+
)
|
164 |
+
.permute(2, 0, 1)
|
165 |
+
.unsqueeze(0)
|
166 |
+
.repeat(x.shape[0], 1, 1, 1)
|
167 |
+
)
|
168 |
+
return pos
|
169 |
+
|
170 |
+
|
171 |
+
def build_position_encoding(args):
|
172 |
+
N_steps = args.hidden_dim // 2
|
173 |
+
if args.position_embedding in ("v2", "sine"):
|
174 |
+
# TODO find a better way of exposing other arguments
|
175 |
+
position_embedding = PositionEmbeddingSineHW(
|
176 |
+
N_steps,
|
177 |
+
temperatureH=args.pe_temperatureH,
|
178 |
+
temperatureW=args.pe_temperatureW,
|
179 |
+
normalize=True,
|
180 |
+
)
|
181 |
+
elif args.position_embedding in ("v3", "learned"):
|
182 |
+
position_embedding = PositionEmbeddingLearned(N_steps)
|
183 |
+
else:
|
184 |
+
raise ValueError(f"not supported {args.position_embedding}")
|
185 |
+
|
186 |
+
return position_embedding
|
groundingdino/models/GroundingDINO/backbone/swin_transformer.py
ADDED
@@ -0,0 +1,804 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# DINO
|
8 |
+
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# --------------------------------------------------------
|
11 |
+
# modified from https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/master/mmdet/models/backbones/swin_transformer.py
|
12 |
+
# --------------------------------------------------------
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torch.utils.checkpoint as checkpoint
|
19 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
20 |
+
import loralib as lora
|
21 |
+
from groundingdino.util.misc import NestedTensor
|
22 |
+
|
23 |
+
|
24 |
+
class Mlp(nn.Module):
|
25 |
+
"""Multilayer perceptron."""
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
|
29 |
+
):
|
30 |
+
super().__init__()
|
31 |
+
out_features = out_features or in_features
|
32 |
+
hidden_features = hidden_features or in_features
|
33 |
+
r = 16
|
34 |
+
self.fc1 = lora.Linear(in_features, hidden_features , r=r)
|
35 |
+
self.act = act_layer()
|
36 |
+
self.fc2 = lora.Linear(hidden_features, out_features , r=r)
|
37 |
+
self.drop = nn.Dropout(drop)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.fc1(x)
|
41 |
+
x = self.act(x)
|
42 |
+
x = self.drop(x)
|
43 |
+
x = self.fc2(x)
|
44 |
+
x = self.drop(x)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
def window_partition(x, window_size):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
x: (B, H, W, C)
|
52 |
+
window_size (int): window size
|
53 |
+
Returns:
|
54 |
+
windows: (num_windows*B, window_size, window_size, C)
|
55 |
+
"""
|
56 |
+
B, H, W, C = x.shape
|
57 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
58 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
59 |
+
return windows
|
60 |
+
|
61 |
+
|
62 |
+
def window_reverse(windows, window_size, H, W):
|
63 |
+
"""
|
64 |
+
Args:
|
65 |
+
windows: (num_windows*B, window_size, window_size, C)
|
66 |
+
window_size (int): Window size
|
67 |
+
H (int): Height of image
|
68 |
+
W (int): Width of image
|
69 |
+
Returns:
|
70 |
+
x: (B, H, W, C)
|
71 |
+
"""
|
72 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
73 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
74 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
class WindowAttention(nn.Module):
|
79 |
+
"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
80 |
+
It supports both of shifted and non-shifted window.
|
81 |
+
Args:
|
82 |
+
dim (int): Number of input channels.
|
83 |
+
window_size (tuple[int]): The height and width of the window.
|
84 |
+
num_heads (int): Number of attention heads.
|
85 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
86 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
87 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
88 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
dim,
|
94 |
+
window_size,
|
95 |
+
num_heads,
|
96 |
+
qkv_bias=True,
|
97 |
+
qk_scale=None,
|
98 |
+
attn_drop=0.0,
|
99 |
+
proj_drop=0.0,
|
100 |
+
):
|
101 |
+
|
102 |
+
super().__init__()
|
103 |
+
self.dim = dim
|
104 |
+
self.window_size = window_size # Wh, Ww
|
105 |
+
self.num_heads = num_heads
|
106 |
+
head_dim = dim // num_heads
|
107 |
+
self.scale = qk_scale or head_dim**-0.5
|
108 |
+
r =16
|
109 |
+
# define a parameter table of relative position bias
|
110 |
+
self.relative_position_bias_table = nn.Parameter(
|
111 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
112 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
113 |
+
|
114 |
+
# get pair-wise relative position index for each token inside the window
|
115 |
+
coords_h = torch.arange(self.window_size[0])
|
116 |
+
coords_w = torch.arange(self.window_size[1])
|
117 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
118 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
119 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
120 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
121 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
122 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
123 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
124 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
125 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
126 |
+
|
127 |
+
self.qkv = lora.Linear(dim, dim * 3,r=r , bias=qkv_bias)
|
128 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
129 |
+
self.proj = lora.Linear(dim, dim , r=r)
|
130 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
131 |
+
|
132 |
+
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
133 |
+
self.softmax = nn.Softmax(dim=-1)
|
134 |
+
|
135 |
+
def forward(self, x, mask=None):
|
136 |
+
"""Forward function.
|
137 |
+
Args:
|
138 |
+
x: input features with shape of (num_windows*B, N, C)
|
139 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
140 |
+
"""
|
141 |
+
B_, N, C = x.shape
|
142 |
+
qkv = (
|
143 |
+
self.qkv(x)
|
144 |
+
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
|
145 |
+
.permute(2, 0, 3, 1, 4)
|
146 |
+
)
|
147 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
148 |
+
|
149 |
+
q = q * self.scale
|
150 |
+
attn = q @ k.transpose(-2, -1)
|
151 |
+
|
152 |
+
relative_position_bias = self.relative_position_bias_table[
|
153 |
+
self.relative_position_index.view(-1)
|
154 |
+
].view(
|
155 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
156 |
+
) # Wh*Ww,Wh*Ww,nH
|
157 |
+
relative_position_bias = relative_position_bias.permute(
|
158 |
+
2, 0, 1
|
159 |
+
).contiguous() # nH, Wh*Ww, Wh*Ww
|
160 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
161 |
+
|
162 |
+
if mask is not None:
|
163 |
+
nW = mask.shape[0]
|
164 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
165 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
166 |
+
attn = self.softmax(attn)
|
167 |
+
else:
|
168 |
+
attn = self.softmax(attn)
|
169 |
+
|
170 |
+
attn = self.attn_drop(attn)
|
171 |
+
|
172 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
173 |
+
x = self.proj(x)
|
174 |
+
x = self.proj_drop(x)
|
175 |
+
return x
|
176 |
+
|
177 |
+
|
178 |
+
class SwinTransformerBlock(nn.Module):
|
179 |
+
"""Swin Transformer Block.
|
180 |
+
Args:
|
181 |
+
dim (int): Number of input channels.
|
182 |
+
num_heads (int): Number of attention heads.
|
183 |
+
window_size (int): Window size.
|
184 |
+
shift_size (int): Shift size for SW-MSA.
|
185 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
186 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
187 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
188 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
189 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
190 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
191 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
192 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
193 |
+
"""
|
194 |
+
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
dim,
|
198 |
+
num_heads,
|
199 |
+
window_size=7,
|
200 |
+
shift_size=0,
|
201 |
+
mlp_ratio=4.0,
|
202 |
+
qkv_bias=True,
|
203 |
+
qk_scale=None,
|
204 |
+
drop=0.0,
|
205 |
+
attn_drop=0.0,
|
206 |
+
drop_path=0.0,
|
207 |
+
act_layer=nn.GELU,
|
208 |
+
norm_layer=nn.LayerNorm,
|
209 |
+
):
|
210 |
+
super().__init__()
|
211 |
+
self.dim = dim
|
212 |
+
self.num_heads = num_heads
|
213 |
+
self.window_size = window_size
|
214 |
+
self.shift_size = shift_size
|
215 |
+
self.mlp_ratio = mlp_ratio
|
216 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
217 |
+
|
218 |
+
self.norm1 = norm_layer(dim)
|
219 |
+
self.attn = WindowAttention(
|
220 |
+
dim,
|
221 |
+
window_size=to_2tuple(self.window_size),
|
222 |
+
num_heads=num_heads,
|
223 |
+
qkv_bias=qkv_bias,
|
224 |
+
qk_scale=qk_scale,
|
225 |
+
attn_drop=attn_drop,
|
226 |
+
proj_drop=drop,
|
227 |
+
)
|
228 |
+
|
229 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
230 |
+
self.norm2 = norm_layer(dim)
|
231 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
232 |
+
self.mlp = Mlp(
|
233 |
+
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
|
234 |
+
)
|
235 |
+
|
236 |
+
self.H = None
|
237 |
+
self.W = None
|
238 |
+
|
239 |
+
def forward(self, x, mask_matrix):
|
240 |
+
"""Forward function.
|
241 |
+
Args:
|
242 |
+
x: Input feature, tensor size (B, H*W, C).
|
243 |
+
H, W: Spatial resolution of the input feature.
|
244 |
+
mask_matrix: Attention mask for cyclic shift.
|
245 |
+
"""
|
246 |
+
B, L, C = x.shape
|
247 |
+
H, W = self.H, self.W
|
248 |
+
assert L == H * W, "input feature has wrong size"
|
249 |
+
|
250 |
+
shortcut = x
|
251 |
+
x = self.norm1(x)
|
252 |
+
x = x.view(B, H, W, C)
|
253 |
+
|
254 |
+
# pad feature maps to multiples of window size
|
255 |
+
pad_l = pad_t = 0
|
256 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
257 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
258 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
259 |
+
_, Hp, Wp, _ = x.shape
|
260 |
+
|
261 |
+
# cyclic shift
|
262 |
+
if self.shift_size > 0:
|
263 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
264 |
+
attn_mask = mask_matrix
|
265 |
+
else:
|
266 |
+
shifted_x = x
|
267 |
+
attn_mask = None
|
268 |
+
|
269 |
+
# partition windows
|
270 |
+
x_windows = window_partition(
|
271 |
+
shifted_x, self.window_size
|
272 |
+
) # nW*B, window_size, window_size, C
|
273 |
+
x_windows = x_windows.view(
|
274 |
+
-1, self.window_size * self.window_size, C
|
275 |
+
) # nW*B, window_size*window_size, C
|
276 |
+
|
277 |
+
# W-MSA/SW-MSA
|
278 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
279 |
+
|
280 |
+
# merge windows
|
281 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
282 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
283 |
+
|
284 |
+
# reverse cyclic shift
|
285 |
+
if self.shift_size > 0:
|
286 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
287 |
+
else:
|
288 |
+
x = shifted_x
|
289 |
+
|
290 |
+
if pad_r > 0 or pad_b > 0:
|
291 |
+
x = x[:, :H, :W, :].contiguous()
|
292 |
+
|
293 |
+
x = x.view(B, H * W, C)
|
294 |
+
|
295 |
+
# FFN
|
296 |
+
x = shortcut + self.drop_path(x)
|
297 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
298 |
+
|
299 |
+
return x
|
300 |
+
|
301 |
+
|
302 |
+
class PatchMerging(nn.Module):
|
303 |
+
"""Patch Merging Layer
|
304 |
+
Args:
|
305 |
+
dim (int): Number of input channels.
|
306 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
307 |
+
"""
|
308 |
+
|
309 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
310 |
+
super().__init__()
|
311 |
+
self.dim = dim
|
312 |
+
r = 16
|
313 |
+
self.reduction = lora.Linear(4 * dim, 2 * dim, r=r, bias=False)
|
314 |
+
self.norm = norm_layer(4 * dim)
|
315 |
+
|
316 |
+
def forward(self, x, H, W):
|
317 |
+
"""Forward function.
|
318 |
+
Args:
|
319 |
+
x: Input feature, tensor size (B, H*W, C).
|
320 |
+
H, W: Spatial resolution of the input feature.
|
321 |
+
"""
|
322 |
+
B, L, C = x.shape
|
323 |
+
assert L == H * W, "input feature has wrong size"
|
324 |
+
|
325 |
+
x = x.view(B, H, W, C)
|
326 |
+
|
327 |
+
# padding
|
328 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
329 |
+
if pad_input:
|
330 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
331 |
+
|
332 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
333 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
334 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
335 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
336 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
337 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
338 |
+
|
339 |
+
x = self.norm(x)
|
340 |
+
x = self.reduction(x)
|
341 |
+
|
342 |
+
return x
|
343 |
+
|
344 |
+
|
345 |
+
class BasicLayer(nn.Module):
|
346 |
+
"""A basic Swin Transformer layer for one stage.
|
347 |
+
Args:
|
348 |
+
dim (int): Number of feature channels
|
349 |
+
depth (int): Depths of this stage.
|
350 |
+
num_heads (int): Number of attention head.
|
351 |
+
window_size (int): Local window size. Default: 7.
|
352 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
353 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
354 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
355 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
356 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
357 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
358 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
359 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
360 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
361 |
+
"""
|
362 |
+
|
363 |
+
def __init__(
|
364 |
+
self,
|
365 |
+
dim,
|
366 |
+
depth,
|
367 |
+
num_heads,
|
368 |
+
window_size=7,
|
369 |
+
mlp_ratio=4.0,
|
370 |
+
qkv_bias=True,
|
371 |
+
qk_scale=None,
|
372 |
+
drop=0.0,
|
373 |
+
attn_drop=0.0,
|
374 |
+
drop_path=0.0,
|
375 |
+
norm_layer=nn.LayerNorm,
|
376 |
+
downsample=None,
|
377 |
+
use_checkpoint=False,
|
378 |
+
):
|
379 |
+
super().__init__()
|
380 |
+
self.window_size = window_size
|
381 |
+
self.shift_size = window_size // 2
|
382 |
+
self.depth = depth
|
383 |
+
self.use_checkpoint = use_checkpoint
|
384 |
+
|
385 |
+
# build blocks
|
386 |
+
self.blocks = nn.ModuleList(
|
387 |
+
[
|
388 |
+
SwinTransformerBlock(
|
389 |
+
dim=dim,
|
390 |
+
num_heads=num_heads,
|
391 |
+
window_size=window_size,
|
392 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
393 |
+
mlp_ratio=mlp_ratio,
|
394 |
+
qkv_bias=qkv_bias,
|
395 |
+
qk_scale=qk_scale,
|
396 |
+
drop=drop,
|
397 |
+
attn_drop=attn_drop,
|
398 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
399 |
+
norm_layer=norm_layer,
|
400 |
+
)
|
401 |
+
for i in range(depth)
|
402 |
+
]
|
403 |
+
)
|
404 |
+
|
405 |
+
# patch merging layer
|
406 |
+
if downsample is not None:
|
407 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
408 |
+
else:
|
409 |
+
self.downsample = None
|
410 |
+
|
411 |
+
def forward(self, x, H, W):
|
412 |
+
"""Forward function.
|
413 |
+
Args:
|
414 |
+
x: Input feature, tensor size (B, H*W, C).
|
415 |
+
H, W: Spatial resolution of the input feature.
|
416 |
+
"""
|
417 |
+
|
418 |
+
# calculate attention mask for SW-MSA
|
419 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
420 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
421 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
422 |
+
h_slices = (
|
423 |
+
slice(0, -self.window_size),
|
424 |
+
slice(-self.window_size, -self.shift_size),
|
425 |
+
slice(-self.shift_size, None),
|
426 |
+
)
|
427 |
+
w_slices = (
|
428 |
+
slice(0, -self.window_size),
|
429 |
+
slice(-self.window_size, -self.shift_size),
|
430 |
+
slice(-self.shift_size, None),
|
431 |
+
)
|
432 |
+
cnt = 0
|
433 |
+
for h in h_slices:
|
434 |
+
for w in w_slices:
|
435 |
+
img_mask[:, h, w, :] = cnt
|
436 |
+
cnt += 1
|
437 |
+
|
438 |
+
mask_windows = window_partition(
|
439 |
+
img_mask, self.window_size
|
440 |
+
) # nW, window_size, window_size, 1
|
441 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
442 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
443 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
|
444 |
+
attn_mask == 0, float(0.0)
|
445 |
+
)
|
446 |
+
|
447 |
+
for blk in self.blocks:
|
448 |
+
blk.H, blk.W = H, W
|
449 |
+
if self.use_checkpoint:
|
450 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
451 |
+
else:
|
452 |
+
x = blk(x, attn_mask)
|
453 |
+
if self.downsample is not None:
|
454 |
+
x_down = self.downsample(x, H, W)
|
455 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
456 |
+
return x, H, W, x_down, Wh, Ww
|
457 |
+
else:
|
458 |
+
return x, H, W, x, H, W
|
459 |
+
|
460 |
+
|
461 |
+
class PatchEmbed(nn.Module):
|
462 |
+
"""Image to Patch Embedding
|
463 |
+
Args:
|
464 |
+
patch_size (int): Patch token size. Default: 4.
|
465 |
+
in_chans (int): Number of input image channels. Default: 3.
|
466 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
467 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
468 |
+
"""
|
469 |
+
|
470 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
471 |
+
super().__init__()
|
472 |
+
patch_size = to_2tuple(patch_size)
|
473 |
+
self.patch_size = patch_size
|
474 |
+
|
475 |
+
self.in_chans = in_chans
|
476 |
+
self.embed_dim = embed_dim
|
477 |
+
|
478 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
479 |
+
if norm_layer is not None:
|
480 |
+
self.norm = norm_layer(embed_dim)
|
481 |
+
else:
|
482 |
+
self.norm = None
|
483 |
+
|
484 |
+
def forward(self, x):
|
485 |
+
"""Forward function."""
|
486 |
+
# padding
|
487 |
+
_, _, H, W = x.size()
|
488 |
+
if W % self.patch_size[1] != 0:
|
489 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
490 |
+
if H % self.patch_size[0] != 0:
|
491 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
492 |
+
|
493 |
+
x = self.proj(x) # B C Wh Ww
|
494 |
+
if self.norm is not None:
|
495 |
+
Wh, Ww = x.size(2), x.size(3)
|
496 |
+
x = x.flatten(2).transpose(1, 2)
|
497 |
+
x = self.norm(x)
|
498 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
499 |
+
|
500 |
+
return x
|
501 |
+
|
502 |
+
|
503 |
+
class SwinTransformer(nn.Module):
|
504 |
+
"""Swin Transformer backbone.
|
505 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
506 |
+
https://arxiv.org/pdf/2103.14030
|
507 |
+
Args:
|
508 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
509 |
+
used in absolute postion embedding. Default 224.
|
510 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
511 |
+
in_chans (int): Number of input image channels. Default: 3.
|
512 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
513 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
514 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
515 |
+
window_size (int): Window size. Default: 7.
|
516 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
517 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
518 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
519 |
+
drop_rate (float): Dropout rate.
|
520 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
521 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
522 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
523 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
524 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
525 |
+
out_indices (Sequence[int]): Output from which stages.
|
526 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
527 |
+
-1 means not freezing any parameters.
|
528 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
529 |
+
dilation (bool): if True, the output size if 16x downsample, ow 32x downsample.
|
530 |
+
"""
|
531 |
+
|
532 |
+
def __init__(
|
533 |
+
self,
|
534 |
+
pretrain_img_size=224,
|
535 |
+
patch_size=4,
|
536 |
+
in_chans=3,
|
537 |
+
embed_dim=96,
|
538 |
+
depths=[2, 2, 6, 2],
|
539 |
+
num_heads=[3, 6, 12, 24],
|
540 |
+
window_size=7,
|
541 |
+
mlp_ratio=4.0,
|
542 |
+
qkv_bias=True,
|
543 |
+
qk_scale=None,
|
544 |
+
drop_rate=0.0,
|
545 |
+
attn_drop_rate=0.0,
|
546 |
+
drop_path_rate=0.2,
|
547 |
+
norm_layer=nn.LayerNorm,
|
548 |
+
ape=False,
|
549 |
+
patch_norm=True,
|
550 |
+
out_indices=(0, 1, 2, 3),
|
551 |
+
frozen_stages=-1,
|
552 |
+
dilation=False,
|
553 |
+
use_checkpoint=False,
|
554 |
+
):
|
555 |
+
super().__init__()
|
556 |
+
|
557 |
+
self.pretrain_img_size = pretrain_img_size
|
558 |
+
self.num_layers = len(depths)
|
559 |
+
self.embed_dim = embed_dim
|
560 |
+
self.ape = ape
|
561 |
+
self.patch_norm = patch_norm
|
562 |
+
self.out_indices = out_indices
|
563 |
+
self.frozen_stages = frozen_stages
|
564 |
+
self.dilation = dilation
|
565 |
+
|
566 |
+
# if use_checkpoint:
|
567 |
+
# print("use_checkpoint!!!!!!!!!!!!!!!!!!!!!!!!")
|
568 |
+
|
569 |
+
# split image into non-overlapping patches
|
570 |
+
self.patch_embed = PatchEmbed(
|
571 |
+
patch_size=patch_size,
|
572 |
+
in_chans=in_chans,
|
573 |
+
embed_dim=embed_dim,
|
574 |
+
norm_layer=norm_layer if self.patch_norm else None,
|
575 |
+
)
|
576 |
+
|
577 |
+
# absolute position embedding
|
578 |
+
if self.ape:
|
579 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
580 |
+
patch_size = to_2tuple(patch_size)
|
581 |
+
patches_resolution = [
|
582 |
+
pretrain_img_size[0] // patch_size[0],
|
583 |
+
pretrain_img_size[1] // patch_size[1],
|
584 |
+
]
|
585 |
+
|
586 |
+
self.absolute_pos_embed = nn.Parameter(
|
587 |
+
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
|
588 |
+
)
|
589 |
+
trunc_normal_(self.absolute_pos_embed, std=0.02)
|
590 |
+
|
591 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
592 |
+
|
593 |
+
# stochastic depth
|
594 |
+
dpr = [
|
595 |
+
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
596 |
+
] # stochastic depth decay rule
|
597 |
+
|
598 |
+
# build layers
|
599 |
+
self.layers = nn.ModuleList()
|
600 |
+
# prepare downsample list
|
601 |
+
downsamplelist = [PatchMerging for i in range(self.num_layers)]
|
602 |
+
downsamplelist[-1] = None
|
603 |
+
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
|
604 |
+
if self.dilation:
|
605 |
+
downsamplelist[-2] = None
|
606 |
+
num_features[-1] = int(embed_dim * 2 ** (self.num_layers - 1)) // 2
|
607 |
+
for i_layer in range(self.num_layers):
|
608 |
+
layer = BasicLayer(
|
609 |
+
# dim=int(embed_dim * 2 ** i_layer),
|
610 |
+
dim=num_features[i_layer],
|
611 |
+
depth=depths[i_layer],
|
612 |
+
num_heads=num_heads[i_layer],
|
613 |
+
window_size=window_size,
|
614 |
+
mlp_ratio=mlp_ratio,
|
615 |
+
qkv_bias=qkv_bias,
|
616 |
+
qk_scale=qk_scale,
|
617 |
+
drop=drop_rate,
|
618 |
+
attn_drop=attn_drop_rate,
|
619 |
+
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
|
620 |
+
norm_layer=norm_layer,
|
621 |
+
# downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
622 |
+
downsample=downsamplelist[i_layer],
|
623 |
+
use_checkpoint=use_checkpoint,
|
624 |
+
)
|
625 |
+
self.layers.append(layer)
|
626 |
+
|
627 |
+
# num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
628 |
+
self.num_features = num_features
|
629 |
+
|
630 |
+
# add a norm layer for each output
|
631 |
+
for i_layer in out_indices:
|
632 |
+
layer = norm_layer(num_features[i_layer])
|
633 |
+
layer_name = f"norm{i_layer}"
|
634 |
+
self.add_module(layer_name, layer)
|
635 |
+
|
636 |
+
self._freeze_stages()
|
637 |
+
|
638 |
+
def _freeze_stages(self):
|
639 |
+
if self.frozen_stages >= 0:
|
640 |
+
self.patch_embed.eval()
|
641 |
+
for param in self.patch_embed.parameters():
|
642 |
+
param.requires_grad = False
|
643 |
+
|
644 |
+
if self.frozen_stages >= 1 and self.ape:
|
645 |
+
self.absolute_pos_embed.requires_grad = False
|
646 |
+
|
647 |
+
if self.frozen_stages >= 2:
|
648 |
+
self.pos_drop.eval()
|
649 |
+
for i in range(0, self.frozen_stages - 1):
|
650 |
+
m = self.layers[i]
|
651 |
+
m.eval()
|
652 |
+
for param in m.parameters():
|
653 |
+
param.requires_grad = False
|
654 |
+
|
655 |
+
# def init_weights(self, pretrained=None):
|
656 |
+
# """Initialize the weights in backbone.
|
657 |
+
# Args:
|
658 |
+
# pretrained (str, optional): Path to pre-trained weights.
|
659 |
+
# Defaults to None.
|
660 |
+
# """
|
661 |
+
|
662 |
+
# def _init_weights(m):
|
663 |
+
# if isinstance(m, nn.Linear):
|
664 |
+
# trunc_normal_(m.weight, std=.02)
|
665 |
+
# if isinstance(m, nn.Linear) and m.bias is not None:
|
666 |
+
# nn.init.constant_(m.bias, 0)
|
667 |
+
# elif isinstance(m, nn.LayerNorm):
|
668 |
+
# nn.init.constant_(m.bias, 0)
|
669 |
+
# nn.init.constant_(m.weight, 1.0)
|
670 |
+
|
671 |
+
# if isinstance(pretrained, str):
|
672 |
+
# self.apply(_init_weights)
|
673 |
+
# logger = get_root_logger()
|
674 |
+
# load_checkpoint(self, pretrained, strict=False, logger=logger)
|
675 |
+
# elif pretrained is None:
|
676 |
+
# self.apply(_init_weights)
|
677 |
+
# else:
|
678 |
+
# raise TypeError('pretrained must be a str or None')
|
679 |
+
|
680 |
+
def forward_raw(self, x):
|
681 |
+
"""Forward function."""
|
682 |
+
x = self.patch_embed(x)
|
683 |
+
|
684 |
+
Wh, Ww = x.size(2), x.size(3)
|
685 |
+
if self.ape:
|
686 |
+
# interpolate the position embedding to the corresponding size
|
687 |
+
absolute_pos_embed = F.interpolate(
|
688 |
+
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
689 |
+
)
|
690 |
+
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
691 |
+
else:
|
692 |
+
x = x.flatten(2).transpose(1, 2)
|
693 |
+
x = self.pos_drop(x)
|
694 |
+
|
695 |
+
outs = []
|
696 |
+
for i in range(self.num_layers):
|
697 |
+
layer = self.layers[i]
|
698 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
699 |
+
# import ipdb; ipdb.set_trace()
|
700 |
+
|
701 |
+
if i in self.out_indices:
|
702 |
+
norm_layer = getattr(self, f"norm{i}")
|
703 |
+
x_out = norm_layer(x_out)
|
704 |
+
|
705 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
706 |
+
outs.append(out)
|
707 |
+
# in:
|
708 |
+
# torch.Size([2, 3, 1024, 1024])
|
709 |
+
# outs:
|
710 |
+
# [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
|
711 |
+
# torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
|
712 |
+
return tuple(outs)
|
713 |
+
|
714 |
+
def forward(self, tensor_list: NestedTensor):
|
715 |
+
x = tensor_list.tensors
|
716 |
+
|
717 |
+
"""Forward function."""
|
718 |
+
x = self.patch_embed(x)
|
719 |
+
|
720 |
+
Wh, Ww = x.size(2), x.size(3)
|
721 |
+
if self.ape:
|
722 |
+
# interpolate the position embedding to the corresponding size
|
723 |
+
absolute_pos_embed = F.interpolate(
|
724 |
+
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
725 |
+
)
|
726 |
+
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
727 |
+
else:
|
728 |
+
x = x.flatten(2).transpose(1, 2)
|
729 |
+
x = self.pos_drop(x)
|
730 |
+
|
731 |
+
outs = []
|
732 |
+
for i in range(self.num_layers):
|
733 |
+
layer = self.layers[i]
|
734 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
735 |
+
|
736 |
+
if i in self.out_indices:
|
737 |
+
norm_layer = getattr(self, f"norm{i}")
|
738 |
+
x_out = norm_layer(x_out)
|
739 |
+
|
740 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
741 |
+
outs.append(out)
|
742 |
+
# in:
|
743 |
+
# torch.Size([2, 3, 1024, 1024])
|
744 |
+
# out:
|
745 |
+
# [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
|
746 |
+
# torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
|
747 |
+
|
748 |
+
# collect for nesttensors
|
749 |
+
outs_dict = {}
|
750 |
+
for idx, out_i in enumerate(outs):
|
751 |
+
m = tensor_list.mask
|
752 |
+
assert m is not None
|
753 |
+
mask = F.interpolate(m[None].float(), size=out_i.shape[-2:]).to(torch.bool)[0]
|
754 |
+
outs_dict[idx] = NestedTensor(out_i, mask)
|
755 |
+
|
756 |
+
return outs_dict
|
757 |
+
|
758 |
+
def train(self, mode=True):
|
759 |
+
"""Convert the model into training mode while keep layers freezed."""
|
760 |
+
super(SwinTransformer, self).train(mode)
|
761 |
+
self._freeze_stages()
|
762 |
+
|
763 |
+
|
764 |
+
def build_swin_transformer(modelname, pretrain_img_size, **kw):
|
765 |
+
assert modelname in [
|
766 |
+
"swin_T_224_1k",
|
767 |
+
"swin_B_224_22k",
|
768 |
+
"swin_B_384_22k",
|
769 |
+
"swin_L_224_22k",
|
770 |
+
"swin_L_384_22k",
|
771 |
+
]
|
772 |
+
|
773 |
+
model_para_dict = {
|
774 |
+
"swin_T_224_1k": dict(
|
775 |
+
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7
|
776 |
+
),
|
777 |
+
"swin_B_224_22k": dict(
|
778 |
+
embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7
|
779 |
+
),
|
780 |
+
"swin_B_384_22k": dict(
|
781 |
+
embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12
|
782 |
+
),
|
783 |
+
"swin_L_224_22k": dict(
|
784 |
+
embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7
|
785 |
+
),
|
786 |
+
"swin_L_384_22k": dict(
|
787 |
+
embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12
|
788 |
+
),
|
789 |
+
}
|
790 |
+
kw_cgf = model_para_dict[modelname]
|
791 |
+
kw_cgf.update(kw)
|
792 |
+
model = SwinTransformer(pretrain_img_size=pretrain_img_size, **kw_cgf)
|
793 |
+
return model
|
794 |
+
|
795 |
+
|
796 |
+
if __name__ == "__main__":
|
797 |
+
model = build_swin_transformer("swin_L_384_22k", 384, dilation=True)
|
798 |
+
x = torch.rand(2, 3, 1024, 1024)
|
799 |
+
y = model.forward_raw(x)
|
800 |
+
import ipdb
|
801 |
+
|
802 |
+
ipdb.set_trace()
|
803 |
+
x = torch.rand(2, 3, 384, 384)
|
804 |
+
y = model.forward_raw(x)
|
groundingdino/models/GroundingDINO/fuse_modules.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from timm.models.layers import DropPath
|
12 |
+
import loralib as lora
|
13 |
+
|
14 |
+
class FeatureResizer(nn.Module):
|
15 |
+
"""
|
16 |
+
This class takes as input a set of embeddings of dimension C1 and outputs a set of
|
17 |
+
embedding of dimension C2, after a linear transformation, dropout and normalization (LN).
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True):
|
21 |
+
super().__init__()
|
22 |
+
self.do_ln = do_ln
|
23 |
+
# Object feature encoding
|
24 |
+
r = 16
|
25 |
+
self.fc = lora.Linear(input_feat_size, output_feat_size,r=r , bias=True)
|
26 |
+
self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12)
|
27 |
+
self.dropout = nn.Dropout(dropout)
|
28 |
+
|
29 |
+
def forward(self, encoder_features):
|
30 |
+
x = self.fc(encoder_features)
|
31 |
+
if self.do_ln:
|
32 |
+
x = self.layer_norm(x)
|
33 |
+
output = self.dropout(x)
|
34 |
+
return output
|
35 |
+
|
36 |
+
|
37 |
+
def l1norm(X, dim, eps=1e-8):
|
38 |
+
"""L1-normalize columns of X"""
|
39 |
+
norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
|
40 |
+
X = torch.div(X, norm)
|
41 |
+
return X
|
42 |
+
|
43 |
+
|
44 |
+
def l2norm(X, dim, eps=1e-8):
|
45 |
+
"""L2-normalize columns of X"""
|
46 |
+
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
|
47 |
+
X = torch.div(X, norm)
|
48 |
+
return X
|
49 |
+
|
50 |
+
|
51 |
+
def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8):
|
52 |
+
"""
|
53 |
+
query: (n_context, queryL, d)
|
54 |
+
context: (n_context, sourceL, d)
|
55 |
+
"""
|
56 |
+
batch_size_q, queryL = query.size(0), query.size(1)
|
57 |
+
batch_size, sourceL = context.size(0), context.size(1)
|
58 |
+
|
59 |
+
# Get attention
|
60 |
+
# --> (batch, d, queryL)
|
61 |
+
queryT = torch.transpose(query, 1, 2)
|
62 |
+
|
63 |
+
# (batch, sourceL, d)(batch, d, queryL)
|
64 |
+
# --> (batch, sourceL, queryL)
|
65 |
+
attn = torch.bmm(context, queryT)
|
66 |
+
if raw_feature_norm == "softmax":
|
67 |
+
# --> (batch*sourceL, queryL)
|
68 |
+
attn = attn.view(batch_size * sourceL, queryL)
|
69 |
+
attn = nn.Softmax()(attn)
|
70 |
+
# --> (batch, sourceL, queryL)
|
71 |
+
attn = attn.view(batch_size, sourceL, queryL)
|
72 |
+
elif raw_feature_norm == "l2norm":
|
73 |
+
attn = l2norm(attn, 2)
|
74 |
+
elif raw_feature_norm == "clipped_l2norm":
|
75 |
+
attn = nn.LeakyReLU(0.1)(attn)
|
76 |
+
attn = l2norm(attn, 2)
|
77 |
+
else:
|
78 |
+
raise ValueError("unknown first norm type:", raw_feature_norm)
|
79 |
+
# --> (batch, queryL, sourceL)
|
80 |
+
attn = torch.transpose(attn, 1, 2).contiguous()
|
81 |
+
# --> (batch*queryL, sourceL)
|
82 |
+
attn = attn.view(batch_size * queryL, sourceL)
|
83 |
+
attn = nn.Softmax()(attn * smooth)
|
84 |
+
# --> (batch, queryL, sourceL)
|
85 |
+
attn = attn.view(batch_size, queryL, sourceL)
|
86 |
+
# --> (batch, sourceL, queryL)
|
87 |
+
attnT = torch.transpose(attn, 1, 2).contiguous()
|
88 |
+
|
89 |
+
# --> (batch, d, sourceL)
|
90 |
+
contextT = torch.transpose(context, 1, 2)
|
91 |
+
# (batch x d x sourceL)(batch x sourceL x queryL)
|
92 |
+
# --> (batch, d, queryL)
|
93 |
+
weightedContext = torch.bmm(contextT, attnT)
|
94 |
+
# --> (batch, queryL, d)
|
95 |
+
weightedContext = torch.transpose(weightedContext, 1, 2)
|
96 |
+
|
97 |
+
return weightedContext, attnT
|
98 |
+
|
99 |
+
|
100 |
+
class BiMultiHeadAttention(nn.Module):
|
101 |
+
def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None):
|
102 |
+
super(BiMultiHeadAttention, self).__init__()
|
103 |
+
|
104 |
+
self.embed_dim = embed_dim
|
105 |
+
self.num_heads = num_heads
|
106 |
+
self.head_dim = embed_dim // num_heads
|
107 |
+
self.v_dim = v_dim
|
108 |
+
self.l_dim = l_dim
|
109 |
+
|
110 |
+
assert (
|
111 |
+
self.head_dim * self.num_heads == self.embed_dim
|
112 |
+
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
|
113 |
+
self.scale = self.head_dim ** (-0.5)
|
114 |
+
self.dropout = dropout
|
115 |
+
r = 16
|
116 |
+
self.v_proj = lora.Linear(self.v_dim, self.embed_dim , r=r)
|
117 |
+
self.l_proj = lora.Linear(self.l_dim, self.embed_dim , r=r)
|
118 |
+
self.values_v_proj = lora.Linear(self.v_dim, self.embed_dim , r=r)
|
119 |
+
self.values_l_proj = lora.Linear(self.l_dim, self.embed_dim , r=r)
|
120 |
+
|
121 |
+
self.out_v_proj = lora.Linear(self.embed_dim, self.v_dim , r=r)
|
122 |
+
self.out_l_proj = lora.Linear(self.embed_dim, self.l_dim , r=r)
|
123 |
+
|
124 |
+
self.stable_softmax_2d = True
|
125 |
+
self.clamp_min_for_underflow = True
|
126 |
+
self.clamp_max_for_overflow = True
|
127 |
+
|
128 |
+
self._reset_parameters()
|
129 |
+
|
130 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
131 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
132 |
+
|
133 |
+
def _reset_parameters(self):
|
134 |
+
nn.init.xavier_uniform_(self.v_proj.weight)
|
135 |
+
self.v_proj.bias.data.fill_(0)
|
136 |
+
nn.init.xavier_uniform_(self.l_proj.weight)
|
137 |
+
self.l_proj.bias.data.fill_(0)
|
138 |
+
nn.init.xavier_uniform_(self.values_v_proj.weight)
|
139 |
+
self.values_v_proj.bias.data.fill_(0)
|
140 |
+
nn.init.xavier_uniform_(self.values_l_proj.weight)
|
141 |
+
self.values_l_proj.bias.data.fill_(0)
|
142 |
+
nn.init.xavier_uniform_(self.out_v_proj.weight)
|
143 |
+
self.out_v_proj.bias.data.fill_(0)
|
144 |
+
nn.init.xavier_uniform_(self.out_l_proj.weight)
|
145 |
+
self.out_l_proj.bias.data.fill_(0)
|
146 |
+
|
147 |
+
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
|
148 |
+
"""_summary_
|
149 |
+
|
150 |
+
Args:
|
151 |
+
v (_type_): bs, n_img, dim
|
152 |
+
l (_type_): bs, n_text, dim
|
153 |
+
attention_mask_v (_type_, optional): _description_. bs, n_img
|
154 |
+
attention_mask_l (_type_, optional): _description_. bs, n_text
|
155 |
+
|
156 |
+
Returns:
|
157 |
+
_type_: _description_
|
158 |
+
"""
|
159 |
+
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
160 |
+
# import ipdb; ipdb.set_trace()
|
161 |
+
bsz, tgt_len, _ = v.size()
|
162 |
+
|
163 |
+
query_states = self.v_proj(v) * self.scale
|
164 |
+
key_states = self._shape(self.l_proj(l), -1, bsz)
|
165 |
+
value_v_states = self._shape(self.values_v_proj(v), -1, bsz)
|
166 |
+
value_l_states = self._shape(self.values_l_proj(l), -1, bsz)
|
167 |
+
|
168 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
169 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
170 |
+
key_states = key_states.view(*proj_shape)
|
171 |
+
value_v_states = value_v_states.view(*proj_shape)
|
172 |
+
value_l_states = value_l_states.view(*proj_shape)
|
173 |
+
|
174 |
+
src_len = key_states.size(1)
|
175 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bs*nhead, nimg, ntxt
|
176 |
+
|
177 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
178 |
+
raise ValueError(
|
179 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
|
180 |
+
)
|
181 |
+
|
182 |
+
if self.stable_softmax_2d:
|
183 |
+
attn_weights = attn_weights - attn_weights.max()
|
184 |
+
|
185 |
+
if self.clamp_min_for_underflow:
|
186 |
+
attn_weights = torch.clamp(
|
187 |
+
attn_weights, min=-50000
|
188 |
+
) # Do not increase -50000, data type half has quite limited range
|
189 |
+
if self.clamp_max_for_overflow:
|
190 |
+
attn_weights = torch.clamp(
|
191 |
+
attn_weights, max=50000
|
192 |
+
) # Do not increase 50000, data type half has quite limited range
|
193 |
+
|
194 |
+
attn_weights_T = attn_weights.transpose(1, 2)
|
195 |
+
attn_weights_l = attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[0]
|
196 |
+
if self.clamp_min_for_underflow:
|
197 |
+
attn_weights_l = torch.clamp(
|
198 |
+
attn_weights_l, min=-50000
|
199 |
+
) # Do not increase -50000, data type half has quite limited range
|
200 |
+
if self.clamp_max_for_overflow:
|
201 |
+
attn_weights_l = torch.clamp(
|
202 |
+
attn_weights_l, max=50000
|
203 |
+
) # Do not increase 50000, data type half has quite limited range
|
204 |
+
|
205 |
+
# mask vison for language
|
206 |
+
if attention_mask_v is not None:
|
207 |
+
attention_mask_v = (
|
208 |
+
attention_mask_v[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
|
209 |
+
)
|
210 |
+
attn_weights_l.masked_fill_(attention_mask_v, float("-inf"))
|
211 |
+
|
212 |
+
attn_weights_l = attn_weights_l.softmax(dim=-1)
|
213 |
+
|
214 |
+
# mask language for vision
|
215 |
+
if attention_mask_l is not None:
|
216 |
+
attention_mask_l = (
|
217 |
+
attention_mask_l[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
|
218 |
+
)
|
219 |
+
attn_weights.masked_fill_(attention_mask_l, float("-inf"))
|
220 |
+
attn_weights_v = attn_weights.softmax(dim=-1)
|
221 |
+
|
222 |
+
attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training)
|
223 |
+
attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training)
|
224 |
+
|
225 |
+
attn_output_v = torch.bmm(attn_probs_v, value_l_states)
|
226 |
+
attn_output_l = torch.bmm(attn_probs_l, value_v_states)
|
227 |
+
|
228 |
+
if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
229 |
+
raise ValueError(
|
230 |
+
f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}"
|
231 |
+
)
|
232 |
+
|
233 |
+
if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim):
|
234 |
+
raise ValueError(
|
235 |
+
f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}"
|
236 |
+
)
|
237 |
+
|
238 |
+
attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
239 |
+
attn_output_v = attn_output_v.transpose(1, 2)
|
240 |
+
attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim)
|
241 |
+
|
242 |
+
attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim)
|
243 |
+
attn_output_l = attn_output_l.transpose(1, 2)
|
244 |
+
attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim)
|
245 |
+
|
246 |
+
attn_output_v = self.out_v_proj(attn_output_v)
|
247 |
+
attn_output_l = self.out_l_proj(attn_output_l)
|
248 |
+
|
249 |
+
return attn_output_v, attn_output_l
|
250 |
+
|
251 |
+
|
252 |
+
# Bi-Direction MHA (text->image, image->text)
|
253 |
+
class BiAttentionBlock(nn.Module):
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
v_dim,
|
257 |
+
l_dim,
|
258 |
+
embed_dim,
|
259 |
+
num_heads,
|
260 |
+
dropout=0.1,
|
261 |
+
drop_path=0.0,
|
262 |
+
init_values=1e-4,
|
263 |
+
cfg=None,
|
264 |
+
):
|
265 |
+
"""
|
266 |
+
Inputs:
|
267 |
+
embed_dim - Dimensionality of input and attention feature vectors
|
268 |
+
hidden_dim - Dimensionality of hidden layer in feed-forward network
|
269 |
+
(usually 2-4x larger than embed_dim)
|
270 |
+
num_heads - Number of heads to use in the Multi-Head Attention block
|
271 |
+
dropout - Amount of dropout to apply in the feed-forward network
|
272 |
+
"""
|
273 |
+
super(BiAttentionBlock, self).__init__()
|
274 |
+
|
275 |
+
# pre layer norm
|
276 |
+
self.layer_norm_v = nn.LayerNorm(v_dim)
|
277 |
+
self.layer_norm_l = nn.LayerNorm(l_dim)
|
278 |
+
self.attn = BiMultiHeadAttention(
|
279 |
+
v_dim=v_dim, l_dim=l_dim, embed_dim=embed_dim, num_heads=num_heads, dropout=dropout
|
280 |
+
)
|
281 |
+
|
282 |
+
# add layer scale for training stability
|
283 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
284 |
+
self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True)
|
285 |
+
self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True)
|
286 |
+
|
287 |
+
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
|
288 |
+
v = self.layer_norm_v(v)
|
289 |
+
l = self.layer_norm_l(l)
|
290 |
+
delta_v, delta_l = self.attn(
|
291 |
+
v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l
|
292 |
+
)
|
293 |
+
# v, l = v + delta_v, l + delta_l
|
294 |
+
v = v + self.drop_path(self.gamma_v * delta_v)
|
295 |
+
l = l + self.drop_path(self.gamma_l * delta_l)
|
296 |
+
return v, l
|
297 |
+
|
298 |
+
# def forward(self, v:List[torch.Tensor], l, attention_mask_v=None, attention_mask_l=None)
|
groundingdino/models/GroundingDINO/groundingdino.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Conditional DETR model and criterion classes.
|
8 |
+
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------
|
11 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
12 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
13 |
+
# ------------------------------------------------------------------------
|
14 |
+
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
|
15 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
16 |
+
# ------------------------------------------------------------------------
|
17 |
+
import copy
|
18 |
+
from typing import List
|
19 |
+
import loralib as lora
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from torch import nn
|
23 |
+
from torchvision.ops.boxes import nms
|
24 |
+
from transformers import AutoTokenizer, BertModel, BertTokenizer, RobertaModel, RobertaTokenizerFast
|
25 |
+
|
26 |
+
from groundingdino.util import box_ops, get_tokenlizer
|
27 |
+
from groundingdino.util.misc import (
|
28 |
+
NestedTensor,
|
29 |
+
accuracy,
|
30 |
+
get_world_size,
|
31 |
+
interpolate,
|
32 |
+
inverse_sigmoid,
|
33 |
+
is_dist_avail_and_initialized,
|
34 |
+
nested_tensor_from_tensor_list,
|
35 |
+
)
|
36 |
+
from groundingdino.util.utils import get_phrases_from_posmap
|
37 |
+
from groundingdino.util.visualizer import COCOVisualizer
|
38 |
+
from groundingdino.util.vl_utils import create_positive_map_from_span
|
39 |
+
|
40 |
+
from ..registry import MODULE_BUILD_FUNCS
|
41 |
+
from .backbone import build_backbone
|
42 |
+
from .bertwarper import (
|
43 |
+
BertModelWarper,
|
44 |
+
generate_masks_with_special_tokens,
|
45 |
+
generate_masks_with_special_tokens_and_transfer_map,
|
46 |
+
)
|
47 |
+
from .transformer import build_transformer
|
48 |
+
from .utils import MLP, ContrastiveEmbed, sigmoid_focal_loss
|
49 |
+
|
50 |
+
|
51 |
+
class GroundingDINO(nn.Module):
|
52 |
+
"""This is the Cross-Attention Detector module that performs object detection"""
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
backbone,
|
57 |
+
transformer,
|
58 |
+
num_queries,
|
59 |
+
aux_loss=False,
|
60 |
+
iter_update=False,
|
61 |
+
query_dim=2,
|
62 |
+
num_feature_levels=1,
|
63 |
+
nheads=8,
|
64 |
+
# two stage
|
65 |
+
two_stage_type="no", # ['no', 'standard']
|
66 |
+
dec_pred_bbox_embed_share=True,
|
67 |
+
two_stage_class_embed_share=True,
|
68 |
+
two_stage_bbox_embed_share=True,
|
69 |
+
num_patterns=0,
|
70 |
+
dn_number=100,
|
71 |
+
dn_box_noise_scale=0.4,
|
72 |
+
dn_label_noise_ratio=0.5,
|
73 |
+
dn_labelbook_size=100,
|
74 |
+
text_encoder_type="bert-base-uncased",
|
75 |
+
sub_sentence_present=True,
|
76 |
+
max_text_len=256,
|
77 |
+
):
|
78 |
+
"""Initializes the model.
|
79 |
+
Parameters:
|
80 |
+
backbone: torch module of the backbone to be used. See backbone.py
|
81 |
+
transformer: torch module of the transformer architecture. See transformer.py
|
82 |
+
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
83 |
+
Conditional DETR can detect in a single image. For COCO, we recommend 100 queries.
|
84 |
+
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
85 |
+
"""
|
86 |
+
super().__init__()
|
87 |
+
self.num_queries = num_queries
|
88 |
+
self.transformer = transformer
|
89 |
+
self.hidden_dim = hidden_dim = transformer.d_model
|
90 |
+
self.num_feature_levels = num_feature_levels
|
91 |
+
self.nheads = nheads
|
92 |
+
self.max_text_len = 256
|
93 |
+
self.sub_sentence_present = sub_sentence_present
|
94 |
+
|
95 |
+
# setting query dim
|
96 |
+
self.query_dim = query_dim
|
97 |
+
assert query_dim == 4
|
98 |
+
|
99 |
+
# for dn training
|
100 |
+
self.num_patterns = num_patterns
|
101 |
+
self.dn_number = dn_number
|
102 |
+
self.dn_box_noise_scale = dn_box_noise_scale
|
103 |
+
self.dn_label_noise_ratio = dn_label_noise_ratio
|
104 |
+
self.dn_labelbook_size = dn_labelbook_size
|
105 |
+
|
106 |
+
# bert
|
107 |
+
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
|
108 |
+
self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type)
|
109 |
+
self.bert.pooler.dense.weight.requires_grad_(False)
|
110 |
+
self.bert.pooler.dense.bias.requires_grad_(False)
|
111 |
+
self.bert = BertModelWarper(bert_model=self.bert)
|
112 |
+
|
113 |
+
self.feat_map = nn.Linear(self.bert.config.hidden_size, self.hidden_dim, bias=True)
|
114 |
+
nn.init.constant_(self.feat_map.bias.data, 0)
|
115 |
+
nn.init.xavier_uniform_(self.feat_map.weight.data)
|
116 |
+
# freeze
|
117 |
+
|
118 |
+
# special tokens
|
119 |
+
self.specical_tokens = self.tokenizer.convert_tokens_to_ids(["[CLS]", "[SEP]", ".", "?"])
|
120 |
+
|
121 |
+
# prepare input projection layers
|
122 |
+
if num_feature_levels > 1:
|
123 |
+
num_backbone_outs = len(backbone.num_channels)
|
124 |
+
input_proj_list = []
|
125 |
+
for _ in range(num_backbone_outs):
|
126 |
+
in_channels = backbone.num_channels[_]
|
127 |
+
input_proj_list.append(
|
128 |
+
nn.Sequential(
|
129 |
+
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
|
130 |
+
nn.GroupNorm(32, hidden_dim),
|
131 |
+
)
|
132 |
+
)
|
133 |
+
for _ in range(num_feature_levels - num_backbone_outs):
|
134 |
+
input_proj_list.append(
|
135 |
+
nn.Sequential(
|
136 |
+
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
|
137 |
+
nn.GroupNorm(32, hidden_dim),
|
138 |
+
)
|
139 |
+
)
|
140 |
+
in_channels = hidden_dim
|
141 |
+
self.input_proj = nn.ModuleList(input_proj_list)
|
142 |
+
else:
|
143 |
+
assert two_stage_type == "no", "two_stage_type should be no if num_feature_levels=1 !!!"
|
144 |
+
self.input_proj = nn.ModuleList(
|
145 |
+
[
|
146 |
+
nn.Sequential(
|
147 |
+
nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1),
|
148 |
+
nn.GroupNorm(32, hidden_dim),
|
149 |
+
)
|
150 |
+
]
|
151 |
+
)
|
152 |
+
|
153 |
+
self.backbone = backbone
|
154 |
+
self.aux_loss = aux_loss
|
155 |
+
self.box_pred_damping = box_pred_damping = None
|
156 |
+
|
157 |
+
self.iter_update = iter_update
|
158 |
+
assert iter_update, "Why not iter_update?"
|
159 |
+
|
160 |
+
# prepare pred layers
|
161 |
+
self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
|
162 |
+
# prepare class & box embed
|
163 |
+
_class_embed = ContrastiveEmbed()
|
164 |
+
|
165 |
+
_bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
|
166 |
+
nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
|
167 |
+
nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)
|
168 |
+
|
169 |
+
if dec_pred_bbox_embed_share:
|
170 |
+
box_embed_layerlist = [_bbox_embed for i in range(transformer.num_decoder_layers)]
|
171 |
+
else:
|
172 |
+
box_embed_layerlist = [
|
173 |
+
copy.deepcopy(_bbox_embed) for i in range(transformer.num_decoder_layers)
|
174 |
+
]
|
175 |
+
class_embed_layerlist = [_class_embed for i in range(transformer.num_decoder_layers)]
|
176 |
+
self.bbox_embed = nn.ModuleList(box_embed_layerlist)
|
177 |
+
self.class_embed = nn.ModuleList(class_embed_layerlist)
|
178 |
+
self.transformer.decoder.bbox_embed = self.bbox_embed
|
179 |
+
self.transformer.decoder.class_embed = self.class_embed
|
180 |
+
|
181 |
+
# two stage
|
182 |
+
self.two_stage_type = two_stage_type
|
183 |
+
assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
|
184 |
+
two_stage_type
|
185 |
+
)
|
186 |
+
if two_stage_type != "no":
|
187 |
+
if two_stage_bbox_embed_share:
|
188 |
+
assert dec_pred_bbox_embed_share
|
189 |
+
self.transformer.enc_out_bbox_embed = _bbox_embed
|
190 |
+
else:
|
191 |
+
self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed)
|
192 |
+
|
193 |
+
if two_stage_class_embed_share:
|
194 |
+
assert dec_pred_bbox_embed_share
|
195 |
+
self.transformer.enc_out_class_embed = _class_embed
|
196 |
+
else:
|
197 |
+
self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed)
|
198 |
+
|
199 |
+
self.refpoint_embed = None
|
200 |
+
|
201 |
+
self._reset_parameters()
|
202 |
+
|
203 |
+
def _reset_parameters(self):
|
204 |
+
# init input_proj
|
205 |
+
for proj in self.input_proj:
|
206 |
+
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
207 |
+
nn.init.constant_(proj[0].bias, 0)
|
208 |
+
|
209 |
+
def set_image_tensor(self, samples: NestedTensor):
|
210 |
+
if isinstance(samples, (list, torch.Tensor)):
|
211 |
+
samples = nested_tensor_from_tensor_list(samples)
|
212 |
+
self.features, self.poss = self.backbone(samples)
|
213 |
+
|
214 |
+
def unset_image_tensor(self):
|
215 |
+
if hasattr(self, 'features'):
|
216 |
+
del self.features
|
217 |
+
if hasattr(self,'poss'):
|
218 |
+
del self.poss
|
219 |
+
|
220 |
+
def set_image_features(self, features , poss):
|
221 |
+
self.features = features
|
222 |
+
self.poss = poss
|
223 |
+
|
224 |
+
def init_ref_points(self, use_num_queries):
|
225 |
+
self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
|
226 |
+
|
227 |
+
def forward(self, samples: NestedTensor, targets: List = None, **kw):
|
228 |
+
"""The forward expects a NestedTensor, which consists of:
|
229 |
+
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
|
230 |
+
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
|
231 |
+
|
232 |
+
It returns a dict with the following elements:
|
233 |
+
- "pred_logits": the classification logits (including no-object) for all queries.
|
234 |
+
Shape= [batch_size x num_queries x num_classes]
|
235 |
+
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
|
236 |
+
(center_x, center_y, width, height). These values are normalized in [0, 1],
|
237 |
+
relative to the size of each individual image (disregarding possible padding).
|
238 |
+
See PostProcess for information on how to retrieve the unnormalized bounding box.
|
239 |
+
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
|
240 |
+
dictionnaries containing the two above keys for each decoder layer.
|
241 |
+
"""
|
242 |
+
if targets is None:
|
243 |
+
captions = kw["captions"]
|
244 |
+
else:
|
245 |
+
captions = [t["caption"] for t in targets]
|
246 |
+
|
247 |
+
# encoder texts
|
248 |
+
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
|
249 |
+
samples.device
|
250 |
+
)
|
251 |
+
(
|
252 |
+
text_self_attention_masks,
|
253 |
+
position_ids,
|
254 |
+
cate_to_token_mask_list,
|
255 |
+
) = generate_masks_with_special_tokens_and_transfer_map(
|
256 |
+
tokenized, self.specical_tokens, self.tokenizer
|
257 |
+
)
|
258 |
+
|
259 |
+
if text_self_attention_masks.shape[1] > self.max_text_len:
|
260 |
+
text_self_attention_masks = text_self_attention_masks[
|
261 |
+
:, : self.max_text_len, : self.max_text_len
|
262 |
+
]
|
263 |
+
position_ids = position_ids[:, : self.max_text_len]
|
264 |
+
tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len]
|
265 |
+
tokenized["attention_mask"] = tokenized["attention_mask"][:, : self.max_text_len]
|
266 |
+
tokenized["token_type_ids"] = tokenized["token_type_ids"][:, : self.max_text_len]
|
267 |
+
|
268 |
+
# extract text embeddings
|
269 |
+
if self.sub_sentence_present:
|
270 |
+
tokenized_for_encoder = {k: v for k, v in tokenized.items() if k != "attention_mask"}
|
271 |
+
tokenized_for_encoder["attention_mask"] = text_self_attention_masks
|
272 |
+
tokenized_for_encoder["position_ids"] = position_ids
|
273 |
+
else:
|
274 |
+
# import ipdb; ipdb.set_trace()
|
275 |
+
tokenized_for_encoder = tokenized
|
276 |
+
|
277 |
+
bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768
|
278 |
+
|
279 |
+
encoded_text = self.feat_map(bert_output["last_hidden_state"]) # bs, 195, d_model
|
280 |
+
text_token_mask = tokenized.attention_mask.bool() # bs, 195
|
281 |
+
# text_token_mask: True for nomask, False for mask
|
282 |
+
# text_self_attention_masks: True for nomask, False for mask
|
283 |
+
|
284 |
+
if encoded_text.shape[1] > self.max_text_len:
|
285 |
+
encoded_text = encoded_text[:, : self.max_text_len, :]
|
286 |
+
text_token_mask = text_token_mask[:, : self.max_text_len]
|
287 |
+
position_ids = position_ids[:, : self.max_text_len]
|
288 |
+
text_self_attention_masks = text_self_attention_masks[
|
289 |
+
:, : self.max_text_len, : self.max_text_len
|
290 |
+
]
|
291 |
+
|
292 |
+
text_dict = {
|
293 |
+
"encoded_text": encoded_text, # bs, 195, d_model
|
294 |
+
"text_token_mask": text_token_mask, # bs, 195
|
295 |
+
"position_ids": position_ids, # bs, 195
|
296 |
+
"text_self_attention_masks": text_self_attention_masks, # bs, 195,195
|
297 |
+
}
|
298 |
+
|
299 |
+
# import ipdb; ipdb.set_trace()
|
300 |
+
if isinstance(samples, (list, torch.Tensor)):
|
301 |
+
samples = nested_tensor_from_tensor_list(samples)
|
302 |
+
if not hasattr(self, 'features') or not hasattr(self, 'poss'):
|
303 |
+
self.set_image_tensor(samples)
|
304 |
+
|
305 |
+
srcs = []
|
306 |
+
masks = []
|
307 |
+
for l, feat in enumerate(self.features):
|
308 |
+
src, mask = feat.decompose()
|
309 |
+
srcs.append(self.input_proj[l](src))
|
310 |
+
masks.append(mask)
|
311 |
+
assert mask is not None
|
312 |
+
if self.num_feature_levels > len(srcs):
|
313 |
+
_len_srcs = len(srcs)
|
314 |
+
for l in range(_len_srcs, self.num_feature_levels):
|
315 |
+
if l == _len_srcs:
|
316 |
+
src = self.input_proj[l](self.features[-1].tensors)
|
317 |
+
else:
|
318 |
+
src = self.input_proj[l](srcs[-1])
|
319 |
+
m = samples.mask
|
320 |
+
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
|
321 |
+
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
|
322 |
+
srcs.append(src)
|
323 |
+
masks.append(mask)
|
324 |
+
self.poss.append(pos_l)
|
325 |
+
|
326 |
+
input_query_bbox = input_query_label = attn_mask = dn_meta = None
|
327 |
+
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
|
328 |
+
srcs, masks, input_query_bbox, self.poss, input_query_label, attn_mask, text_dict
|
329 |
+
)
|
330 |
+
|
331 |
+
# deformable-detr-like anchor update
|
332 |
+
outputs_coord_list = []
|
333 |
+
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(
|
334 |
+
zip(reference[:-1], self.bbox_embed, hs)
|
335 |
+
):
|
336 |
+
layer_delta_unsig = layer_bbox_embed(layer_hs)
|
337 |
+
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig)
|
338 |
+
layer_outputs_unsig = layer_outputs_unsig.sigmoid()
|
339 |
+
outputs_coord_list.append(layer_outputs_unsig)
|
340 |
+
outputs_coord_list = torch.stack(outputs_coord_list)
|
341 |
+
|
342 |
+
# output
|
343 |
+
outputs_class = torch.stack(
|
344 |
+
[
|
345 |
+
layer_cls_embed(layer_hs, text_dict)
|
346 |
+
for layer_cls_embed, layer_hs in zip(self.class_embed, hs)
|
347 |
+
]
|
348 |
+
)
|
349 |
+
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]}
|
350 |
+
|
351 |
+
# # for intermediate outputs
|
352 |
+
# if self.aux_loss:
|
353 |
+
# out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord_list)
|
354 |
+
|
355 |
+
# # for encoder output
|
356 |
+
# if hs_enc is not None:
|
357 |
+
# # prepare intermediate outputs
|
358 |
+
# interm_coord = ref_enc[-1]
|
359 |
+
# interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
|
360 |
+
# out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord}
|
361 |
+
# out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal}
|
362 |
+
unset_image_tensor = kw.get('unset_image_tensor', True)
|
363 |
+
if unset_image_tensor:
|
364 |
+
self.unset_image_tensor() ## If necessary
|
365 |
+
return out
|
366 |
+
|
367 |
+
@torch.jit.unused
|
368 |
+
def _set_aux_loss(self, outputs_class, outputs_coord):
|
369 |
+
# this is a workaround to make torchscript happy, as torchscript
|
370 |
+
# doesn't support dictionary with non-homogeneous values, such
|
371 |
+
# as a dict having both a Tensor and a list.
|
372 |
+
return [
|
373 |
+
{"pred_logits": a, "pred_boxes": b}
|
374 |
+
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
|
375 |
+
]
|
376 |
+
|
377 |
+
|
378 |
+
@MODULE_BUILD_FUNCS.registe_with_name(module_name="groundingdino")
|
379 |
+
def build_groundingdino(args):
|
380 |
+
|
381 |
+
backbone = build_backbone(args)
|
382 |
+
transformer = build_transformer(args)
|
383 |
+
|
384 |
+
dn_labelbook_size = args.dn_labelbook_size
|
385 |
+
dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share
|
386 |
+
sub_sentence_present = args.sub_sentence_present
|
387 |
+
|
388 |
+
model = GroundingDINO(
|
389 |
+
backbone,
|
390 |
+
transformer,
|
391 |
+
num_queries=args.num_queries,
|
392 |
+
aux_loss=True,
|
393 |
+
iter_update=True,
|
394 |
+
query_dim=4,
|
395 |
+
num_feature_levels=args.num_feature_levels,
|
396 |
+
nheads=args.nheads,
|
397 |
+
dec_pred_bbox_embed_share=dec_pred_bbox_embed_share,
|
398 |
+
two_stage_type=args.two_stage_type,
|
399 |
+
two_stage_bbox_embed_share=args.two_stage_bbox_embed_share,
|
400 |
+
two_stage_class_embed_share=args.two_stage_class_embed_share,
|
401 |
+
num_patterns=args.num_patterns,
|
402 |
+
dn_number=0,
|
403 |
+
dn_box_noise_scale=args.dn_box_noise_scale,
|
404 |
+
dn_label_noise_ratio=args.dn_label_noise_ratio,
|
405 |
+
dn_labelbook_size=dn_labelbook_size,
|
406 |
+
text_encoder_type=args.text_encoder_type,
|
407 |
+
sub_sentence_present=sub_sentence_present,
|
408 |
+
max_text_len=args.max_text_len,
|
409 |
+
)
|
410 |
+
|
411 |
+
return model
|
412 |
+
|
groundingdino/models/GroundingDINO/ms_deform_attn.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Deformable DETR
|
8 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------------------------------
|
11 |
+
# Modified from:
|
12 |
+
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py
|
13 |
+
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
14 |
+
# https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py
|
15 |
+
# ------------------------------------------------------------------------------------------------
|
16 |
+
|
17 |
+
import math
|
18 |
+
import warnings
|
19 |
+
from typing import Optional
|
20 |
+
import loralib as lora
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
import torch.nn.functional as F
|
24 |
+
from torch.autograd import Function
|
25 |
+
from torch.autograd.function import once_differentiable
|
26 |
+
from torch.nn.init import constant_, xavier_uniform_
|
27 |
+
|
28 |
+
try:
|
29 |
+
from groundingdino import _C
|
30 |
+
except:
|
31 |
+
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!")
|
32 |
+
|
33 |
+
|
34 |
+
# helpers
|
35 |
+
def _is_power_of_2(n):
|
36 |
+
if (not isinstance(n, int)) or (n < 0):
|
37 |
+
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
|
38 |
+
return (n & (n - 1) == 0) and n != 0
|
39 |
+
|
40 |
+
|
41 |
+
class MultiScaleDeformableAttnFunction(Function):
|
42 |
+
@staticmethod
|
43 |
+
def forward(
|
44 |
+
ctx,
|
45 |
+
value,
|
46 |
+
value_spatial_shapes,
|
47 |
+
value_level_start_index,
|
48 |
+
sampling_locations,
|
49 |
+
attention_weights,
|
50 |
+
im2col_step,
|
51 |
+
):
|
52 |
+
ctx.im2col_step = im2col_step
|
53 |
+
output = _C.ms_deform_attn_forward(
|
54 |
+
value,
|
55 |
+
value_spatial_shapes,
|
56 |
+
value_level_start_index,
|
57 |
+
sampling_locations,
|
58 |
+
attention_weights,
|
59 |
+
ctx.im2col_step,
|
60 |
+
)
|
61 |
+
ctx.save_for_backward(
|
62 |
+
value,
|
63 |
+
value_spatial_shapes,
|
64 |
+
value_level_start_index,
|
65 |
+
sampling_locations,
|
66 |
+
attention_weights,
|
67 |
+
)
|
68 |
+
return output
|
69 |
+
|
70 |
+
@staticmethod
|
71 |
+
@once_differentiable
|
72 |
+
def backward(ctx, grad_output):
|
73 |
+
(
|
74 |
+
value,
|
75 |
+
value_spatial_shapes,
|
76 |
+
value_level_start_index,
|
77 |
+
sampling_locations,
|
78 |
+
attention_weights,
|
79 |
+
) = ctx.saved_tensors
|
80 |
+
grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward(
|
81 |
+
value,
|
82 |
+
value_spatial_shapes,
|
83 |
+
value_level_start_index,
|
84 |
+
sampling_locations,
|
85 |
+
attention_weights,
|
86 |
+
grad_output,
|
87 |
+
ctx.im2col_step,
|
88 |
+
)
|
89 |
+
|
90 |
+
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
91 |
+
|
92 |
+
|
93 |
+
def multi_scale_deformable_attn_pytorch(
|
94 |
+
value: torch.Tensor,
|
95 |
+
value_spatial_shapes: torch.Tensor,
|
96 |
+
sampling_locations: torch.Tensor,
|
97 |
+
attention_weights: torch.Tensor,
|
98 |
+
) -> torch.Tensor:
|
99 |
+
|
100 |
+
bs, _, num_heads, embed_dims = value.shape
|
101 |
+
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
102 |
+
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
103 |
+
sampling_grids = 2 * sampling_locations - 1
|
104 |
+
sampling_value_list = []
|
105 |
+
for level, (H_, W_) in enumerate(value_spatial_shapes):
|
106 |
+
# bs, H_*W_, num_heads, embed_dims ->
|
107 |
+
# bs, H_*W_, num_heads*embed_dims ->
|
108 |
+
# bs, num_heads*embed_dims, H_*W_ ->
|
109 |
+
# bs*num_heads, embed_dims, H_, W_
|
110 |
+
value_l_ = (
|
111 |
+
value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
|
112 |
+
)
|
113 |
+
# bs, num_queries, num_heads, num_points, 2 ->
|
114 |
+
# bs, num_heads, num_queries, num_points, 2 ->
|
115 |
+
# bs*num_heads, num_queries, num_points, 2
|
116 |
+
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
117 |
+
# bs*num_heads, embed_dims, num_queries, num_points
|
118 |
+
sampling_value_l_ = F.grid_sample(
|
119 |
+
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
|
120 |
+
)
|
121 |
+
sampling_value_list.append(sampling_value_l_)
|
122 |
+
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
123 |
+
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
124 |
+
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
125 |
+
attention_weights = attention_weights.transpose(1, 2).reshape(
|
126 |
+
bs * num_heads, 1, num_queries, num_levels * num_points
|
127 |
+
)
|
128 |
+
output = (
|
129 |
+
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
130 |
+
.sum(-1)
|
131 |
+
.view(bs, num_heads * embed_dims, num_queries)
|
132 |
+
)
|
133 |
+
return output.transpose(1, 2).contiguous()
|
134 |
+
|
135 |
+
|
136 |
+
class MultiScaleDeformableAttention(nn.Module):
|
137 |
+
"""Multi-Scale Deformable Attention Module used in Deformable-DETR
|
138 |
+
|
139 |
+
`Deformable DETR: Deformable Transformers for End-to-End Object Detection.
|
140 |
+
<https://arxiv.org/pdf/2010.04159.pdf>`_.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
embed_dim (int): The embedding dimension of Attention. Default: 256.
|
144 |
+
num_heads (int): The number of attention heads. Default: 8.
|
145 |
+
num_levels (int): The number of feature map used in Attention. Default: 4.
|
146 |
+
num_points (int): The number of sampling points for each query
|
147 |
+
in each head. Default: 4.
|
148 |
+
img2col_steps (int): The step used in image_to_column. Defualt: 64.
|
149 |
+
dropout (float): Dropout layer used in output. Default: 0.1.
|
150 |
+
batch_first (bool): if ``True``, then the input and output tensor will be
|
151 |
+
provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)`
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
embed_dim: int = 256,
|
157 |
+
num_heads: int = 8,
|
158 |
+
num_levels: int = 4,
|
159 |
+
num_points: int = 4,
|
160 |
+
img2col_step: int = 64,
|
161 |
+
batch_first: bool = False,
|
162 |
+
):
|
163 |
+
super().__init__()
|
164 |
+
if embed_dim % num_heads != 0:
|
165 |
+
raise ValueError(
|
166 |
+
"embed_dim must be divisible by num_heads, but got {} and {}".format(
|
167 |
+
embed_dim, num_heads
|
168 |
+
)
|
169 |
+
)
|
170 |
+
head_dim = embed_dim // num_heads
|
171 |
+
|
172 |
+
self.batch_first = batch_first
|
173 |
+
|
174 |
+
if not _is_power_of_2(head_dim):
|
175 |
+
warnings.warn(
|
176 |
+
"""
|
177 |
+
You'd better set d_model in MSDeformAttn to make sure that
|
178 |
+
each dim of the attention head a power of 2, which is more efficient.
|
179 |
+
"""
|
180 |
+
)
|
181 |
+
|
182 |
+
self.im2col_step = img2col_step
|
183 |
+
self.embed_dim = embed_dim
|
184 |
+
self.num_heads = num_heads
|
185 |
+
self.num_levels = num_levels
|
186 |
+
self.num_points = num_points
|
187 |
+
r = 16
|
188 |
+
self.sampling_offsets = lora.Linear(embed_dim, num_heads * num_levels * num_points * 2 , r=r)
|
189 |
+
self.attention_weights = lora.Linear(embed_dim, num_heads * num_levels * num_points , r=r)
|
190 |
+
self.value_proj = lora.Linear(embed_dim, embed_dim , r=r)
|
191 |
+
self.output_proj = lora.Linear(embed_dim, embed_dim , r=r)
|
192 |
+
|
193 |
+
self.init_weights()
|
194 |
+
|
195 |
+
def _reset_parameters(self):
|
196 |
+
return self.init_weights()
|
197 |
+
|
198 |
+
def init_weights(self):
|
199 |
+
"""
|
200 |
+
Default initialization for Parameters of Module.
|
201 |
+
"""
|
202 |
+
constant_(self.sampling_offsets.weight.data, 0.0)
|
203 |
+
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
|
204 |
+
2.0 * math.pi / self.num_heads
|
205 |
+
)
|
206 |
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
207 |
+
grid_init = (
|
208 |
+
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
209 |
+
.view(self.num_heads, 1, 1, 2)
|
210 |
+
.repeat(1, self.num_levels, self.num_points, 1)
|
211 |
+
)
|
212 |
+
for i in range(self.num_points):
|
213 |
+
grid_init[:, :, i, :] *= i + 1
|
214 |
+
with torch.no_grad():
|
215 |
+
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
216 |
+
constant_(self.attention_weights.weight.data, 0.0)
|
217 |
+
constant_(self.attention_weights.bias.data, 0.0)
|
218 |
+
xavier_uniform_(self.value_proj.weight.data)
|
219 |
+
constant_(self.value_proj.bias.data, 0.0)
|
220 |
+
xavier_uniform_(self.output_proj.weight.data)
|
221 |
+
constant_(self.output_proj.bias.data, 0.0)
|
222 |
+
|
223 |
+
def freeze_sampling_offsets(self):
|
224 |
+
print("Freeze sampling offsets")
|
225 |
+
self.sampling_offsets.weight.requires_grad = False
|
226 |
+
self.sampling_offsets.bias.requires_grad = False
|
227 |
+
|
228 |
+
def freeze_attention_weights(self):
|
229 |
+
print("Freeze attention weights")
|
230 |
+
self.attention_weights.weight.requires_grad = False
|
231 |
+
self.attention_weights.bias.requires_grad = False
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self,
|
235 |
+
query: torch.Tensor,
|
236 |
+
key: Optional[torch.Tensor] = None,
|
237 |
+
value: Optional[torch.Tensor] = None,
|
238 |
+
query_pos: Optional[torch.Tensor] = None,
|
239 |
+
key_padding_mask: Optional[torch.Tensor] = None,
|
240 |
+
reference_points: Optional[torch.Tensor] = None,
|
241 |
+
spatial_shapes: Optional[torch.Tensor] = None,
|
242 |
+
level_start_index: Optional[torch.Tensor] = None,
|
243 |
+
**kwargs
|
244 |
+
) -> torch.Tensor:
|
245 |
+
|
246 |
+
"""Forward Function of MultiScaleDeformableAttention
|
247 |
+
|
248 |
+
Args:
|
249 |
+
query (torch.Tensor): Query embeddings with shape
|
250 |
+
`(num_query, bs, embed_dim)`
|
251 |
+
key (torch.Tensor): Key embeddings with shape
|
252 |
+
`(num_key, bs, embed_dim)`
|
253 |
+
value (torch.Tensor): Value embeddings with shape
|
254 |
+
`(num_key, bs, embed_dim)`
|
255 |
+
query_pos (torch.Tensor): The position embedding for `query`. Default: None.
|
256 |
+
key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`,
|
257 |
+
indicating which elements within `key` to be ignored in attention.
|
258 |
+
reference_points (torch.Tensor): The normalized reference points
|
259 |
+
with shape `(bs, num_query, num_levels, 2)`,
|
260 |
+
all elements is range in [0, 1], top-left (0, 0),
|
261 |
+
bottom-right (1, 1), including padding are.
|
262 |
+
or `(N, Length_{query}, num_levels, 4)`, add additional
|
263 |
+
two dimensions `(h, w)` to form reference boxes.
|
264 |
+
spatial_shapes (torch.Tensor): Spatial shape of features in different levels.
|
265 |
+
With shape `(num_levels, 2)`, last dimension represents `(h, w)`.
|
266 |
+
level_start_index (torch.Tensor): The start index of each level. A tensor with
|
267 |
+
shape `(num_levels, )` which can be represented as
|
268 |
+
`[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`.
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
torch.Tensor: forward results with shape `(num_query, bs, embed_dim)`
|
272 |
+
"""
|
273 |
+
|
274 |
+
if value is None:
|
275 |
+
value = query
|
276 |
+
|
277 |
+
if query_pos is not None:
|
278 |
+
query = query + query_pos
|
279 |
+
|
280 |
+
if not self.batch_first:
|
281 |
+
# change to (bs, num_query ,embed_dims)
|
282 |
+
query = query.permute(1, 0, 2)
|
283 |
+
value = value.permute(1, 0, 2)
|
284 |
+
|
285 |
+
bs, num_query, _ = query.shape
|
286 |
+
bs, num_value, _ = value.shape
|
287 |
+
|
288 |
+
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
|
289 |
+
|
290 |
+
value = self.value_proj(value)
|
291 |
+
if key_padding_mask is not None:
|
292 |
+
value = value.masked_fill(key_padding_mask[..., None], float(0))
|
293 |
+
value = value.view(bs, num_value, self.num_heads, -1)
|
294 |
+
sampling_offsets = self.sampling_offsets(query).view(
|
295 |
+
bs, num_query, self.num_heads, self.num_levels, self.num_points, 2
|
296 |
+
)
|
297 |
+
attention_weights = self.attention_weights(query).view(
|
298 |
+
bs, num_query, self.num_heads, self.num_levels * self.num_points
|
299 |
+
)
|
300 |
+
attention_weights = attention_weights.softmax(-1)
|
301 |
+
attention_weights = attention_weights.view(
|
302 |
+
bs,
|
303 |
+
num_query,
|
304 |
+
self.num_heads,
|
305 |
+
self.num_levels,
|
306 |
+
self.num_points,
|
307 |
+
)
|
308 |
+
|
309 |
+
# bs, num_query, num_heads, num_levels, num_points, 2
|
310 |
+
if reference_points.shape[-1] == 2:
|
311 |
+
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
312 |
+
sampling_locations = (
|
313 |
+
reference_points[:, :, None, :, None, :]
|
314 |
+
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
315 |
+
)
|
316 |
+
elif reference_points.shape[-1] == 4:
|
317 |
+
sampling_locations = (
|
318 |
+
reference_points[:, :, None, :, None, :2]
|
319 |
+
+ sampling_offsets
|
320 |
+
/ self.num_points
|
321 |
+
* reference_points[:, :, None, :, None, 2:]
|
322 |
+
* 0.5
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
raise ValueError(
|
326 |
+
"Last dim of reference_points must be 2 or 4, but get {} instead.".format(
|
327 |
+
reference_points.shape[-1]
|
328 |
+
)
|
329 |
+
)
|
330 |
+
|
331 |
+
if torch.cuda.is_available() and value.is_cuda:
|
332 |
+
halffloat = False
|
333 |
+
if value.dtype == torch.float16:
|
334 |
+
halffloat = True
|
335 |
+
value = value.float()
|
336 |
+
sampling_locations = sampling_locations.float()
|
337 |
+
attention_weights = attention_weights.float()
|
338 |
+
|
339 |
+
output = MultiScaleDeformableAttnFunction.apply(
|
340 |
+
value,
|
341 |
+
spatial_shapes,
|
342 |
+
level_start_index,
|
343 |
+
sampling_locations,
|
344 |
+
attention_weights,
|
345 |
+
self.im2col_step,
|
346 |
+
)
|
347 |
+
|
348 |
+
if halffloat:
|
349 |
+
output = output.half()
|
350 |
+
else:
|
351 |
+
output = multi_scale_deformable_attn_pytorch(
|
352 |
+
value, spatial_shapes, sampling_locations, attention_weights
|
353 |
+
)
|
354 |
+
|
355 |
+
output = self.output_proj(output)
|
356 |
+
|
357 |
+
if not self.batch_first:
|
358 |
+
output = output.permute(1, 0, 2)
|
359 |
+
|
360 |
+
return output
|
361 |
+
|
362 |
+
|
363 |
+
def create_dummy_class(klass, dependency, message=""):
|
364 |
+
"""
|
365 |
+
When a dependency of a class is not available, create a dummy class which throws ImportError
|
366 |
+
when used.
|
367 |
+
|
368 |
+
Args:
|
369 |
+
klass (str): name of the class.
|
370 |
+
dependency (str): name of the dependency.
|
371 |
+
message: extra message to print
|
372 |
+
Returns:
|
373 |
+
class: a class object
|
374 |
+
"""
|
375 |
+
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass)
|
376 |
+
if message:
|
377 |
+
err = err + " " + message
|
378 |
+
|
379 |
+
class _DummyMetaClass(type):
|
380 |
+
# throw error on class attribute access
|
381 |
+
def __getattr__(_, __): # noqa: B902
|
382 |
+
raise ImportError(err)
|
383 |
+
|
384 |
+
class _Dummy(object, metaclass=_DummyMetaClass):
|
385 |
+
# throw error on constructor
|
386 |
+
def __init__(self, *args, **kwargs):
|
387 |
+
raise ImportError(err)
|
388 |
+
|
389 |
+
return _Dummy
|
390 |
+
|
391 |
+
|
392 |
+
def create_dummy_func(func, dependency, message=""):
|
393 |
+
"""
|
394 |
+
When a dependency of a function is not available, create a dummy function which throws
|
395 |
+
ImportError when used.
|
396 |
+
|
397 |
+
Args:
|
398 |
+
func (str): name of the function.
|
399 |
+
dependency (str or list[str]): name(s) of the dependency.
|
400 |
+
message: extra message to print
|
401 |
+
Returns:
|
402 |
+
function: a function object
|
403 |
+
"""
|
404 |
+
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func)
|
405 |
+
if message:
|
406 |
+
err = err + " " + message
|
407 |
+
|
408 |
+
if isinstance(dependency, (list, tuple)):
|
409 |
+
dependency = ",".join(dependency)
|
410 |
+
|
411 |
+
def _dummy(*args, **kwargs):
|
412 |
+
raise ImportError(err)
|
413 |
+
|
414 |
+
return _dummy
|
groundingdino/models/GroundingDINO/transformer.py
ADDED
@@ -0,0 +1,961 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# DINO
|
8 |
+
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------
|
11 |
+
# Conditional DETR Transformer class.
|
12 |
+
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
13 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
16 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
from typing import Optional
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint as checkpoint
|
23 |
+
from torch import Tensor, nn
|
24 |
+
import loralib as lora
|
25 |
+
from groundingdino.util.misc import inverse_sigmoid
|
26 |
+
|
27 |
+
from .fuse_modules import BiAttentionBlock
|
28 |
+
from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn
|
29 |
+
from .transformer_vanilla import TransformerEncoderLayer
|
30 |
+
from .utils import (
|
31 |
+
MLP,
|
32 |
+
_get_activation_fn,
|
33 |
+
_get_clones,
|
34 |
+
gen_encoder_output_proposals,
|
35 |
+
gen_sineembed_for_position,
|
36 |
+
get_sine_pos_embed,
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
class Transformer(nn.Module):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
d_model=256,
|
44 |
+
nhead=8,
|
45 |
+
num_queries=300,
|
46 |
+
num_encoder_layers=6,
|
47 |
+
num_unicoder_layers=0,
|
48 |
+
num_decoder_layers=6,
|
49 |
+
dim_feedforward=2048,
|
50 |
+
dropout=0.0,
|
51 |
+
activation="relu",
|
52 |
+
normalize_before=False,
|
53 |
+
return_intermediate_dec=False,
|
54 |
+
query_dim=4,
|
55 |
+
num_patterns=0,
|
56 |
+
# for deformable encoder
|
57 |
+
num_feature_levels=1,
|
58 |
+
enc_n_points=4,
|
59 |
+
dec_n_points=4,
|
60 |
+
# init query
|
61 |
+
learnable_tgt_init=False,
|
62 |
+
# two stage
|
63 |
+
two_stage_type="no", # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']
|
64 |
+
embed_init_tgt=False,
|
65 |
+
# for text
|
66 |
+
use_text_enhancer=False,
|
67 |
+
use_fusion_layer=False,
|
68 |
+
use_checkpoint=False,
|
69 |
+
use_transformer_ckpt=False,
|
70 |
+
use_text_cross_attention=False,
|
71 |
+
text_dropout=0.1,
|
72 |
+
fusion_dropout=0.1,
|
73 |
+
fusion_droppath=0.0,
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
self.num_feature_levels = num_feature_levels
|
77 |
+
self.num_encoder_layers = num_encoder_layers
|
78 |
+
self.num_unicoder_layers = num_unicoder_layers
|
79 |
+
self.num_decoder_layers = num_decoder_layers
|
80 |
+
self.num_queries = num_queries
|
81 |
+
assert query_dim == 4
|
82 |
+
|
83 |
+
# choose encoder layer type
|
84 |
+
encoder_layer = DeformableTransformerEncoderLayer(
|
85 |
+
d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points
|
86 |
+
)
|
87 |
+
|
88 |
+
if use_text_enhancer:
|
89 |
+
text_enhance_layer = TransformerEncoderLayer(
|
90 |
+
d_model=d_model,
|
91 |
+
nhead=nhead // 2,
|
92 |
+
dim_feedforward=dim_feedforward // 2,
|
93 |
+
dropout=text_dropout,
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
text_enhance_layer = None
|
97 |
+
|
98 |
+
if use_fusion_layer:
|
99 |
+
feature_fusion_layer = BiAttentionBlock(
|
100 |
+
v_dim=d_model,
|
101 |
+
l_dim=d_model,
|
102 |
+
embed_dim=dim_feedforward // 2,
|
103 |
+
num_heads=nhead // 2,
|
104 |
+
dropout=fusion_dropout,
|
105 |
+
drop_path=fusion_droppath,
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
feature_fusion_layer = None
|
109 |
+
|
110 |
+
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
111 |
+
assert encoder_norm is None
|
112 |
+
self.encoder = TransformerEncoder(
|
113 |
+
encoder_layer,
|
114 |
+
num_encoder_layers,
|
115 |
+
d_model=d_model,
|
116 |
+
num_queries=num_queries,
|
117 |
+
text_enhance_layer=text_enhance_layer,
|
118 |
+
feature_fusion_layer=feature_fusion_layer,
|
119 |
+
use_checkpoint=use_checkpoint,
|
120 |
+
use_transformer_ckpt=use_transformer_ckpt,
|
121 |
+
)
|
122 |
+
|
123 |
+
# choose decoder layer type
|
124 |
+
decoder_layer = DeformableTransformerDecoderLayer(
|
125 |
+
d_model,
|
126 |
+
dim_feedforward,
|
127 |
+
dropout,
|
128 |
+
activation,
|
129 |
+
num_feature_levels,
|
130 |
+
nhead,
|
131 |
+
dec_n_points,
|
132 |
+
use_text_cross_attention=use_text_cross_attention,
|
133 |
+
)
|
134 |
+
|
135 |
+
decoder_norm = nn.LayerNorm(d_model)
|
136 |
+
self.decoder = TransformerDecoder(
|
137 |
+
decoder_layer,
|
138 |
+
num_decoder_layers,
|
139 |
+
decoder_norm,
|
140 |
+
return_intermediate=return_intermediate_dec,
|
141 |
+
d_model=d_model,
|
142 |
+
query_dim=query_dim,
|
143 |
+
num_feature_levels=num_feature_levels,
|
144 |
+
)
|
145 |
+
|
146 |
+
self.d_model = d_model
|
147 |
+
self.nhead = nhead
|
148 |
+
self.dec_layers = num_decoder_layers
|
149 |
+
self.num_queries = num_queries # useful for single stage model only
|
150 |
+
self.num_patterns = num_patterns
|
151 |
+
if not isinstance(num_patterns, int):
|
152 |
+
Warning("num_patterns should be int but {}".format(type(num_patterns)))
|
153 |
+
self.num_patterns = 0
|
154 |
+
|
155 |
+
if num_feature_levels > 1:
|
156 |
+
if self.num_encoder_layers > 0:
|
157 |
+
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
|
158 |
+
else:
|
159 |
+
self.level_embed = None
|
160 |
+
|
161 |
+
self.learnable_tgt_init = learnable_tgt_init
|
162 |
+
assert learnable_tgt_init, "why not learnable_tgt_init"
|
163 |
+
self.embed_init_tgt = embed_init_tgt
|
164 |
+
if (two_stage_type != "no" and embed_init_tgt) or (two_stage_type == "no"):
|
165 |
+
self.tgt_embed = nn.Embedding(self.num_queries, d_model)
|
166 |
+
nn.init.normal_(self.tgt_embed.weight.data)
|
167 |
+
else:
|
168 |
+
self.tgt_embed = None
|
169 |
+
|
170 |
+
# for two stage
|
171 |
+
self.two_stage_type = two_stage_type
|
172 |
+
assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
|
173 |
+
two_stage_type
|
174 |
+
)
|
175 |
+
if two_stage_type == "standard":
|
176 |
+
# anchor selection at the output of encoder
|
177 |
+
self.enc_output = nn.Linear(d_model, d_model)
|
178 |
+
self.enc_output_norm = nn.LayerNorm(d_model)
|
179 |
+
self.two_stage_wh_embedding = None
|
180 |
+
|
181 |
+
if two_stage_type == "no":
|
182 |
+
self.init_ref_points(num_queries) # init self.refpoint_embed
|
183 |
+
|
184 |
+
self.enc_out_class_embed = None
|
185 |
+
self.enc_out_bbox_embed = None
|
186 |
+
|
187 |
+
self._reset_parameters()
|
188 |
+
|
189 |
+
def _reset_parameters(self):
|
190 |
+
for p in self.parameters():
|
191 |
+
if p.dim() > 1:
|
192 |
+
nn.init.xavier_uniform_(p)
|
193 |
+
for m in self.modules():
|
194 |
+
if isinstance(m, MSDeformAttn):
|
195 |
+
m._reset_parameters()
|
196 |
+
if self.num_feature_levels > 1 and self.level_embed is not None:
|
197 |
+
nn.init.normal_(self.level_embed)
|
198 |
+
|
199 |
+
def get_valid_ratio(self, mask):
|
200 |
+
_, H, W = mask.shape
|
201 |
+
valid_H = torch.sum(~mask[:, :, 0], 1)
|
202 |
+
valid_W = torch.sum(~mask[:, 0, :], 1)
|
203 |
+
valid_ratio_h = valid_H.float() / H
|
204 |
+
valid_ratio_w = valid_W.float() / W
|
205 |
+
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
|
206 |
+
return valid_ratio
|
207 |
+
|
208 |
+
def init_ref_points(self, use_num_queries):
|
209 |
+
self.refpoint_embed = nn.Embedding(use_num_queries, 4)
|
210 |
+
|
211 |
+
def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None, text_dict=None):
|
212 |
+
"""
|
213 |
+
Input:
|
214 |
+
- srcs: List of multi features [bs, ci, hi, wi]
|
215 |
+
- masks: List of multi masks [bs, hi, wi]
|
216 |
+
- refpoint_embed: [bs, num_dn, 4]. None in infer
|
217 |
+
- pos_embeds: List of multi pos embeds [bs, ci, hi, wi]
|
218 |
+
- tgt: [bs, num_dn, d_model]. None in infer
|
219 |
+
|
220 |
+
"""
|
221 |
+
# prepare input for encoder
|
222 |
+
src_flatten = []
|
223 |
+
mask_flatten = []
|
224 |
+
lvl_pos_embed_flatten = []
|
225 |
+
spatial_shapes = []
|
226 |
+
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
|
227 |
+
bs, c, h, w = src.shape
|
228 |
+
spatial_shape = (h, w)
|
229 |
+
spatial_shapes.append(spatial_shape)
|
230 |
+
|
231 |
+
src = src.flatten(2).transpose(1, 2) # bs, hw, c
|
232 |
+
mask = mask.flatten(1) # bs, hw
|
233 |
+
pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c
|
234 |
+
if self.num_feature_levels > 1 and self.level_embed is not None:
|
235 |
+
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
|
236 |
+
else:
|
237 |
+
lvl_pos_embed = pos_embed
|
238 |
+
lvl_pos_embed_flatten.append(lvl_pos_embed)
|
239 |
+
src_flatten.append(src)
|
240 |
+
mask_flatten.append(mask)
|
241 |
+
src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c
|
242 |
+
mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw}
|
243 |
+
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c
|
244 |
+
spatial_shapes = torch.as_tensor(
|
245 |
+
spatial_shapes, dtype=torch.long, device=src_flatten.device
|
246 |
+
)
|
247 |
+
level_start_index = torch.cat(
|
248 |
+
(spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])
|
249 |
+
)
|
250 |
+
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
|
251 |
+
|
252 |
+
# two stage
|
253 |
+
enc_topk_proposals = enc_refpoint_embed = None
|
254 |
+
|
255 |
+
#########################################################
|
256 |
+
# Begin Encoder
|
257 |
+
#########################################################
|
258 |
+
memory, memory_text = self.encoder(
|
259 |
+
src_flatten,
|
260 |
+
pos=lvl_pos_embed_flatten,
|
261 |
+
level_start_index=level_start_index,
|
262 |
+
spatial_shapes=spatial_shapes,
|
263 |
+
valid_ratios=valid_ratios,
|
264 |
+
key_padding_mask=mask_flatten,
|
265 |
+
memory_text=text_dict["encoded_text"],
|
266 |
+
text_attention_mask=~text_dict["text_token_mask"],
|
267 |
+
# we ~ the mask . False means use the token; True means pad the token
|
268 |
+
position_ids=text_dict["position_ids"],
|
269 |
+
text_self_attention_masks=text_dict["text_self_attention_masks"],
|
270 |
+
)
|
271 |
+
#########################################################
|
272 |
+
# End Encoder
|
273 |
+
# - memory: bs, \sum{hw}, c
|
274 |
+
# - mask_flatten: bs, \sum{hw}
|
275 |
+
# - lvl_pos_embed_flatten: bs, \sum{hw}, c
|
276 |
+
# - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
|
277 |
+
# - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
|
278 |
+
#########################################################
|
279 |
+
text_dict["encoded_text"] = memory_text
|
280 |
+
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
281 |
+
# if memory.isnan().any() | memory.isinf().any():
|
282 |
+
# import ipdb; ipdb.set_trace()
|
283 |
+
|
284 |
+
if self.two_stage_type == "standard":
|
285 |
+
output_memory, output_proposals = gen_encoder_output_proposals(
|
286 |
+
memory, mask_flatten, spatial_shapes
|
287 |
+
)
|
288 |
+
output_memory = self.enc_output_norm(self.enc_output(output_memory))
|
289 |
+
|
290 |
+
if text_dict is not None:
|
291 |
+
enc_outputs_class_unselected = self.enc_out_class_embed(output_memory, text_dict)
|
292 |
+
else:
|
293 |
+
enc_outputs_class_unselected = self.enc_out_class_embed(output_memory)
|
294 |
+
|
295 |
+
topk_logits = enc_outputs_class_unselected.max(-1)[0]
|
296 |
+
enc_outputs_coord_unselected = (
|
297 |
+
self.enc_out_bbox_embed(output_memory) + output_proposals
|
298 |
+
) # (bs, \sum{hw}, 4) unsigmoid
|
299 |
+
topk = self.num_queries
|
300 |
+
|
301 |
+
topk_proposals = torch.topk(topk_logits, topk, dim=1)[1] # bs, nq
|
302 |
+
|
303 |
+
# gather boxes
|
304 |
+
refpoint_embed_undetach = torch.gather(
|
305 |
+
enc_outputs_coord_unselected, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
|
306 |
+
) # unsigmoid
|
307 |
+
refpoint_embed_ = refpoint_embed_undetach.detach()
|
308 |
+
init_box_proposal = torch.gather(
|
309 |
+
output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
|
310 |
+
).sigmoid() # sigmoid
|
311 |
+
|
312 |
+
# gather tgt
|
313 |
+
tgt_undetach = torch.gather(
|
314 |
+
output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model)
|
315 |
+
)
|
316 |
+
if self.embed_init_tgt:
|
317 |
+
tgt_ = (
|
318 |
+
self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
319 |
+
) # nq, bs, d_model
|
320 |
+
else:
|
321 |
+
tgt_ = tgt_undetach.detach()
|
322 |
+
|
323 |
+
if refpoint_embed is not None:
|
324 |
+
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
|
325 |
+
tgt = torch.cat([tgt, tgt_], dim=1)
|
326 |
+
else:
|
327 |
+
refpoint_embed, tgt = refpoint_embed_, tgt_
|
328 |
+
|
329 |
+
elif self.two_stage_type == "no":
|
330 |
+
tgt_ = (
|
331 |
+
self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
332 |
+
) # nq, bs, d_model
|
333 |
+
refpoint_embed_ = (
|
334 |
+
self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
335 |
+
) # nq, bs, 4
|
336 |
+
|
337 |
+
if refpoint_embed is not None:
|
338 |
+
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
|
339 |
+
tgt = torch.cat([tgt, tgt_], dim=1)
|
340 |
+
else:
|
341 |
+
refpoint_embed, tgt = refpoint_embed_, tgt_
|
342 |
+
|
343 |
+
if self.num_patterns > 0:
|
344 |
+
tgt_embed = tgt.repeat(1, self.num_patterns, 1)
|
345 |
+
refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1)
|
346 |
+
tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(
|
347 |
+
self.num_queries, 1
|
348 |
+
) # 1, n_q*n_pat, d_model
|
349 |
+
tgt = tgt_embed + tgt_pat
|
350 |
+
|
351 |
+
init_box_proposal = refpoint_embed_.sigmoid()
|
352 |
+
|
353 |
+
else:
|
354 |
+
raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type))
|
355 |
+
#########################################################
|
356 |
+
# End preparing tgt
|
357 |
+
# - tgt: bs, NQ, d_model
|
358 |
+
# - refpoint_embed(unsigmoid): bs, NQ, d_model
|
359 |
+
#########################################################
|
360 |
+
|
361 |
+
#########################################################
|
362 |
+
# Begin Decoder
|
363 |
+
#########################################################
|
364 |
+
hs, references = self.decoder(
|
365 |
+
tgt=tgt.transpose(0, 1),
|
366 |
+
memory=memory.transpose(0, 1),
|
367 |
+
memory_key_padding_mask=mask_flatten,
|
368 |
+
pos=lvl_pos_embed_flatten.transpose(0, 1),
|
369 |
+
refpoints_unsigmoid=refpoint_embed.transpose(0, 1),
|
370 |
+
level_start_index=level_start_index,
|
371 |
+
spatial_shapes=spatial_shapes,
|
372 |
+
valid_ratios=valid_ratios,
|
373 |
+
tgt_mask=attn_mask,
|
374 |
+
memory_text=text_dict["encoded_text"],
|
375 |
+
text_attention_mask=~text_dict["text_token_mask"],
|
376 |
+
# we ~ the mask . False means use the token; True means pad the token
|
377 |
+
)
|
378 |
+
#########################################################
|
379 |
+
# End Decoder
|
380 |
+
# hs: n_dec, bs, nq, d_model
|
381 |
+
# references: n_dec+1, bs, nq, query_dim
|
382 |
+
#########################################################
|
383 |
+
|
384 |
+
#########################################################
|
385 |
+
# Begin postprocess
|
386 |
+
#########################################################
|
387 |
+
if self.two_stage_type == "standard":
|
388 |
+
hs_enc = tgt_undetach.unsqueeze(0)
|
389 |
+
ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0)
|
390 |
+
else:
|
391 |
+
hs_enc = ref_enc = None
|
392 |
+
#########################################################
|
393 |
+
# End postprocess
|
394 |
+
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None
|
395 |
+
# ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None
|
396 |
+
#########################################################
|
397 |
+
|
398 |
+
return hs, references, hs_enc, ref_enc, init_box_proposal
|
399 |
+
# hs: (n_dec, bs, nq, d_model)
|
400 |
+
# references: sigmoid coordinates. (n_dec+1, bs, bq, 4)
|
401 |
+
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None
|
402 |
+
# ref_enc: sigmoid coordinates. \
|
403 |
+
# (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None
|
404 |
+
|
405 |
+
|
406 |
+
class TransformerEncoder(nn.Module):
|
407 |
+
def __init__(
|
408 |
+
self,
|
409 |
+
encoder_layer,
|
410 |
+
num_layers,
|
411 |
+
d_model=256,
|
412 |
+
num_queries=300,
|
413 |
+
enc_layer_share=False,
|
414 |
+
text_enhance_layer=None,
|
415 |
+
feature_fusion_layer=None,
|
416 |
+
use_checkpoint=False,
|
417 |
+
use_transformer_ckpt=False,
|
418 |
+
):
|
419 |
+
"""_summary_
|
420 |
+
|
421 |
+
Args:
|
422 |
+
encoder_layer (_type_): _description_
|
423 |
+
num_layers (_type_): _description_
|
424 |
+
norm (_type_, optional): _description_. Defaults to None.
|
425 |
+
d_model (int, optional): _description_. Defaults to 256.
|
426 |
+
num_queries (int, optional): _description_. Defaults to 300.
|
427 |
+
enc_layer_share (bool, optional): _description_. Defaults to False.
|
428 |
+
|
429 |
+
"""
|
430 |
+
super().__init__()
|
431 |
+
# prepare layers
|
432 |
+
self.layers = []
|
433 |
+
self.text_layers = []
|
434 |
+
self.fusion_layers = []
|
435 |
+
if num_layers > 0:
|
436 |
+
self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share)
|
437 |
+
|
438 |
+
if text_enhance_layer is not None:
|
439 |
+
self.text_layers = _get_clones(
|
440 |
+
text_enhance_layer, num_layers, layer_share=enc_layer_share
|
441 |
+
)
|
442 |
+
if feature_fusion_layer is not None:
|
443 |
+
self.fusion_layers = _get_clones(
|
444 |
+
feature_fusion_layer, num_layers, layer_share=enc_layer_share
|
445 |
+
)
|
446 |
+
else:
|
447 |
+
self.layers = []
|
448 |
+
del encoder_layer
|
449 |
+
|
450 |
+
if text_enhance_layer is not None:
|
451 |
+
self.text_layers = []
|
452 |
+
del text_enhance_layer
|
453 |
+
if feature_fusion_layer is not None:
|
454 |
+
self.fusion_layers = []
|
455 |
+
del feature_fusion_layer
|
456 |
+
|
457 |
+
self.query_scale = None
|
458 |
+
self.num_queries = num_queries
|
459 |
+
self.num_layers = num_layers
|
460 |
+
self.d_model = d_model
|
461 |
+
|
462 |
+
self.use_checkpoint = use_checkpoint
|
463 |
+
self.use_transformer_ckpt = use_transformer_ckpt
|
464 |
+
|
465 |
+
@staticmethod
|
466 |
+
def get_reference_points(spatial_shapes, valid_ratios, device):
|
467 |
+
reference_points_list = []
|
468 |
+
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
469 |
+
|
470 |
+
ref_y, ref_x = torch.meshgrid(
|
471 |
+
torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
|
472 |
+
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),
|
473 |
+
)
|
474 |
+
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
|
475 |
+
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
|
476 |
+
ref = torch.stack((ref_x, ref_y), -1)
|
477 |
+
reference_points_list.append(ref)
|
478 |
+
reference_points = torch.cat(reference_points_list, 1)
|
479 |
+
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
|
480 |
+
return reference_points
|
481 |
+
|
482 |
+
def forward(
|
483 |
+
self,
|
484 |
+
# for images
|
485 |
+
src: Tensor,
|
486 |
+
pos: Tensor,
|
487 |
+
spatial_shapes: Tensor,
|
488 |
+
level_start_index: Tensor,
|
489 |
+
valid_ratios: Tensor,
|
490 |
+
key_padding_mask: Tensor,
|
491 |
+
# for texts
|
492 |
+
memory_text: Tensor = None,
|
493 |
+
text_attention_mask: Tensor = None,
|
494 |
+
pos_text: Tensor = None,
|
495 |
+
text_self_attention_masks: Tensor = None,
|
496 |
+
position_ids: Tensor = None,
|
497 |
+
):
|
498 |
+
"""
|
499 |
+
Input:
|
500 |
+
- src: [bs, sum(hi*wi), 256]
|
501 |
+
- pos: pos embed for src. [bs, sum(hi*wi), 256]
|
502 |
+
- spatial_shapes: h,w of each level [num_level, 2]
|
503 |
+
- level_start_index: [num_level] start point of level in sum(hi*wi).
|
504 |
+
- valid_ratios: [bs, num_level, 2]
|
505 |
+
- key_padding_mask: [bs, sum(hi*wi)]
|
506 |
+
|
507 |
+
- memory_text: bs, n_text, 256
|
508 |
+
- text_attention_mask: bs, n_text
|
509 |
+
False for no padding; True for padding
|
510 |
+
- pos_text: bs, n_text, 256
|
511 |
+
|
512 |
+
- position_ids: bs, n_text
|
513 |
+
Intermedia:
|
514 |
+
- reference_points: [bs, sum(hi*wi), num_level, 2]
|
515 |
+
Outpus:
|
516 |
+
- output: [bs, sum(hi*wi), 256]
|
517 |
+
"""
|
518 |
+
|
519 |
+
output = src
|
520 |
+
|
521 |
+
# preparation and reshape
|
522 |
+
if self.num_layers > 0:
|
523 |
+
reference_points = self.get_reference_points(
|
524 |
+
spatial_shapes, valid_ratios, device=src.device
|
525 |
+
)
|
526 |
+
|
527 |
+
if self.text_layers:
|
528 |
+
# generate pos_text
|
529 |
+
bs, n_text, text_dim = memory_text.shape
|
530 |
+
if pos_text is None and position_ids is None:
|
531 |
+
pos_text = (
|
532 |
+
torch.arange(n_text, device=memory_text.device)
|
533 |
+
.float()
|
534 |
+
.unsqueeze(0)
|
535 |
+
.unsqueeze(-1)
|
536 |
+
.repeat(bs, 1, 1)
|
537 |
+
)
|
538 |
+
pos_text = get_sine_pos_embed(pos_text, num_pos_feats=256, exchange_xy=False)
|
539 |
+
if position_ids is not None:
|
540 |
+
pos_text = get_sine_pos_embed(
|
541 |
+
position_ids[..., None], num_pos_feats=256, exchange_xy=False
|
542 |
+
)
|
543 |
+
|
544 |
+
# main process
|
545 |
+
for layer_id, layer in enumerate(self.layers):
|
546 |
+
# if output.isnan().any() or memory_text.isnan().any():
|
547 |
+
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
548 |
+
# import ipdb; ipdb.set_trace()
|
549 |
+
if self.fusion_layers:
|
550 |
+
if self.use_checkpoint:
|
551 |
+
output, memory_text = checkpoint.checkpoint(
|
552 |
+
self.fusion_layers[layer_id],
|
553 |
+
output,
|
554 |
+
memory_text,
|
555 |
+
key_padding_mask,
|
556 |
+
text_attention_mask,
|
557 |
+
)
|
558 |
+
else:
|
559 |
+
output, memory_text = self.fusion_layers[layer_id](
|
560 |
+
v=output,
|
561 |
+
l=memory_text,
|
562 |
+
attention_mask_v=key_padding_mask,
|
563 |
+
attention_mask_l=text_attention_mask,
|
564 |
+
)
|
565 |
+
|
566 |
+
if self.text_layers:
|
567 |
+
memory_text = self.text_layers[layer_id](
|
568 |
+
src=memory_text.transpose(0, 1),
|
569 |
+
src_mask=~text_self_attention_masks, # note we use ~ for mask here
|
570 |
+
src_key_padding_mask=text_attention_mask,
|
571 |
+
pos=(pos_text.transpose(0, 1) if pos_text is not None else None),
|
572 |
+
).transpose(0, 1)
|
573 |
+
|
574 |
+
# main process
|
575 |
+
if self.use_transformer_ckpt:
|
576 |
+
output = checkpoint.checkpoint(
|
577 |
+
layer,
|
578 |
+
output,
|
579 |
+
pos,
|
580 |
+
reference_points,
|
581 |
+
spatial_shapes,
|
582 |
+
level_start_index,
|
583 |
+
key_padding_mask,
|
584 |
+
)
|
585 |
+
else:
|
586 |
+
output = layer(
|
587 |
+
src=output,
|
588 |
+
pos=pos,
|
589 |
+
reference_points=reference_points,
|
590 |
+
spatial_shapes=spatial_shapes,
|
591 |
+
level_start_index=level_start_index,
|
592 |
+
key_padding_mask=key_padding_mask,
|
593 |
+
)
|
594 |
+
|
595 |
+
return output, memory_text
|
596 |
+
|
597 |
+
|
598 |
+
class TransformerDecoder(nn.Module):
|
599 |
+
def __init__(
|
600 |
+
self,
|
601 |
+
decoder_layer,
|
602 |
+
num_layers,
|
603 |
+
norm=None,
|
604 |
+
return_intermediate=False,
|
605 |
+
d_model=256,
|
606 |
+
query_dim=4,
|
607 |
+
num_feature_levels=1,
|
608 |
+
):
|
609 |
+
super().__init__()
|
610 |
+
if num_layers > 0:
|
611 |
+
self.layers = _get_clones(decoder_layer, num_layers)
|
612 |
+
else:
|
613 |
+
self.layers = []
|
614 |
+
self.num_layers = num_layers
|
615 |
+
self.norm = norm
|
616 |
+
self.return_intermediate = return_intermediate
|
617 |
+
assert return_intermediate, "support return_intermediate only"
|
618 |
+
self.query_dim = query_dim
|
619 |
+
assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim)
|
620 |
+
self.num_feature_levels = num_feature_levels
|
621 |
+
|
622 |
+
self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2)
|
623 |
+
self.query_pos_sine_scale = None
|
624 |
+
|
625 |
+
self.query_scale = None
|
626 |
+
self.bbox_embed = None
|
627 |
+
self.class_embed = None
|
628 |
+
|
629 |
+
self.d_model = d_model
|
630 |
+
|
631 |
+
self.ref_anchor_head = None
|
632 |
+
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
tgt,
|
636 |
+
memory,
|
637 |
+
tgt_mask: Optional[Tensor] = None,
|
638 |
+
memory_mask: Optional[Tensor] = None,
|
639 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
640 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
641 |
+
pos: Optional[Tensor] = None,
|
642 |
+
refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2
|
643 |
+
# for memory
|
644 |
+
level_start_index: Optional[Tensor] = None, # num_levels
|
645 |
+
spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
|
646 |
+
valid_ratios: Optional[Tensor] = None,
|
647 |
+
# for text
|
648 |
+
memory_text: Optional[Tensor] = None,
|
649 |
+
text_attention_mask: Optional[Tensor] = None,
|
650 |
+
):
|
651 |
+
"""
|
652 |
+
Input:
|
653 |
+
- tgt: nq, bs, d_model
|
654 |
+
- memory: hw, bs, d_model
|
655 |
+
- pos: hw, bs, d_model
|
656 |
+
- refpoints_unsigmoid: nq, bs, 2/4
|
657 |
+
- valid_ratios/spatial_shapes: bs, nlevel, 2
|
658 |
+
"""
|
659 |
+
output = tgt
|
660 |
+
|
661 |
+
intermediate = []
|
662 |
+
reference_points = refpoints_unsigmoid.sigmoid()
|
663 |
+
ref_points = [reference_points]
|
664 |
+
|
665 |
+
for layer_id, layer in enumerate(self.layers):
|
666 |
+
|
667 |
+
if reference_points.shape[-1] == 4:
|
668 |
+
reference_points_input = (
|
669 |
+
reference_points[:, :, None]
|
670 |
+
* torch.cat([valid_ratios, valid_ratios], -1)[None, :]
|
671 |
+
) # nq, bs, nlevel, 4
|
672 |
+
else:
|
673 |
+
assert reference_points.shape[-1] == 2
|
674 |
+
reference_points_input = reference_points[:, :, None] * valid_ratios[None, :]
|
675 |
+
query_sine_embed = gen_sineembed_for_position(
|
676 |
+
reference_points_input[:, :, 0, :]
|
677 |
+
) # nq, bs, 256*2
|
678 |
+
|
679 |
+
# conditional query
|
680 |
+
raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256
|
681 |
+
pos_scale = self.query_scale(output) if self.query_scale is not None else 1
|
682 |
+
query_pos = pos_scale * raw_query_pos
|
683 |
+
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
684 |
+
# if query_pos.isnan().any() | query_pos.isinf().any():
|
685 |
+
# import ipdb; ipdb.set_trace()
|
686 |
+
|
687 |
+
# main process
|
688 |
+
output = layer(
|
689 |
+
tgt=output,
|
690 |
+
tgt_query_pos=query_pos,
|
691 |
+
tgt_query_sine_embed=query_sine_embed,
|
692 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
693 |
+
tgt_reference_points=reference_points_input,
|
694 |
+
memory_text=memory_text,
|
695 |
+
text_attention_mask=text_attention_mask,
|
696 |
+
memory=memory,
|
697 |
+
memory_key_padding_mask=memory_key_padding_mask,
|
698 |
+
memory_level_start_index=level_start_index,
|
699 |
+
memory_spatial_shapes=spatial_shapes,
|
700 |
+
memory_pos=pos,
|
701 |
+
self_attn_mask=tgt_mask,
|
702 |
+
cross_attn_mask=memory_mask,
|
703 |
+
)
|
704 |
+
if output.isnan().any() | output.isinf().any():
|
705 |
+
print(f"output layer_id {layer_id} is nan")
|
706 |
+
try:
|
707 |
+
num_nan = output.isnan().sum().item()
|
708 |
+
num_inf = output.isinf().sum().item()
|
709 |
+
print(f"num_nan {num_nan}, num_inf {num_inf}")
|
710 |
+
except Exception as e:
|
711 |
+
print(e)
|
712 |
+
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
713 |
+
# import ipdb; ipdb.set_trace()
|
714 |
+
|
715 |
+
# iter update
|
716 |
+
if self.bbox_embed is not None:
|
717 |
+
# box_holder = self.bbox_embed(output)
|
718 |
+
# box_holder[..., :self.query_dim] += inverse_sigmoid(reference_points)
|
719 |
+
# new_reference_points = box_holder[..., :self.query_dim].sigmoid()
|
720 |
+
|
721 |
+
reference_before_sigmoid = inverse_sigmoid(reference_points)
|
722 |
+
delta_unsig = self.bbox_embed[layer_id](output)
|
723 |
+
outputs_unsig = delta_unsig + reference_before_sigmoid
|
724 |
+
new_reference_points = outputs_unsig.sigmoid()
|
725 |
+
|
726 |
+
reference_points = new_reference_points.detach()
|
727 |
+
# if layer_id != self.num_layers - 1:
|
728 |
+
ref_points.append(new_reference_points)
|
729 |
+
|
730 |
+
intermediate.append(self.norm(output))
|
731 |
+
|
732 |
+
return [
|
733 |
+
[itm_out.transpose(0, 1) for itm_out in intermediate],
|
734 |
+
[itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points],
|
735 |
+
]
|
736 |
+
|
737 |
+
|
738 |
+
class DeformableTransformerEncoderLayer(nn.Module):
|
739 |
+
def __init__(
|
740 |
+
self,
|
741 |
+
d_model=256,
|
742 |
+
d_ffn=1024,
|
743 |
+
dropout=0.1,
|
744 |
+
activation="relu",
|
745 |
+
n_levels=4,
|
746 |
+
n_heads=8,
|
747 |
+
n_points=4,
|
748 |
+
):
|
749 |
+
super().__init__()
|
750 |
+
|
751 |
+
# self attention
|
752 |
+
self.self_attn = MSDeformAttn(
|
753 |
+
embed_dim=d_model,
|
754 |
+
num_levels=n_levels,
|
755 |
+
num_heads=n_heads,
|
756 |
+
num_points=n_points,
|
757 |
+
batch_first=True,
|
758 |
+
)
|
759 |
+
self.dropout1 = nn.Dropout(dropout)
|
760 |
+
self.norm1 = nn.LayerNorm(d_model)
|
761 |
+
|
762 |
+
# ffn
|
763 |
+
r = 16
|
764 |
+
self.linear1 = lora.Linear(d_model, d_ffn , r=r)
|
765 |
+
self.activation = _get_activation_fn(activation, d_model=d_ffn)
|
766 |
+
self.dropout2 = nn.Dropout(dropout)
|
767 |
+
self.linear2 = lora.Linear(d_ffn, d_model , r=r)
|
768 |
+
self.dropout3 = nn.Dropout(dropout)
|
769 |
+
self.norm2 = nn.LayerNorm(d_model)
|
770 |
+
|
771 |
+
@staticmethod
|
772 |
+
def with_pos_embed(tensor, pos):
|
773 |
+
return tensor if pos is None else tensor + pos
|
774 |
+
|
775 |
+
def forward_ffn(self, src):
|
776 |
+
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
777 |
+
src = src + self.dropout3(src2)
|
778 |
+
src = self.norm2(src)
|
779 |
+
return src
|
780 |
+
|
781 |
+
def forward(
|
782 |
+
self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None
|
783 |
+
):
|
784 |
+
# self attention
|
785 |
+
# import ipdb; ipdb.set_trace()
|
786 |
+
src2 = self.self_attn(
|
787 |
+
query=self.with_pos_embed(src, pos),
|
788 |
+
reference_points=reference_points,
|
789 |
+
value=src,
|
790 |
+
spatial_shapes=spatial_shapes,
|
791 |
+
level_start_index=level_start_index,
|
792 |
+
key_padding_mask=key_padding_mask,
|
793 |
+
)
|
794 |
+
src = src + self.dropout1(src2)
|
795 |
+
src = self.norm1(src)
|
796 |
+
|
797 |
+
# ffn
|
798 |
+
src = self.forward_ffn(src)
|
799 |
+
|
800 |
+
return src
|
801 |
+
|
802 |
+
|
803 |
+
class DeformableTransformerDecoderLayer(nn.Module):
|
804 |
+
def __init__(
|
805 |
+
self,
|
806 |
+
d_model=256,
|
807 |
+
d_ffn=1024,
|
808 |
+
dropout=0.1,
|
809 |
+
activation="relu",
|
810 |
+
n_levels=4,
|
811 |
+
n_heads=8,
|
812 |
+
n_points=4,
|
813 |
+
use_text_feat_guide=False,
|
814 |
+
use_text_cross_attention=False,
|
815 |
+
):
|
816 |
+
super().__init__()
|
817 |
+
|
818 |
+
# cross attention
|
819 |
+
self.cross_attn = MSDeformAttn(
|
820 |
+
embed_dim=d_model,
|
821 |
+
num_levels=n_levels,
|
822 |
+
num_heads=n_heads,
|
823 |
+
num_points=n_points,
|
824 |
+
batch_first=True,
|
825 |
+
)
|
826 |
+
self.dropout1 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
827 |
+
self.norm1 = nn.LayerNorm(d_model)
|
828 |
+
|
829 |
+
# cross attention text
|
830 |
+
if use_text_cross_attention:
|
831 |
+
self.ca_text = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
832 |
+
self.catext_dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
833 |
+
self.catext_norm = nn.LayerNorm(d_model)
|
834 |
+
|
835 |
+
# self attention
|
836 |
+
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
837 |
+
self.dropout2 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
838 |
+
self.norm2 = nn.LayerNorm(d_model)
|
839 |
+
|
840 |
+
# ffn
|
841 |
+
r = 16
|
842 |
+
self.linear1 = lora.Linear(d_model, d_ffn , r=r)
|
843 |
+
self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1)
|
844 |
+
self.dropout3 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
845 |
+
self.linear2 = lora.Linear(d_ffn, d_model , r=r)
|
846 |
+
self.dropout4 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
847 |
+
self.norm3 = nn.LayerNorm(d_model)
|
848 |
+
|
849 |
+
self.key_aware_proj = None
|
850 |
+
self.use_text_feat_guide = use_text_feat_guide
|
851 |
+
assert not use_text_feat_guide
|
852 |
+
self.use_text_cross_attention = use_text_cross_attention
|
853 |
+
|
854 |
+
def rm_self_attn_modules(self):
|
855 |
+
self.self_attn = None
|
856 |
+
self.dropout2 = None
|
857 |
+
self.norm2 = None
|
858 |
+
|
859 |
+
@staticmethod
|
860 |
+
def with_pos_embed(tensor, pos):
|
861 |
+
return tensor if pos is None else tensor + pos
|
862 |
+
|
863 |
+
def forward_ffn(self, tgt):
|
864 |
+
with torch.cuda.amp.autocast(enabled=False):
|
865 |
+
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
|
866 |
+
tgt = tgt + self.dropout4(tgt2)
|
867 |
+
tgt = self.norm3(tgt)
|
868 |
+
return tgt
|
869 |
+
|
870 |
+
def forward(
|
871 |
+
self,
|
872 |
+
# for tgt
|
873 |
+
tgt: Optional[Tensor], # nq, bs, d_model
|
874 |
+
tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
|
875 |
+
tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
|
876 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
877 |
+
tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
|
878 |
+
memory_text: Optional[Tensor] = None, # bs, num_token, d_model
|
879 |
+
text_attention_mask: Optional[Tensor] = None, # bs, num_token
|
880 |
+
# for memory
|
881 |
+
memory: Optional[Tensor] = None, # hw, bs, d_model
|
882 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
883 |
+
memory_level_start_index: Optional[Tensor] = None, # num_levels
|
884 |
+
memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
|
885 |
+
memory_pos: Optional[Tensor] = None, # pos for memory
|
886 |
+
# sa
|
887 |
+
self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
|
888 |
+
cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
|
889 |
+
):
|
890 |
+
"""
|
891 |
+
Input:
|
892 |
+
- tgt/tgt_query_pos: nq, bs, d_model
|
893 |
+
-
|
894 |
+
"""
|
895 |
+
assert cross_attn_mask is None
|
896 |
+
|
897 |
+
# self attention
|
898 |
+
if self.self_attn is not None:
|
899 |
+
# import ipdb; ipdb.set_trace()
|
900 |
+
q = k = self.with_pos_embed(tgt, tgt_query_pos)
|
901 |
+
tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
|
902 |
+
tgt = tgt + self.dropout2(tgt2)
|
903 |
+
tgt = self.norm2(tgt)
|
904 |
+
|
905 |
+
if self.use_text_cross_attention:
|
906 |
+
tgt2 = self.ca_text(
|
907 |
+
self.with_pos_embed(tgt, tgt_query_pos),
|
908 |
+
memory_text.transpose(0, 1),
|
909 |
+
memory_text.transpose(0, 1),
|
910 |
+
key_padding_mask=text_attention_mask,
|
911 |
+
)[0]
|
912 |
+
tgt = tgt + self.catext_dropout(tgt2)
|
913 |
+
tgt = self.catext_norm(tgt)
|
914 |
+
|
915 |
+
tgt2 = self.cross_attn(
|
916 |
+
query=self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
|
917 |
+
reference_points=tgt_reference_points.transpose(0, 1).contiguous(),
|
918 |
+
value=memory.transpose(0, 1),
|
919 |
+
spatial_shapes=memory_spatial_shapes,
|
920 |
+
level_start_index=memory_level_start_index,
|
921 |
+
key_padding_mask=memory_key_padding_mask,
|
922 |
+
).transpose(0, 1)
|
923 |
+
tgt = tgt + self.dropout1(tgt2)
|
924 |
+
tgt = self.norm1(tgt)
|
925 |
+
|
926 |
+
# ffn
|
927 |
+
tgt = self.forward_ffn(tgt)
|
928 |
+
|
929 |
+
return tgt
|
930 |
+
|
931 |
+
|
932 |
+
def build_transformer(args):
|
933 |
+
return Transformer(
|
934 |
+
d_model=args.hidden_dim,
|
935 |
+
dropout=args.dropout,
|
936 |
+
nhead=args.nheads,
|
937 |
+
num_queries=args.num_queries,
|
938 |
+
dim_feedforward=args.dim_feedforward,
|
939 |
+
num_encoder_layers=args.enc_layers,
|
940 |
+
num_decoder_layers=args.dec_layers,
|
941 |
+
normalize_before=args.pre_norm,
|
942 |
+
return_intermediate_dec=True,
|
943 |
+
query_dim=args.query_dim,
|
944 |
+
activation=args.transformer_activation,
|
945 |
+
num_patterns=args.num_patterns,
|
946 |
+
num_feature_levels=args.num_feature_levels,
|
947 |
+
enc_n_points=args.enc_n_points,
|
948 |
+
dec_n_points=args.dec_n_points,
|
949 |
+
learnable_tgt_init=True,
|
950 |
+
# two stage
|
951 |
+
two_stage_type=args.two_stage_type, # ['no', 'standard', 'early']
|
952 |
+
embed_init_tgt=args.embed_init_tgt,
|
953 |
+
use_text_enhancer=args.use_text_enhancer,
|
954 |
+
use_fusion_layer=args.use_fusion_layer,
|
955 |
+
use_checkpoint=args.use_checkpoint,
|
956 |
+
use_transformer_ckpt=args.use_transformer_ckpt,
|
957 |
+
use_text_cross_attention=args.use_text_cross_attention,
|
958 |
+
text_dropout=args.text_dropout,
|
959 |
+
fusion_dropout=args.fusion_dropout,
|
960 |
+
fusion_droppath=args.fusion_droppath,
|
961 |
+
)
|
groundingdino/models/GroundingDINO/transformer_vanilla.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
|
8 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
9 |
+
"""
|
10 |
+
DETR Transformer class.
|
11 |
+
|
12 |
+
Copy-paste from torch.nn.Transformer with modifications:
|
13 |
+
* positional encodings are passed in MHattention
|
14 |
+
* extra LN at the end of encoder is removed
|
15 |
+
* decoder returns a stack of activations from all decoding layers
|
16 |
+
"""
|
17 |
+
from typing import Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from torch import Tensor, nn
|
22 |
+
import loralib as lora
|
23 |
+
from .utils import (
|
24 |
+
MLP,
|
25 |
+
_get_activation_fn,
|
26 |
+
_get_clones,
|
27 |
+
gen_encoder_output_proposals,
|
28 |
+
gen_sineembed_for_position,
|
29 |
+
sigmoid_focal_loss,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
class TextTransformer(nn.Module):
|
34 |
+
def __init__(self, num_layers, d_model=256, nheads=8, dim_feedforward=2048, dropout=0.1):
|
35 |
+
super().__init__()
|
36 |
+
self.num_layers = num_layers
|
37 |
+
self.d_model = d_model
|
38 |
+
self.nheads = nheads
|
39 |
+
self.dim_feedforward = dim_feedforward
|
40 |
+
self.norm = None
|
41 |
+
|
42 |
+
single_encoder_layer = TransformerEncoderLayer(
|
43 |
+
d_model=d_model, nhead=nheads, dim_feedforward=dim_feedforward, dropout=dropout
|
44 |
+
)
|
45 |
+
self.layers = _get_clones(single_encoder_layer, num_layers)
|
46 |
+
|
47 |
+
def forward(self, memory_text: torch.Tensor, text_attention_mask: torch.Tensor):
|
48 |
+
"""
|
49 |
+
|
50 |
+
Args:
|
51 |
+
text_attention_mask: bs, num_token
|
52 |
+
memory_text: bs, num_token, d_model
|
53 |
+
|
54 |
+
Raises:
|
55 |
+
RuntimeError: _description_
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
output: bs, num_token, d_model
|
59 |
+
"""
|
60 |
+
|
61 |
+
output = memory_text.transpose(0, 1)
|
62 |
+
|
63 |
+
for layer in self.layers:
|
64 |
+
output = layer(output, src_key_padding_mask=text_attention_mask)
|
65 |
+
|
66 |
+
if self.norm is not None:
|
67 |
+
output = self.norm(output)
|
68 |
+
|
69 |
+
return output.transpose(0, 1)
|
70 |
+
|
71 |
+
|
72 |
+
class TransformerEncoderLayer(nn.Module):
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
d_model,
|
76 |
+
nhead,
|
77 |
+
dim_feedforward=2048,
|
78 |
+
dropout=0.1,
|
79 |
+
activation="relu",
|
80 |
+
normalize_before=False,
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
84 |
+
# Implementation of Feedforward model
|
85 |
+
r=16
|
86 |
+
self.linear1 = lora.Linear(d_model, dim_feedforward , r=r)
|
87 |
+
self.dropout = nn.Dropout(dropout)
|
88 |
+
self.linear2 = lora.Linear(dim_feedforward, d_model , r=r)
|
89 |
+
|
90 |
+
self.norm1 = nn.LayerNorm(d_model)
|
91 |
+
self.norm2 = nn.LayerNorm(d_model)
|
92 |
+
self.dropout1 = nn.Dropout(dropout)
|
93 |
+
self.dropout2 = nn.Dropout(dropout)
|
94 |
+
|
95 |
+
self.activation = _get_activation_fn(activation)
|
96 |
+
self.normalize_before = normalize_before
|
97 |
+
self.nhead = nhead
|
98 |
+
|
99 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
100 |
+
return tensor if pos is None else tensor + pos
|
101 |
+
|
102 |
+
def forward(
|
103 |
+
self,
|
104 |
+
src,
|
105 |
+
src_mask: Optional[Tensor] = None,
|
106 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
107 |
+
pos: Optional[Tensor] = None,
|
108 |
+
):
|
109 |
+
# repeat attn mask
|
110 |
+
if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]:
|
111 |
+
# bs, num_q, num_k
|
112 |
+
src_mask = src_mask.repeat(self.nhead, 1, 1)
|
113 |
+
|
114 |
+
q = k = self.with_pos_embed(src, pos)
|
115 |
+
|
116 |
+
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0]
|
117 |
+
|
118 |
+
# src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
119 |
+
src = src + self.dropout1(src2)
|
120 |
+
src = self.norm1(src)
|
121 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
122 |
+
src = src + self.dropout2(src2)
|
123 |
+
src = self.norm2(src)
|
124 |
+
return src
|
groundingdino/models/GroundingDINO/utils.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
|
8 |
+
import copy
|
9 |
+
import math
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import Tensor, nn
|
14 |
+
import loralib as lora
|
15 |
+
|
16 |
+
def _get_clones(module, N, layer_share=False):
|
17 |
+
# import ipdb; ipdb.set_trace()
|
18 |
+
if layer_share:
|
19 |
+
return nn.ModuleList([module for i in range(N)])
|
20 |
+
else:
|
21 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
22 |
+
|
23 |
+
|
24 |
+
def get_sine_pos_embed(
|
25 |
+
pos_tensor: torch.Tensor,
|
26 |
+
num_pos_feats: int = 128,
|
27 |
+
temperature: int = 10000,
|
28 |
+
exchange_xy: bool = True,
|
29 |
+
):
|
30 |
+
"""generate sine position embedding from a position tensor
|
31 |
+
Args:
|
32 |
+
pos_tensor (torch.Tensor): shape: [..., n].
|
33 |
+
num_pos_feats (int): projected shape for each float in the tensor.
|
34 |
+
temperature (int): temperature in the sine/cosine function.
|
35 |
+
exchange_xy (bool, optional): exchange pos x and pos y. \
|
36 |
+
For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True.
|
37 |
+
Returns:
|
38 |
+
pos_embed (torch.Tensor): shape: [..., n*num_pos_feats].
|
39 |
+
"""
|
40 |
+
scale = 2 * math.pi
|
41 |
+
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
|
42 |
+
dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
|
43 |
+
|
44 |
+
def sine_func(x: torch.Tensor):
|
45 |
+
sin_x = x * scale / dim_t
|
46 |
+
sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2)
|
47 |
+
return sin_x
|
48 |
+
|
49 |
+
pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)]
|
50 |
+
if exchange_xy:
|
51 |
+
pos_res[0], pos_res[1] = pos_res[1], pos_res[0]
|
52 |
+
pos_res = torch.cat(pos_res, dim=-1)
|
53 |
+
return pos_res
|
54 |
+
|
55 |
+
|
56 |
+
def gen_encoder_output_proposals(
|
57 |
+
memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None
|
58 |
+
):
|
59 |
+
"""
|
60 |
+
Input:
|
61 |
+
- memory: bs, \sum{hw}, d_model
|
62 |
+
- memory_padding_mask: bs, \sum{hw}
|
63 |
+
- spatial_shapes: nlevel, 2
|
64 |
+
- learnedwh: 2
|
65 |
+
Output:
|
66 |
+
- output_memory: bs, \sum{hw}, d_model
|
67 |
+
- output_proposals: bs, \sum{hw}, 4
|
68 |
+
"""
|
69 |
+
N_, S_, C_ = memory.shape
|
70 |
+
proposals = []
|
71 |
+
_cur = 0
|
72 |
+
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
73 |
+
mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view(N_, H_, W_, 1)
|
74 |
+
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
|
75 |
+
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
|
76 |
+
|
77 |
+
# import ipdb; ipdb.set_trace()
|
78 |
+
|
79 |
+
grid_y, grid_x = torch.meshgrid(
|
80 |
+
torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
|
81 |
+
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
|
82 |
+
)
|
83 |
+
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2
|
84 |
+
|
85 |
+
scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
|
86 |
+
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
|
87 |
+
|
88 |
+
if learnedwh is not None:
|
89 |
+
# import ipdb; ipdb.set_trace()
|
90 |
+
wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl)
|
91 |
+
else:
|
92 |
+
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
|
93 |
+
|
94 |
+
# scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1)
|
95 |
+
# grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
|
96 |
+
# wh = torch.ones_like(grid) / scale
|
97 |
+
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
|
98 |
+
proposals.append(proposal)
|
99 |
+
_cur += H_ * W_
|
100 |
+
# import ipdb; ipdb.set_trace()
|
101 |
+
output_proposals = torch.cat(proposals, 1)
|
102 |
+
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(
|
103 |
+
-1, keepdim=True
|
104 |
+
)
|
105 |
+
output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid
|
106 |
+
output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float("inf"))
|
107 |
+
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
|
108 |
+
|
109 |
+
output_memory = memory
|
110 |
+
output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
|
111 |
+
output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
|
112 |
+
|
113 |
+
# output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
|
114 |
+
# output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf'))
|
115 |
+
|
116 |
+
return output_memory, output_proposals
|
117 |
+
|
118 |
+
|
119 |
+
class RandomBoxPerturber:
|
120 |
+
def __init__(
|
121 |
+
self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2
|
122 |
+
) -> None:
|
123 |
+
self.noise_scale = torch.Tensor(
|
124 |
+
[x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale]
|
125 |
+
)
|
126 |
+
|
127 |
+
def __call__(self, refanchors: Tensor) -> Tensor:
|
128 |
+
nq, bs, query_dim = refanchors.shape
|
129 |
+
device = refanchors.device
|
130 |
+
|
131 |
+
noise_raw = torch.rand_like(refanchors)
|
132 |
+
noise_scale = self.noise_scale.to(device)[:query_dim]
|
133 |
+
|
134 |
+
new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale)
|
135 |
+
return new_refanchors.clamp_(0, 1)
|
136 |
+
|
137 |
+
|
138 |
+
def sigmoid_focal_loss(
|
139 |
+
inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, no_reduction=False
|
140 |
+
):
|
141 |
+
"""
|
142 |
+
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
|
143 |
+
Args:
|
144 |
+
inputs: A float tensor of arbitrary shape.
|
145 |
+
The predictions for each example.
|
146 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
147 |
+
classification label for each element in inputs
|
148 |
+
(0 for the negative class and 1 for the positive class).
|
149 |
+
alpha: (optional) Weighting factor in range (0,1) to balance
|
150 |
+
positive vs negative examples. Default = -1 (no weighting).
|
151 |
+
gamma: Exponent of the modulating factor (1 - p_t) to
|
152 |
+
balance easy vs hard examples.
|
153 |
+
Returns:
|
154 |
+
Loss tensor
|
155 |
+
"""
|
156 |
+
prob = inputs.sigmoid()
|
157 |
+
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
158 |
+
p_t = prob * targets + (1 - prob) * (1 - targets)
|
159 |
+
loss = ce_loss * ((1 - p_t) ** gamma)
|
160 |
+
|
161 |
+
if alpha >= 0:
|
162 |
+
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
|
163 |
+
loss = alpha_t * loss
|
164 |
+
|
165 |
+
if no_reduction:
|
166 |
+
return loss
|
167 |
+
|
168 |
+
return loss.mean(1).sum() / num_boxes
|
169 |
+
|
170 |
+
|
171 |
+
class MLP(nn.Module):
|
172 |
+
"""Very simple multi-layer perceptron (also called FFN)"""
|
173 |
+
|
174 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
175 |
+
super().__init__()
|
176 |
+
self.num_layers = num_layers
|
177 |
+
r=16
|
178 |
+
h = [hidden_dim] * (num_layers - 1)
|
179 |
+
self.layers = nn.ModuleList(
|
180 |
+
[lora.Linear(n, k, r=r) for n, k in zip([input_dim] + h, h + [output_dim])]
|
181 |
+
)
|
182 |
+
|
183 |
+
def forward(self, x):
|
184 |
+
for i, layer in enumerate(self.layers):
|
185 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
186 |
+
return x
|
187 |
+
|
188 |
+
|
189 |
+
def _get_activation_fn(activation, d_model=256, batch_dim=0):
|
190 |
+
"""Return an activation function given a string"""
|
191 |
+
if activation == "relu":
|
192 |
+
return F.relu
|
193 |
+
if activation == "gelu":
|
194 |
+
return F.gelu
|
195 |
+
if activation == "glu":
|
196 |
+
return F.glu
|
197 |
+
if activation == "prelu":
|
198 |
+
return nn.PReLU()
|
199 |
+
if activation == "selu":
|
200 |
+
return F.selu
|
201 |
+
|
202 |
+
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
203 |
+
|
204 |
+
|
205 |
+
def gen_sineembed_for_position(pos_tensor):
|
206 |
+
# n_query, bs, _ = pos_tensor.size()
|
207 |
+
# sineembed_tensor = torch.zeros(n_query, bs, 256)
|
208 |
+
scale = 2 * math.pi
|
209 |
+
dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device)
|
210 |
+
dim_t = 10000 ** (2 * (torch.div(dim_t, 2, rounding_mode='floor')) / 128)
|
211 |
+
x_embed = pos_tensor[:, :, 0] * scale
|
212 |
+
y_embed = pos_tensor[:, :, 1] * scale
|
213 |
+
pos_x = x_embed[:, :, None] / dim_t
|
214 |
+
pos_y = y_embed[:, :, None] / dim_t
|
215 |
+
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
|
216 |
+
pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2)
|
217 |
+
if pos_tensor.size(-1) == 2:
|
218 |
+
pos = torch.cat((pos_y, pos_x), dim=2)
|
219 |
+
elif pos_tensor.size(-1) == 4:
|
220 |
+
w_embed = pos_tensor[:, :, 2] * scale
|
221 |
+
pos_w = w_embed[:, :, None] / dim_t
|
222 |
+
pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2)
|
223 |
+
|
224 |
+
h_embed = pos_tensor[:, :, 3] * scale
|
225 |
+
pos_h = h_embed[:, :, None] / dim_t
|
226 |
+
pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2)
|
227 |
+
|
228 |
+
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
|
229 |
+
else:
|
230 |
+
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
|
231 |
+
return pos
|
232 |
+
|
233 |
+
|
234 |
+
class ContrastiveEmbed(nn.Module):
|
235 |
+
def __init__(self, max_text_len=256):
|
236 |
+
"""
|
237 |
+
Args:
|
238 |
+
max_text_len: max length of text.
|
239 |
+
"""
|
240 |
+
super().__init__()
|
241 |
+
self.max_text_len = max_text_len
|
242 |
+
|
243 |
+
def forward(self, x, text_dict):
|
244 |
+
"""_summary_
|
245 |
+
|
246 |
+
Args:
|
247 |
+
x (_type_): _description_
|
248 |
+
text_dict (_type_): _description_
|
249 |
+
{
|
250 |
+
'encoded_text': encoded_text, # bs, 195, d_model
|
251 |
+
'text_token_mask': text_token_mask, # bs, 195
|
252 |
+
# True for used tokens. False for padding tokens
|
253 |
+
}
|
254 |
+
Returns:
|
255 |
+
_type_: _description_
|
256 |
+
"""
|
257 |
+
assert isinstance(text_dict, dict)
|
258 |
+
|
259 |
+
y = text_dict["encoded_text"]
|
260 |
+
text_token_mask = text_dict["text_token_mask"]
|
261 |
+
|
262 |
+
res = x @ y.transpose(-1, -2)
|
263 |
+
res.masked_fill_(~text_token_mask[:, None, :], float("-inf"))
|
264 |
+
|
265 |
+
# padding to max_text_len
|
266 |
+
new_res = torch.full((*res.shape[:-1], self.max_text_len), float("-inf"), device=res.device)
|
267 |
+
new_res[..., : res.shape[-1]] = res
|
268 |
+
|
269 |
+
return new_res
|
groundingdino/models/__init__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
8 |
+
from .GroundingDINO import build_groundingdino
|
9 |
+
|
10 |
+
|
11 |
+
def build_model(args):
|
12 |
+
# we use register to maintain models from catdet6 on.
|
13 |
+
from .registry import MODULE_BUILD_FUNCS
|
14 |
+
|
15 |
+
assert args.modelname in MODULE_BUILD_FUNCS._module_dict
|
16 |
+
build_func = MODULE_BUILD_FUNCS.get(args.modelname)
|
17 |
+
model = build_func(args)
|
18 |
+
return model
|
groundingdino/models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (504 Bytes). View file
|
|
groundingdino/models/__pycache__/registry.cpython-310.pyc
ADDED
Binary file (2.11 kB). View file
|
|
groundingdino/models/registry.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# -*- coding: utf-8 -*-
|
8 |
+
# @Author: Yihao Chen
|
9 |
+
# @Date: 2021-08-16 16:03:17
|
10 |
+
# @Last Modified by: Shilong Liu
|
11 |
+
# @Last Modified time: 2022-01-23 15:26
|
12 |
+
# modified from mmcv
|
13 |
+
|
14 |
+
import inspect
|
15 |
+
from functools import partial
|
16 |
+
|
17 |
+
|
18 |
+
class Registry(object):
|
19 |
+
def __init__(self, name):
|
20 |
+
self._name = name
|
21 |
+
self._module_dict = dict()
|
22 |
+
|
23 |
+
def __repr__(self):
|
24 |
+
format_str = self.__class__.__name__ + "(name={}, items={})".format(
|
25 |
+
self._name, list(self._module_dict.keys())
|
26 |
+
)
|
27 |
+
return format_str
|
28 |
+
|
29 |
+
def __len__(self):
|
30 |
+
return len(self._module_dict)
|
31 |
+
|
32 |
+
@property
|
33 |
+
def name(self):
|
34 |
+
return self._name
|
35 |
+
|
36 |
+
@property
|
37 |
+
def module_dict(self):
|
38 |
+
return self._module_dict
|
39 |
+
|
40 |
+
def get(self, key):
|
41 |
+
return self._module_dict.get(key, None)
|
42 |
+
|
43 |
+
def registe_with_name(self, module_name=None, force=False):
|
44 |
+
return partial(self.register, module_name=module_name, force=force)
|
45 |
+
|
46 |
+
def register(self, module_build_function, module_name=None, force=False):
|
47 |
+
"""Register a module build function.
|
48 |
+
Args:
|
49 |
+
module (:obj:`nn.Module`): Module to be registered.
|
50 |
+
"""
|
51 |
+
if not inspect.isfunction(module_build_function):
|
52 |
+
raise TypeError(
|
53 |
+
"module_build_function must be a function, but got {}".format(
|
54 |
+
type(module_build_function)
|
55 |
+
)
|
56 |
+
)
|
57 |
+
if module_name is None:
|
58 |
+
module_name = module_build_function.__name__
|
59 |
+
if not force and module_name in self._module_dict:
|
60 |
+
raise KeyError("{} is already registered in {}".format(module_name, self.name))
|
61 |
+
self._module_dict[module_name] = module_build_function
|
62 |
+
|
63 |
+
return module_build_function
|
64 |
+
|
65 |
+
|
66 |
+
MODULE_BUILD_FUNCS = Registry("model build functions")
|
groundingdino/util/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|