Spaces:
Runtime error
Runtime error
Merge branch 'main' of https://huggingface.co/spaces/Hasanmog/Peft-GroundingDINO
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- groundingdino/datasets/.ipynb_checkpoints/__init__-checkpoint.py +0 -23
- groundingdino/datasets/.ipynb_checkpoints/coco-checkpoint.py +0 -649
- groundingdino/datasets/.ipynb_checkpoints/dataset-checkpoint.py +0 -44
- groundingdino/datasets/.ipynb_checkpoints/odvg-checkpoint.py +0 -258
- groundingdino/datasets/.ipynb_checkpoints/transforms-checkpoint.py +0 -285
- groundingdino/datasets/__init__.py +0 -23
- groundingdino/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
- groundingdino/datasets/__pycache__/coco.cpython-310.pyc +0 -0
- groundingdino/datasets/__pycache__/coco_eval.cpython-310.pyc +0 -0
- groundingdino/datasets/__pycache__/cocogrounding_eval.cpython-310.pyc +0 -0
- groundingdino/datasets/__pycache__/data_util.cpython-310.pyc +0 -0
- groundingdino/datasets/__pycache__/odvg.cpython-310.pyc +0 -0
- groundingdino/datasets/__pycache__/panoptic_eval.cpython-310.pyc +0 -0
- groundingdino/datasets/__pycache__/random_crop.cpython-310.pyc +0 -0
- groundingdino/datasets/__pycache__/sltransform.cpython-310.pyc +0 -0
- groundingdino/datasets/__pycache__/transforms.cpython-310.pyc +0 -0
- groundingdino/datasets/coco.py +0 -649
- groundingdino/datasets/coco_eval.py +0 -266
- groundingdino/datasets/coco_panoptic.py +0 -99
- groundingdino/datasets/cocogrounding_eval.py +0 -271
- groundingdino/datasets/data_util.py +0 -170
- groundingdino/datasets/dataset.py +0 -44
- groundingdino/datasets/odvg.py +0 -258
- groundingdino/datasets/panoptic_eval.py +0 -44
- groundingdino/datasets/random_crop.py +0 -135
- groundingdino/datasets/sltransform.py +0 -247
- groundingdino/datasets/transforms.py +0 -285
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/bertwarper-checkpoint.py +0 -273
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/fuse_modules-checkpoint.py +0 -298
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/groundingdino-checkpoint.py +0 -857
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/matcher-checkpoint.py +0 -218
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/ms_deform_attn-checkpoint.py +0 -416
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/transformer-checkpoint.py +0 -969
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/transformer_vanilla-checkpoint.py +0 -125
- groundingdino/models/GroundingDINO/.ipynb_checkpoints/utils-checkpoint.py +0 -274
- groundingdino/models/GroundingDINO/__pycache__/__init__.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/bertwarper.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/fuse_modules.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/groundingdino.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/matcher.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/ms_deform_attn.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/transformer.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/transformer_vanilla.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/__pycache__/utils.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/__init__-checkpoint.py +0 -1
- groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/backbone-checkpoint.py +0 -221
- groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/position_encoding-checkpoint.py +0 -186
- groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/swin_transformer-checkpoint.py +0 -804
- groundingdino/models/GroundingDINO/backbone/__pycache__/__init__.cpython-310.pyc +0 -0
- groundingdino/models/GroundingDINO/backbone/__pycache__/backbone.cpython-310.pyc +0 -0
groundingdino/datasets/.ipynb_checkpoints/__init__-checkpoint.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
-
import torch.utils.data
|
3 |
-
import torchvision
|
4 |
-
from .coco import build as build_coco
|
5 |
-
|
6 |
-
|
7 |
-
def get_coco_api_from_dataset(dataset):
|
8 |
-
for _ in range(10):
|
9 |
-
# if isinstance(dataset, torchvision.datasets.CocoDetection):
|
10 |
-
# break
|
11 |
-
if isinstance(dataset, torch.utils.data.Subset):
|
12 |
-
dataset = dataset.dataset
|
13 |
-
if isinstance(dataset, torchvision.datasets.CocoDetection):
|
14 |
-
return dataset.coco
|
15 |
-
|
16 |
-
|
17 |
-
def build_dataset(image_set, args, datasetinfo):
|
18 |
-
if datasetinfo["dataset_mode"] == 'coco':
|
19 |
-
return build_coco(image_set, args, datasetinfo)
|
20 |
-
if datasetinfo["dataset_mode"] == 'odvg':
|
21 |
-
from .odvg import build_odvg
|
22 |
-
return build_odvg(image_set, args, datasetinfo)
|
23 |
-
raise ValueError(f'dataset {args.dataset_file} not supported')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/.ipynb_checkpoints/coco-checkpoint.py
DELETED
@@ -1,649 +0,0 @@
|
|
1 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
-
"""
|
3 |
-
COCO dataset which returns image_id for evaluation.
|
4 |
-
|
5 |
-
Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py
|
6 |
-
"""
|
7 |
-
if __name__=="__main__":
|
8 |
-
# for debug only
|
9 |
-
import os, sys
|
10 |
-
sys.path.append(os.path.dirname(sys.path[0]))
|
11 |
-
from torchvision.datasets.vision import VisionDataset
|
12 |
-
|
13 |
-
import json
|
14 |
-
from pathlib import Path
|
15 |
-
import random
|
16 |
-
import os
|
17 |
-
from typing import Any, Callable, List, Optional, Tuple
|
18 |
-
|
19 |
-
from PIL import Image
|
20 |
-
|
21 |
-
import torch
|
22 |
-
import torch.utils.data
|
23 |
-
import torchvision
|
24 |
-
from pycocotools import mask as coco_mask
|
25 |
-
|
26 |
-
from datasets.data_util import preparing_dataset
|
27 |
-
import datasets.transforms as T
|
28 |
-
from util.box_ops import box_cxcywh_to_xyxy, box_iou
|
29 |
-
|
30 |
-
__all__ = ['build']
|
31 |
-
|
32 |
-
|
33 |
-
class label2compat():
|
34 |
-
def __init__(self) -> None:
|
35 |
-
self.category_map_str = {"1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "10": 10, "11": 11, "13": 12, "14": 13, "15": 14, "16": 15, "17": 16, "18": 17, "19": 18, "20": 19, "21": 20, "22": 21, "23": 22, "24": 23, "25": 24, "27": 25, "28": 26, "31": 27, "32": 28, "33": 29, "34": 30, "35": 31, "36": 32, "37": 33, "38": 34, "39": 35, "40": 36, "41": 37, "42": 38, "43": 39, "44": 40, "46": 41, "47": 42, "48": 43, "49": 44, "50": 45, "51": 46, "52": 47, "53": 48, "54": 49, "55": 50, "56": 51, "57": 52, "58": 53, "59": 54, "60": 55, "61": 56, "62": 57, "63": 58, "64": 59, "65": 60, "67": 61, "70": 62, "72": 63, "73": 64, "74": 65, "75": 66, "76": 67, "77": 68, "78": 69, "79": 70, "80": 71, "81": 72, "82": 73, "84": 74, "85": 75, "86": 76, "87": 77, "88": 78, "89": 79, "90": 80}
|
36 |
-
self.category_map = {int(k):v for k,v in self.category_map_str.items()}
|
37 |
-
|
38 |
-
def __call__(self, target, img=None):
|
39 |
-
labels = target['labels']
|
40 |
-
res = torch.zeros(labels.shape, dtype=labels.dtype)
|
41 |
-
for idx, item in enumerate(labels):
|
42 |
-
res[idx] = self.category_map[item.item()] - 1
|
43 |
-
target['label_compat'] = res
|
44 |
-
if img is not None:
|
45 |
-
return target, img
|
46 |
-
else:
|
47 |
-
return target
|
48 |
-
|
49 |
-
|
50 |
-
class label_compat2onehot():
|
51 |
-
def __init__(self, num_class=80, num_output_objs=1):
|
52 |
-
self.num_class = num_class
|
53 |
-
self.num_output_objs = num_output_objs
|
54 |
-
if num_output_objs != 1:
|
55 |
-
raise DeprecationWarning("num_output_objs!=1, which is only used for comparison")
|
56 |
-
|
57 |
-
def __call__(self, target, img=None):
|
58 |
-
labels = target['label_compat']
|
59 |
-
place_dict = {k:0 for k in range(self.num_class)}
|
60 |
-
if self.num_output_objs == 1:
|
61 |
-
res = torch.zeros(self.num_class)
|
62 |
-
for i in labels:
|
63 |
-
itm = i.item()
|
64 |
-
res[itm] = 1.0
|
65 |
-
else:
|
66 |
-
# compat with baseline
|
67 |
-
res = torch.zeros(self.num_class, self.num_output_objs)
|
68 |
-
for i in labels:
|
69 |
-
itm = i.item()
|
70 |
-
res[itm][place_dict[itm]] = 1.0
|
71 |
-
place_dict[itm] += 1
|
72 |
-
target['label_compat_onehot'] = res
|
73 |
-
if img is not None:
|
74 |
-
return target, img
|
75 |
-
else:
|
76 |
-
return target
|
77 |
-
|
78 |
-
|
79 |
-
class box_label_catter():
|
80 |
-
def __init__(self):
|
81 |
-
pass
|
82 |
-
|
83 |
-
def __call__(self, target, img=None):
|
84 |
-
labels = target['label_compat']
|
85 |
-
boxes = target['boxes']
|
86 |
-
box_label = torch.cat((boxes, labels.unsqueeze(-1)), 1)
|
87 |
-
target['box_label'] = box_label
|
88 |
-
if img is not None:
|
89 |
-
return target, img
|
90 |
-
else:
|
91 |
-
return target
|
92 |
-
|
93 |
-
|
94 |
-
class RandomSelectBoxlabels():
|
95 |
-
def __init__(self, num_classes, leave_one_out=False, blank_prob=0.8,
|
96 |
-
prob_first_item = 0.0,
|
97 |
-
prob_random_item = 0.0,
|
98 |
-
prob_last_item = 0.8,
|
99 |
-
prob_stop_sign = 0.2
|
100 |
-
) -> None:
|
101 |
-
self.num_classes = num_classes
|
102 |
-
self.leave_one_out = leave_one_out
|
103 |
-
self.blank_prob = blank_prob
|
104 |
-
|
105 |
-
self.set_state(prob_first_item, prob_random_item, prob_last_item, prob_stop_sign)
|
106 |
-
|
107 |
-
|
108 |
-
def get_state(self):
|
109 |
-
return [self.prob_first_item, self.prob_random_item, self.prob_last_item, self.prob_stop_sign]
|
110 |
-
|
111 |
-
def set_state(self, prob_first_item, prob_random_item, prob_last_item, prob_stop_sign):
|
112 |
-
sum_prob = prob_first_item + prob_random_item + prob_last_item + prob_stop_sign
|
113 |
-
assert sum_prob - 1 < 1e-6, \
|
114 |
-
f"Sum up all prob = {sum_prob}. prob_first_item:{prob_first_item}" \
|
115 |
-
+ f"prob_random_item:{prob_random_item}, prob_last_item:{prob_last_item}" \
|
116 |
-
+ f"prob_stop_sign:{prob_stop_sign}"
|
117 |
-
|
118 |
-
self.prob_first_item = prob_first_item
|
119 |
-
self.prob_random_item = prob_random_item
|
120 |
-
self.prob_last_item = prob_last_item
|
121 |
-
self.prob_stop_sign = prob_stop_sign
|
122 |
-
|
123 |
-
|
124 |
-
def sample_for_pred_first_item(self, box_label: torch.FloatTensor):
|
125 |
-
box_label_known = torch.Tensor(0,5)
|
126 |
-
box_label_unknown = box_label
|
127 |
-
return box_label_known, box_label_unknown
|
128 |
-
|
129 |
-
def sample_for_pred_random_item(self, box_label: torch.FloatTensor):
|
130 |
-
n_select = int(random.random() * box_label.shape[0])
|
131 |
-
box_label = box_label[torch.randperm(box_label.shape[0])]
|
132 |
-
box_label_known = box_label[:n_select]
|
133 |
-
box_label_unknown = box_label[n_select:]
|
134 |
-
return box_label_known, box_label_unknown
|
135 |
-
|
136 |
-
def sample_for_pred_last_item(self, box_label: torch.FloatTensor):
|
137 |
-
box_label_perm = box_label[torch.randperm(box_label.shape[0])]
|
138 |
-
known_label_list = []
|
139 |
-
box_label_known = []
|
140 |
-
box_label_unknown = []
|
141 |
-
for item in box_label_perm:
|
142 |
-
label_i = item[4].item()
|
143 |
-
if label_i in known_label_list:
|
144 |
-
box_label_known.append(item)
|
145 |
-
else:
|
146 |
-
# first item
|
147 |
-
box_label_unknown.append(item)
|
148 |
-
known_label_list.append(label_i)
|
149 |
-
box_label_known = torch.stack(box_label_known) if len(box_label_known) > 0 else torch.Tensor(0,5)
|
150 |
-
box_label_unknown = torch.stack(box_label_unknown) if len(box_label_unknown) > 0 else torch.Tensor(0,5)
|
151 |
-
return box_label_known, box_label_unknown
|
152 |
-
|
153 |
-
def sample_for_pred_stop_sign(self, box_label: torch.FloatTensor):
|
154 |
-
box_label_unknown = torch.Tensor(0,5)
|
155 |
-
box_label_known = box_label
|
156 |
-
return box_label_known, box_label_unknown
|
157 |
-
|
158 |
-
def __call__(self, target, img=None):
|
159 |
-
box_label = target['box_label'] # K, 5
|
160 |
-
|
161 |
-
dice_number = random.random()
|
162 |
-
|
163 |
-
if dice_number < self.prob_first_item:
|
164 |
-
box_label_known, box_label_unknown = self.sample_for_pred_first_item(box_label)
|
165 |
-
elif dice_number < self.prob_first_item + self.prob_random_item:
|
166 |
-
box_label_known, box_label_unknown = self.sample_for_pred_random_item(box_label)
|
167 |
-
elif dice_number < self.prob_first_item + self.prob_random_item + self.prob_last_item:
|
168 |
-
box_label_known, box_label_unknown = self.sample_for_pred_last_item(box_label)
|
169 |
-
else:
|
170 |
-
box_label_known, box_label_unknown = self.sample_for_pred_stop_sign(box_label)
|
171 |
-
|
172 |
-
target['label_onehot_known'] = label2onehot(box_label_known[:,-1], self.num_classes)
|
173 |
-
target['label_onehot_unknown'] = label2onehot(box_label_unknown[:, -1], self.num_classes)
|
174 |
-
target['box_label_known'] = box_label_known
|
175 |
-
target['box_label_unknown'] = box_label_unknown
|
176 |
-
|
177 |
-
return target, img
|
178 |
-
|
179 |
-
|
180 |
-
class RandomDrop():
|
181 |
-
def __init__(self, p=0.2) -> None:
|
182 |
-
self.p = p
|
183 |
-
|
184 |
-
def __call__(self, target, img=None):
|
185 |
-
known_box = target['box_label_known']
|
186 |
-
num_known_box = known_box.size(0)
|
187 |
-
idxs = torch.rand(num_known_box)
|
188 |
-
# indices = torch.randperm(num_known_box)[:int((1-self).p*num_known_box + 0.5 + random.random())]
|
189 |
-
target['box_label_known'] = known_box[idxs > self.p]
|
190 |
-
return target, img
|
191 |
-
|
192 |
-
|
193 |
-
class BboxPertuber():
|
194 |
-
def __init__(self, max_ratio = 0.02, generate_samples = 1000) -> None:
|
195 |
-
self.max_ratio = max_ratio
|
196 |
-
self.generate_samples = generate_samples
|
197 |
-
self.samples = self.generate_pertube_samples()
|
198 |
-
self.idx = 0
|
199 |
-
|
200 |
-
def generate_pertube_samples(self):
|
201 |
-
import torch
|
202 |
-
samples = (torch.rand(self.generate_samples, 5) - 0.5) * 2 * self.max_ratio
|
203 |
-
return samples
|
204 |
-
|
205 |
-
def __call__(self, target, img):
|
206 |
-
known_box = target['box_label_known'] # Tensor(K,5), K known bbox
|
207 |
-
K = known_box.shape[0]
|
208 |
-
known_box_pertube = torch.zeros(K, 6) # 4:bbox, 1:prob, 1:label
|
209 |
-
if K == 0:
|
210 |
-
pass
|
211 |
-
else:
|
212 |
-
if self.idx + K > self.generate_samples:
|
213 |
-
self.idx = 0
|
214 |
-
delta = self.samples[self.idx: self.idx + K, :]
|
215 |
-
known_box_pertube[:, :4] = known_box[:, :4] + delta[:, :4]
|
216 |
-
iou = (torch.diag(box_iou(box_cxcywh_to_xyxy(known_box[:, :4]), box_cxcywh_to_xyxy(known_box_pertube[:, :4]))[0])) * (1 + delta[:, -1])
|
217 |
-
known_box_pertube[:, 4].copy_(iou)
|
218 |
-
known_box_pertube[:, -1].copy_(known_box[:, -1])
|
219 |
-
|
220 |
-
target['box_label_known_pertube'] = known_box_pertube
|
221 |
-
return target, img
|
222 |
-
|
223 |
-
|
224 |
-
class RandomCutout():
|
225 |
-
def __init__(self, factor=0.5) -> None:
|
226 |
-
self.factor = factor
|
227 |
-
|
228 |
-
def __call__(self, target, img=None):
|
229 |
-
unknown_box = target['box_label_unknown'] # Ku, 5
|
230 |
-
known_box = target['box_label_known_pertube'] # Kk, 6
|
231 |
-
Ku = unknown_box.size(0)
|
232 |
-
|
233 |
-
known_box_add = torch.zeros(Ku, 6) # Ku, 6
|
234 |
-
known_box_add[:, :5] = unknown_box
|
235 |
-
known_box_add[:, 5].uniform_(0.5, 1)
|
236 |
-
|
237 |
-
|
238 |
-
known_box_add[:, :2] += known_box_add[:, 2:4] * (torch.rand(Ku, 2) - 0.5) / 2
|
239 |
-
known_box_add[:, 2:4] /= 2
|
240 |
-
|
241 |
-
target['box_label_known_pertube'] = torch.cat((known_box, known_box_add))
|
242 |
-
return target, img
|
243 |
-
|
244 |
-
|
245 |
-
class RandomSelectBoxes():
|
246 |
-
def __init__(self, num_class=80) -> None:
|
247 |
-
Warning("This is such a slow function and will be deprecated soon!!!")
|
248 |
-
self.num_class = num_class
|
249 |
-
|
250 |
-
def __call__(self, target, img=None):
|
251 |
-
boxes = target['boxes']
|
252 |
-
labels = target['label_compat']
|
253 |
-
|
254 |
-
# transform to list of tensors
|
255 |
-
boxs_list = [[] for i in range(self.num_class)]
|
256 |
-
for idx, item in enumerate(boxes):
|
257 |
-
label = labels[idx].item()
|
258 |
-
boxs_list[label].append(item)
|
259 |
-
boxs_list_tensor = [torch.stack(i) if len(i) > 0 else torch.Tensor(0,4) for i in boxs_list]
|
260 |
-
|
261 |
-
# random selection
|
262 |
-
box_known = []
|
263 |
-
box_unknown = []
|
264 |
-
for idx, item in enumerate(boxs_list_tensor):
|
265 |
-
ncnt = item.shape[0]
|
266 |
-
nselect = int(random.random() * ncnt) # close in both sides, much faster than random.randint
|
267 |
-
|
268 |
-
item = item[torch.randperm(ncnt)]
|
269 |
-
# random.shuffle(item)
|
270 |
-
box_known.append(item[:nselect])
|
271 |
-
box_unknown.append(item[nselect:])
|
272 |
-
|
273 |
-
# box_known_tensor = [torch.stack(i) if len(i) > 0 else torch.Tensor(0,4) for i in box_known]
|
274 |
-
# box_unknown_tensor = [torch.stack(i) if len(i) > 0 else torch.Tensor(0,4) for i in box_unknown]
|
275 |
-
# print('box_unknown_tensor:', box_unknown_tensor)
|
276 |
-
target['known_box'] = box_known
|
277 |
-
target['unknown_box'] = box_unknown
|
278 |
-
return target, img
|
279 |
-
|
280 |
-
|
281 |
-
def label2onehot(label, num_classes):
|
282 |
-
"""
|
283 |
-
label: Tensor(K)
|
284 |
-
"""
|
285 |
-
res = torch.zeros(num_classes)
|
286 |
-
for i in label:
|
287 |
-
itm = int(i.item())
|
288 |
-
res[itm] = 1.0
|
289 |
-
return res
|
290 |
-
|
291 |
-
|
292 |
-
class MaskCrop():
|
293 |
-
def __init__(self) -> None:
|
294 |
-
pass
|
295 |
-
|
296 |
-
def __call__(self, target, img):
|
297 |
-
known_box = target['known_box']
|
298 |
-
h,w = img.shape[1:] # h,w
|
299 |
-
# imgsize = target['orig_size'] # h,w
|
300 |
-
|
301 |
-
scale = torch.Tensor([w, h, w, h])
|
302 |
-
|
303 |
-
# _cnt = 0
|
304 |
-
for boxes in known_box:
|
305 |
-
if boxes.shape[0] == 0:
|
306 |
-
continue
|
307 |
-
box_xyxy = box_cxcywh_to_xyxy(boxes) * scale
|
308 |
-
for box in box_xyxy:
|
309 |
-
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
|
310 |
-
img[:, y1:y2, x1:x2] = 0
|
311 |
-
# _cnt += 1
|
312 |
-
# print("_cnt:", _cnt)
|
313 |
-
return target, img
|
314 |
-
|
315 |
-
|
316 |
-
dataset_hook_register = {
|
317 |
-
'label2compat': label2compat,
|
318 |
-
'label_compat2onehot': label_compat2onehot,
|
319 |
-
'box_label_catter': box_label_catter,
|
320 |
-
'RandomSelectBoxlabels': RandomSelectBoxlabels,
|
321 |
-
'RandomSelectBoxes': RandomSelectBoxes,
|
322 |
-
'MaskCrop': MaskCrop,
|
323 |
-
'BboxPertuber': BboxPertuber,
|
324 |
-
}
|
325 |
-
|
326 |
-
|
327 |
-
class CocoDetection(torchvision.datasets.CocoDetection):
|
328 |
-
def __init__(self, img_folder, ann_file, transforms, return_masks, aux_target_hacks=None):
|
329 |
-
super(CocoDetection, self).__init__(img_folder, ann_file)
|
330 |
-
self._transforms = transforms
|
331 |
-
self.prepare = ConvertCocoPolysToMask(return_masks)
|
332 |
-
self.aux_target_hacks = aux_target_hacks
|
333 |
-
|
334 |
-
def change_hack_attr(self, hackclassname, attrkv_dict):
|
335 |
-
target_class = dataset_hook_register[hackclassname]
|
336 |
-
for item in self.aux_target_hacks:
|
337 |
-
if isinstance(item, target_class):
|
338 |
-
for k,v in attrkv_dict.items():
|
339 |
-
setattr(item, k, v)
|
340 |
-
|
341 |
-
def get_hack(self, hackclassname):
|
342 |
-
target_class = dataset_hook_register[hackclassname]
|
343 |
-
for item in self.aux_target_hacks:
|
344 |
-
if isinstance(item, target_class):
|
345 |
-
return item
|
346 |
-
|
347 |
-
def _load_image(self, id: int) -> Image.Image:
|
348 |
-
path = self.coco.loadImgs(id)[0]["file_name"]
|
349 |
-
abs_path = os.path.join(self.root, path)
|
350 |
-
return Image.open(abs_path).convert("RGB")
|
351 |
-
|
352 |
-
def __getitem__(self, idx):
|
353 |
-
"""
|
354 |
-
Output:
|
355 |
-
- target: dict of multiple items
|
356 |
-
- boxes: Tensor[num_box, 4]. \
|
357 |
-
Init type: x0,y0,x1,y1. unnormalized data.
|
358 |
-
Final type: cx,cy,w,h. normalized data.
|
359 |
-
"""
|
360 |
-
try:
|
361 |
-
img, target = super(CocoDetection, self).__getitem__(idx)
|
362 |
-
except:
|
363 |
-
print("Error idx: {}".format(idx))
|
364 |
-
idx += 1
|
365 |
-
img, target = super(CocoDetection, self).__getitem__(idx)
|
366 |
-
image_id = self.ids[idx]
|
367 |
-
target = {'image_id': image_id, 'annotations': target}
|
368 |
-
img, target = self.prepare(img, target)
|
369 |
-
|
370 |
-
if self._transforms is not None:
|
371 |
-
img, target = self._transforms(img, target)
|
372 |
-
|
373 |
-
# convert to needed format
|
374 |
-
if self.aux_target_hacks is not None:
|
375 |
-
for hack_runner in self.aux_target_hacks:
|
376 |
-
target, img = hack_runner(target, img=img)
|
377 |
-
|
378 |
-
return img, target
|
379 |
-
|
380 |
-
|
381 |
-
def convert_coco_poly_to_mask(segmentations, height, width):
|
382 |
-
masks = []
|
383 |
-
for polygons in segmentations:
|
384 |
-
rles = coco_mask.frPyObjects(polygons, height, width)
|
385 |
-
mask = coco_mask.decode(rles)
|
386 |
-
if len(mask.shape) < 3:
|
387 |
-
mask = mask[..., None]
|
388 |
-
mask = torch.as_tensor(mask, dtype=torch.uint8)
|
389 |
-
mask = mask.any(dim=2)
|
390 |
-
masks.append(mask)
|
391 |
-
if masks:
|
392 |
-
masks = torch.stack(masks, dim=0)
|
393 |
-
else:
|
394 |
-
masks = torch.zeros((0, height, width), dtype=torch.uint8)
|
395 |
-
return masks
|
396 |
-
|
397 |
-
|
398 |
-
class ConvertCocoPolysToMask(object):
|
399 |
-
def __init__(self, return_masks=False):
|
400 |
-
self.return_masks = return_masks
|
401 |
-
|
402 |
-
def __call__(self, image, target):
|
403 |
-
w, h = image.size
|
404 |
-
|
405 |
-
image_id = target["image_id"]
|
406 |
-
image_id = torch.tensor([image_id])
|
407 |
-
|
408 |
-
anno = target["annotations"]
|
409 |
-
|
410 |
-
anno = [obj for obj in anno if 'iscrowd' not in obj or obj['iscrowd'] == 0]
|
411 |
-
|
412 |
-
boxes = [obj["bbox"] for obj in anno]
|
413 |
-
# guard against no boxes via resizing
|
414 |
-
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
|
415 |
-
boxes[:, 2:] += boxes[:, :2]
|
416 |
-
boxes[:, 0::2].clamp_(min=0, max=w)
|
417 |
-
boxes[:, 1::2].clamp_(min=0, max=h)
|
418 |
-
|
419 |
-
classes = [obj["category_id"] for obj in anno]
|
420 |
-
classes = torch.tensor(classes, dtype=torch.int64)
|
421 |
-
|
422 |
-
if self.return_masks:
|
423 |
-
segmentations = [obj["segmentation"] for obj in anno]
|
424 |
-
masks = convert_coco_poly_to_mask(segmentations, h, w)
|
425 |
-
|
426 |
-
keypoints = None
|
427 |
-
if anno and "keypoints" in anno[0]:
|
428 |
-
keypoints = [obj["keypoints"] for obj in anno]
|
429 |
-
keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
|
430 |
-
num_keypoints = keypoints.shape[0]
|
431 |
-
if num_keypoints:
|
432 |
-
keypoints = keypoints.view(num_keypoints, -1, 3)
|
433 |
-
|
434 |
-
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
|
435 |
-
boxes = boxes[keep]
|
436 |
-
classes = classes[keep]
|
437 |
-
if self.return_masks:
|
438 |
-
masks = masks[keep]
|
439 |
-
if keypoints is not None:
|
440 |
-
keypoints = keypoints[keep]
|
441 |
-
|
442 |
-
target = {}
|
443 |
-
target["boxes"] = boxes
|
444 |
-
target["labels"] = classes
|
445 |
-
if self.return_masks:
|
446 |
-
target["masks"] = masks
|
447 |
-
target["image_id"] = image_id
|
448 |
-
if keypoints is not None:
|
449 |
-
target["keypoints"] = keypoints
|
450 |
-
|
451 |
-
# for conversion to coco api
|
452 |
-
area = torch.tensor([obj["area"] for obj in anno])
|
453 |
-
iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno])
|
454 |
-
target["area"] = area[keep]
|
455 |
-
target["iscrowd"] = iscrowd[keep]
|
456 |
-
|
457 |
-
target["orig_size"] = torch.as_tensor([int(h), int(w)])
|
458 |
-
target["size"] = torch.as_tensor([int(h), int(w)])
|
459 |
-
|
460 |
-
return image, target
|
461 |
-
|
462 |
-
|
463 |
-
def make_coco_transforms(image_set, fix_size=False, strong_aug=False, args=None):
|
464 |
-
|
465 |
-
normalize = T.Compose([
|
466 |
-
T.ToTensor(),
|
467 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
468 |
-
])
|
469 |
-
|
470 |
-
# config the params for data aug
|
471 |
-
scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
|
472 |
-
max_size = 1333
|
473 |
-
scales2_resize = [400, 500, 600]
|
474 |
-
scales2_crop = [384, 600]
|
475 |
-
|
476 |
-
# update args from config files
|
477 |
-
scales = getattr(args, 'data_aug_scales', scales)
|
478 |
-
max_size = getattr(args, 'data_aug_max_size', max_size)
|
479 |
-
scales2_resize = getattr(args, 'data_aug_scales2_resize', scales2_resize)
|
480 |
-
scales2_crop = getattr(args, 'data_aug_scales2_crop', scales2_crop)
|
481 |
-
|
482 |
-
# resize them
|
483 |
-
data_aug_scale_overlap = getattr(args, 'data_aug_scale_overlap', None)
|
484 |
-
if data_aug_scale_overlap is not None and data_aug_scale_overlap > 0:
|
485 |
-
data_aug_scale_overlap = float(data_aug_scale_overlap)
|
486 |
-
scales = [int(i*data_aug_scale_overlap) for i in scales]
|
487 |
-
max_size = int(max_size*data_aug_scale_overlap)
|
488 |
-
scales2_resize = [int(i*data_aug_scale_overlap) for i in scales2_resize]
|
489 |
-
scales2_crop = [int(i*data_aug_scale_overlap) for i in scales2_crop]
|
490 |
-
|
491 |
-
datadict_for_print = {
|
492 |
-
'scales': scales,
|
493 |
-
'max_size': max_size,
|
494 |
-
'scales2_resize': scales2_resize,
|
495 |
-
'scales2_crop': scales2_crop
|
496 |
-
}
|
497 |
-
# print("data_aug_params:", json.dumps(datadict_for_print, indent=2))
|
498 |
-
|
499 |
-
if image_set == 'train':
|
500 |
-
if fix_size:
|
501 |
-
return T.Compose([
|
502 |
-
T.RandomHorizontalFlip(),
|
503 |
-
T.RandomResize([(max_size, max(scales))]),
|
504 |
-
# T.RandomResize([(512, 512)]),
|
505 |
-
normalize,
|
506 |
-
])
|
507 |
-
|
508 |
-
if strong_aug:
|
509 |
-
import datasets.sltransform as SLT
|
510 |
-
|
511 |
-
return T.Compose([
|
512 |
-
T.RandomHorizontalFlip(),
|
513 |
-
T.RandomSelect(
|
514 |
-
T.RandomResize(scales, max_size=max_size),
|
515 |
-
T.Compose([
|
516 |
-
T.RandomResize(scales2_resize),
|
517 |
-
T.RandomSizeCrop(*scales2_crop),
|
518 |
-
T.RandomResize(scales, max_size=max_size),
|
519 |
-
])
|
520 |
-
),
|
521 |
-
SLT.RandomSelectMulti([
|
522 |
-
SLT.RandomCrop(),
|
523 |
-
SLT.LightingNoise(),
|
524 |
-
SLT.AdjustBrightness(2),
|
525 |
-
SLT.AdjustContrast(2),
|
526 |
-
]),
|
527 |
-
normalize,
|
528 |
-
])
|
529 |
-
|
530 |
-
return T.Compose([
|
531 |
-
T.RandomHorizontalFlip(),
|
532 |
-
T.RandomSelect(
|
533 |
-
T.RandomResize(scales, max_size=max_size),
|
534 |
-
T.Compose([
|
535 |
-
T.RandomResize(scales2_resize),
|
536 |
-
T.RandomSizeCrop(*scales2_crop),
|
537 |
-
T.RandomResize(scales, max_size=max_size),
|
538 |
-
])
|
539 |
-
),
|
540 |
-
normalize,
|
541 |
-
])
|
542 |
-
|
543 |
-
if image_set in ['val', 'eval_debug', 'train_reg', 'test']:
|
544 |
-
|
545 |
-
if os.environ.get("GFLOPS_DEBUG_SHILONG", False) == 'INFO':
|
546 |
-
print("Under debug mode for flops calculation only!!!!!!!!!!!!!!!!")
|
547 |
-
return T.Compose([
|
548 |
-
T.ResizeDebug((1280, 800)),
|
549 |
-
normalize,
|
550 |
-
])
|
551 |
-
|
552 |
-
return T.Compose([
|
553 |
-
T.RandomResize([max(scales)], max_size=max_size),
|
554 |
-
normalize,
|
555 |
-
])
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
raise ValueError(f'unknown {image_set}')
|
560 |
-
|
561 |
-
|
562 |
-
def get_aux_target_hacks_list(image_set, args):
|
563 |
-
if args.modelname in ['q2bs_mask', 'q2bs']:
|
564 |
-
aux_target_hacks_list = [
|
565 |
-
label2compat(),
|
566 |
-
label_compat2onehot(),
|
567 |
-
RandomSelectBoxes(num_class=args.num_classes)
|
568 |
-
]
|
569 |
-
if args.masked_data and image_set == 'train':
|
570 |
-
# aux_target_hacks_list.append()
|
571 |
-
aux_target_hacks_list.append(MaskCrop())
|
572 |
-
elif args.modelname in ['q2bm_v2', 'q2bs_ce', 'q2op', 'q2ofocal', 'q2opclip', 'q2ocqonly']:
|
573 |
-
aux_target_hacks_list = [
|
574 |
-
label2compat(),
|
575 |
-
label_compat2onehot(),
|
576 |
-
box_label_catter(),
|
577 |
-
RandomSelectBoxlabels(num_classes=args.num_classes,
|
578 |
-
prob_first_item=args.prob_first_item,
|
579 |
-
prob_random_item=args.prob_random_item,
|
580 |
-
prob_last_item=args.prob_last_item,
|
581 |
-
prob_stop_sign=args.prob_stop_sign,
|
582 |
-
),
|
583 |
-
BboxPertuber(max_ratio=0.02, generate_samples=1000),
|
584 |
-
]
|
585 |
-
elif args.modelname in ['q2omask', 'q2osa']:
|
586 |
-
if args.coco_aug:
|
587 |
-
aux_target_hacks_list = [
|
588 |
-
label2compat(),
|
589 |
-
label_compat2onehot(),
|
590 |
-
box_label_catter(),
|
591 |
-
RandomSelectBoxlabels(num_classes=args.num_classes,
|
592 |
-
prob_first_item=args.prob_first_item,
|
593 |
-
prob_random_item=args.prob_random_item,
|
594 |
-
prob_last_item=args.prob_last_item,
|
595 |
-
prob_stop_sign=args.prob_stop_sign,
|
596 |
-
),
|
597 |
-
RandomDrop(p=0.2),
|
598 |
-
BboxPertuber(max_ratio=0.02, generate_samples=1000),
|
599 |
-
RandomCutout(factor=0.5)
|
600 |
-
]
|
601 |
-
else:
|
602 |
-
aux_target_hacks_list = [
|
603 |
-
label2compat(),
|
604 |
-
label_compat2onehot(),
|
605 |
-
box_label_catter(),
|
606 |
-
RandomSelectBoxlabels(num_classes=args.num_classes,
|
607 |
-
prob_first_item=args.prob_first_item,
|
608 |
-
prob_random_item=args.prob_random_item,
|
609 |
-
prob_last_item=args.prob_last_item,
|
610 |
-
prob_stop_sign=args.prob_stop_sign,
|
611 |
-
),
|
612 |
-
BboxPertuber(max_ratio=0.02, generate_samples=1000),
|
613 |
-
]
|
614 |
-
else:
|
615 |
-
aux_target_hacks_list = None
|
616 |
-
|
617 |
-
return aux_target_hacks_list
|
618 |
-
|
619 |
-
|
620 |
-
def build(image_set, args, datasetinfo):
|
621 |
-
img_folder = datasetinfo["root"]
|
622 |
-
ann_file = datasetinfo["anno"]
|
623 |
-
|
624 |
-
# copy to local path
|
625 |
-
if os.environ.get('DATA_COPY_SHILONG') == 'INFO':
|
626 |
-
preparing_dataset(dict(img_folder=img_folder, ann_file=ann_file), image_set, args)
|
627 |
-
|
628 |
-
try:
|
629 |
-
strong_aug = args.strong_aug
|
630 |
-
except:
|
631 |
-
strong_aug = False
|
632 |
-
print(img_folder, ann_file)
|
633 |
-
dataset = CocoDetection(img_folder, ann_file,
|
634 |
-
transforms=make_coco_transforms(image_set, fix_size=args.fix_size, strong_aug=strong_aug, args=args),
|
635 |
-
return_masks=args.masks,
|
636 |
-
aux_target_hacks=None,
|
637 |
-
)
|
638 |
-
return dataset
|
639 |
-
|
640 |
-
|
641 |
-
if __name__ == "__main__":
|
642 |
-
# Objects365 Val example
|
643 |
-
dataset_o365 = CocoDetection(
|
644 |
-
'/path/Objects365/train/',
|
645 |
-
"/path/Objects365/slannos/anno_preprocess_train_v2.json",
|
646 |
-
transforms=None,
|
647 |
-
return_masks=False,
|
648 |
-
)
|
649 |
-
print('len(dataset_o365):', len(dataset_o365))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/.ipynb_checkpoints/dataset-checkpoint.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
from __future__ import print_function
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torchvision.datasets as datasets
|
5 |
-
from torch.utils.data import Dataset
|
6 |
-
from PIL import Image
|
7 |
-
from .tsv_io import TSVFile
|
8 |
-
import numpy as np
|
9 |
-
import base64
|
10 |
-
import io
|
11 |
-
|
12 |
-
|
13 |
-
class TSVDataset(Dataset):
|
14 |
-
""" TSV dataset for ImageNet 1K training
|
15 |
-
"""
|
16 |
-
def __init__(self, tsv_file, transform=None, target_transform=None):
|
17 |
-
self.tsv = TSVFile(tsv_file)
|
18 |
-
self.transform = transform
|
19 |
-
self.target_transform = target_transform
|
20 |
-
|
21 |
-
def __getitem__(self, index):
|
22 |
-
"""
|
23 |
-
Args:
|
24 |
-
index (int): Index
|
25 |
-
Returns:
|
26 |
-
tuple: (image, target) where target is class_index of the target class.
|
27 |
-
"""
|
28 |
-
row = self.tsv.seek(index)
|
29 |
-
image_data = base64.b64decode(row[-1])
|
30 |
-
image = Image.open(io.BytesIO(image_data))
|
31 |
-
image = image.convert('RGB')
|
32 |
-
target = int(row[1])
|
33 |
-
|
34 |
-
if self.transform is not None:
|
35 |
-
img = self.transform(image)
|
36 |
-
else:
|
37 |
-
img = image
|
38 |
-
if self.target_transform is not None:
|
39 |
-
target = self.target_transform(target)
|
40 |
-
|
41 |
-
return img, target
|
42 |
-
|
43 |
-
def __len__(self):
|
44 |
-
return self.tsv.num_rows()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/.ipynb_checkpoints/odvg-checkpoint.py
DELETED
@@ -1,258 +0,0 @@
|
|
1 |
-
from torchvision.datasets.vision import VisionDataset
|
2 |
-
import os.path
|
3 |
-
from typing import Callable, Optional
|
4 |
-
import json
|
5 |
-
from PIL import Image
|
6 |
-
import torch
|
7 |
-
import random
|
8 |
-
import os, sys
|
9 |
-
sys.path.append(os.path.dirname(sys.path[0]))
|
10 |
-
|
11 |
-
import datasets.transforms as T
|
12 |
-
|
13 |
-
class ODVGDataset(VisionDataset):
|
14 |
-
"""
|
15 |
-
Args:
|
16 |
-
root (string): Root directory where images are downloaded to.
|
17 |
-
anno (string): Path to json annotation file.
|
18 |
-
label_map_anno (string): Path to json label mapping file. Only for Object Detection
|
19 |
-
transform (callable, optional): A function/transform that takes in an PIL image
|
20 |
-
and returns a transformed version. E.g, ``transforms.PILToTensor``
|
21 |
-
target_transform (callable, optional): A function/transform that takes in the
|
22 |
-
target and transforms it.
|
23 |
-
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
24 |
-
and returns a transformed version.
|
25 |
-
"""
|
26 |
-
|
27 |
-
def __init__(
|
28 |
-
self,
|
29 |
-
root: str,
|
30 |
-
anno: str,
|
31 |
-
label_map_anno: str = None,
|
32 |
-
max_labels: int = 80,
|
33 |
-
transform: Optional[Callable] = None,
|
34 |
-
target_transform: Optional[Callable] = None,
|
35 |
-
transforms: Optional[Callable] = None,
|
36 |
-
) -> None:
|
37 |
-
super().__init__(root, transforms, transform, target_transform)
|
38 |
-
self.root = root
|
39 |
-
self.dataset_mode = "OD" if label_map_anno else "VG"
|
40 |
-
self.max_labels = max_labels
|
41 |
-
if self.dataset_mode == "OD":
|
42 |
-
self.load_label_map(label_map_anno)
|
43 |
-
self._load_metas(anno)
|
44 |
-
self.get_dataset_info()
|
45 |
-
|
46 |
-
def load_label_map(self, label_map_anno):
|
47 |
-
with open(label_map_anno, 'r') as file:
|
48 |
-
self.label_map = json.load(file)
|
49 |
-
self.label_index = set(self.label_map.keys())
|
50 |
-
|
51 |
-
def _load_metas(self, anno):
|
52 |
-
with open(anno, 'r') as f:
|
53 |
-
self.metas = json.load(f)
|
54 |
-
|
55 |
-
|
56 |
-
def get_dataset_info(self):
|
57 |
-
print(f" == total images: {len(self)}")
|
58 |
-
if self.dataset_mode == "OD":
|
59 |
-
print(f" == total labels: {len(self.label_map)}")
|
60 |
-
|
61 |
-
def __getitem__(self, index: int):
|
62 |
-
meta = self.metas[index]
|
63 |
-
rel_path = meta["filename"]
|
64 |
-
abs_path = os.path.join(self.root, rel_path)
|
65 |
-
if not os.path.exists(abs_path):
|
66 |
-
raise FileNotFoundError(f"{abs_path} not found.")
|
67 |
-
image = Image.open(abs_path).convert('RGB')
|
68 |
-
w, h = image.size
|
69 |
-
if self.dataset_mode == "OD":
|
70 |
-
anno = meta["detection"]
|
71 |
-
instances = [obj for obj in anno["instances"]]
|
72 |
-
boxes = [obj["bbox"] for obj in instances]
|
73 |
-
# generate vg_labels
|
74 |
-
# pos bbox labels
|
75 |
-
ori_classes = [str(obj["label"]) for obj in instances]
|
76 |
-
pos_labels = set(ori_classes)
|
77 |
-
# neg bbox labels
|
78 |
-
neg_labels = self.label_index.difference(pos_labels)
|
79 |
-
|
80 |
-
vg_labels = list(pos_labels)
|
81 |
-
num_to_add = min(len(neg_labels), self.max_labels-len(pos_labels))
|
82 |
-
if num_to_add > 0:
|
83 |
-
vg_labels.extend(random.sample(neg_labels, num_to_add))
|
84 |
-
|
85 |
-
# shuffle
|
86 |
-
for i in range(len(vg_labels)-1, 0, -1):
|
87 |
-
j = random.randint(0, i)
|
88 |
-
vg_labels[i], vg_labels[j] = vg_labels[j], vg_labels[i]
|
89 |
-
|
90 |
-
caption_list = [self.label_map[lb] for lb in vg_labels]
|
91 |
-
caption_dict = {item:index for index, item in enumerate(caption_list)}
|
92 |
-
|
93 |
-
caption = ' . '.join(caption_list) + ' .'
|
94 |
-
classes = [caption_dict[self.label_map[str(obj["label"])]] for obj in instances]
|
95 |
-
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
|
96 |
-
classes = torch.tensor(classes, dtype=torch.int64)
|
97 |
-
elif self.dataset_mode == "VG":
|
98 |
-
anno = meta["Grounding"]
|
99 |
-
instances = [obj for obj in anno["regions"]]
|
100 |
-
boxes = [obj["bbox"] for obj in instances]
|
101 |
-
caption_list = [obj["phrase"] for obj in instances]
|
102 |
-
c = list(zip(boxes, caption_list))
|
103 |
-
random.shuffle(c)
|
104 |
-
boxes[:], caption_list[:] = zip(*c)
|
105 |
-
uni_caption_list = list(set(caption_list))
|
106 |
-
label_map = {}
|
107 |
-
for idx in range(len(uni_caption_list)):
|
108 |
-
label_map[uni_caption_list[idx]] = idx
|
109 |
-
classes = [label_map[cap] for cap in caption_list]
|
110 |
-
caption = ' . '.join(uni_caption_list) + ' .'
|
111 |
-
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
|
112 |
-
classes = torch.tensor(classes, dtype=torch.int64)
|
113 |
-
caption_list = uni_caption_list
|
114 |
-
# print("caption_list" , caption_list)
|
115 |
-
# print("caption" , caption)
|
116 |
-
# print("boxes" , boxes)
|
117 |
-
target = {}
|
118 |
-
target["image_id"] = rel_path.strip(".jpg")
|
119 |
-
target["size"] = torch.as_tensor([int(h), int(w)])
|
120 |
-
target["cap_list"] = caption_list
|
121 |
-
target["caption"] = caption
|
122 |
-
target["boxes"] = boxes
|
123 |
-
target["labels"] = classes
|
124 |
-
# print(" image_id " , target["image_id"])
|
125 |
-
# size, cap_list, caption, bboxes, labels
|
126 |
-
|
127 |
-
if self.transforms is not None:
|
128 |
-
image, target = self.transforms(image, target)
|
129 |
-
|
130 |
-
return image, target
|
131 |
-
|
132 |
-
|
133 |
-
def __len__(self) -> int:
|
134 |
-
return len(self.metas)
|
135 |
-
|
136 |
-
|
137 |
-
def make_coco_transforms(image_set, fix_size=False, strong_aug=False, args=None):
|
138 |
-
|
139 |
-
normalize = T.Compose([
|
140 |
-
T.ToTensor(),
|
141 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
142 |
-
])
|
143 |
-
|
144 |
-
# config the params for data aug
|
145 |
-
scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
|
146 |
-
max_size = 1333
|
147 |
-
scales2_resize = [400, 500, 600]
|
148 |
-
scales2_crop = [384, 600]
|
149 |
-
|
150 |
-
# update args from config files
|
151 |
-
scales = getattr(args, 'data_aug_scales', scales)
|
152 |
-
max_size = getattr(args, 'data_aug_max_size', max_size)
|
153 |
-
scales2_resize = getattr(args, 'data_aug_scales2_resize', scales2_resize)
|
154 |
-
scales2_crop = getattr(args, 'data_aug_scales2_crop', scales2_crop)
|
155 |
-
|
156 |
-
# resize them
|
157 |
-
data_aug_scale_overlap = getattr(args, 'data_aug_scale_overlap', None)
|
158 |
-
if data_aug_scale_overlap is not None and data_aug_scale_overlap > 0:
|
159 |
-
data_aug_scale_overlap = float(data_aug_scale_overlap)
|
160 |
-
scales = [int(i*data_aug_scale_overlap) for i in scales]
|
161 |
-
max_size = int(max_size*data_aug_scale_overlap)
|
162 |
-
scales2_resize = [int(i*data_aug_scale_overlap) for i in scales2_resize]
|
163 |
-
scales2_crop = [int(i*data_aug_scale_overlap) for i in scales2_crop]
|
164 |
-
|
165 |
-
# datadict_for_print = {
|
166 |
-
# 'scales': scales,
|
167 |
-
# 'max_size': max_size,
|
168 |
-
# 'scales2_resize': scales2_resize,
|
169 |
-
# 'scales2_crop': scales2_crop
|
170 |
-
# }
|
171 |
-
# print("data_aug_params:", json.dumps(datadict_for_print, indent=2))
|
172 |
-
|
173 |
-
if image_set == 'train':
|
174 |
-
if fix_size:
|
175 |
-
return T.Compose([
|
176 |
-
T.RandomHorizontalFlip(),
|
177 |
-
T.RandomResize([(max_size, max(scales))]),
|
178 |
-
normalize,
|
179 |
-
])
|
180 |
-
|
181 |
-
if strong_aug:
|
182 |
-
import datasets.sltransform as SLT
|
183 |
-
|
184 |
-
return T.Compose([
|
185 |
-
T.RandomHorizontalFlip(),
|
186 |
-
T.RandomSelect(
|
187 |
-
T.RandomResize(scales, max_size=max_size),
|
188 |
-
T.Compose([
|
189 |
-
T.RandomResize(scales2_resize),
|
190 |
-
T.RandomSizeCrop(*scales2_crop),
|
191 |
-
T.RandomResize(scales, max_size=max_size),
|
192 |
-
])
|
193 |
-
),
|
194 |
-
SLT.RandomSelectMulti([
|
195 |
-
SLT.RandomCrop(),
|
196 |
-
SLT.LightingNoise(),
|
197 |
-
SLT.AdjustBrightness(2),
|
198 |
-
SLT.AdjustContrast(2),
|
199 |
-
]),
|
200 |
-
normalize,
|
201 |
-
])
|
202 |
-
|
203 |
-
return T.Compose([
|
204 |
-
T.RandomHorizontalFlip(),
|
205 |
-
T.RandomSelect(
|
206 |
-
T.RandomResize(scales, max_size=max_size),
|
207 |
-
T.Compose([
|
208 |
-
T.RandomResize(scales2_resize),
|
209 |
-
T.RandomSizeCrop(*scales2_crop),
|
210 |
-
T.RandomResize(scales, max_size=max_size),
|
211 |
-
])
|
212 |
-
),
|
213 |
-
normalize,
|
214 |
-
])
|
215 |
-
|
216 |
-
if image_set in ['val', 'eval_debug', 'train_reg', 'test']:
|
217 |
-
|
218 |
-
if os.environ.get("GFLOPS_DEBUG_SHILONG", False) == 'INFO':
|
219 |
-
print("Under debug mode for flops calculation only!!!!!!!!!!!!!!!!")
|
220 |
-
return T.Compose([
|
221 |
-
T.ResizeDebug((1280, 800)),
|
222 |
-
normalize,
|
223 |
-
])
|
224 |
-
|
225 |
-
return T.Compose([
|
226 |
-
T.RandomResize([max(scales)], max_size=max_size),
|
227 |
-
normalize,
|
228 |
-
])
|
229 |
-
|
230 |
-
raise ValueError(f'unknown {image_set}')
|
231 |
-
|
232 |
-
def build_odvg(image_set, args, datasetinfo):
|
233 |
-
img_folder = datasetinfo["root"]
|
234 |
-
ann_file = datasetinfo["anno"]
|
235 |
-
label_map = datasetinfo["label_map"] if "label_map" in datasetinfo else None
|
236 |
-
try:
|
237 |
-
strong_aug = args.strong_aug
|
238 |
-
except:
|
239 |
-
strong_aug = False # False originally
|
240 |
-
print(img_folder, ann_file, label_map)
|
241 |
-
dataset = ODVGDataset(img_folder, ann_file, label_map, max_labels=args.max_labels,
|
242 |
-
transforms=make_coco_transforms(image_set, fix_size=args.fix_size, strong_aug=strong_aug, args=args),
|
243 |
-
)
|
244 |
-
return dataset
|
245 |
-
|
246 |
-
|
247 |
-
if __name__=="__main__":
|
248 |
-
dataset_vg = ODVGDataset("path/GRIT-20M/data/","path/GRIT-20M/anno/grit_odvg_10k.jsonl",)
|
249 |
-
print(len(dataset_vg))
|
250 |
-
data = dataset_vg[random.randint(0, 100)]
|
251 |
-
print(data)
|
252 |
-
dataset_od = ODVGDataset("pathl/V3Det/",
|
253 |
-
"path/V3Det/annotations/v3det_2023_v1_all_odvg.jsonl",
|
254 |
-
"path/V3Det/annotations/v3det_label_map.json",
|
255 |
-
)
|
256 |
-
print(len(dataset_od))
|
257 |
-
data = dataset_od[random.randint(0, 100)]
|
258 |
-
print(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/.ipynb_checkpoints/transforms-checkpoint.py
DELETED
@@ -1,285 +0,0 @@
|
|
1 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
-
"""
|
3 |
-
Transforms and data augmentation for both image + bbox.
|
4 |
-
"""
|
5 |
-
import random
|
6 |
-
|
7 |
-
import PIL
|
8 |
-
import torch
|
9 |
-
import torchvision.transforms as T
|
10 |
-
import torchvision.transforms.functional as F
|
11 |
-
|
12 |
-
from util.box_ops import box_xyxy_to_cxcywh
|
13 |
-
from util.misc import interpolate
|
14 |
-
|
15 |
-
|
16 |
-
def crop(image, target, region):
|
17 |
-
cropped_image = F.crop(image, *region)
|
18 |
-
|
19 |
-
target = target.copy()
|
20 |
-
i, j, h, w = region
|
21 |
-
|
22 |
-
# should we do something wrt the original size?
|
23 |
-
target["size"] = torch.tensor([h, w])
|
24 |
-
|
25 |
-
fields = ["labels", "area"]
|
26 |
-
|
27 |
-
if "boxes" in target:
|
28 |
-
boxes = target["boxes"]
|
29 |
-
max_size = torch.as_tensor([w, h], dtype=torch.float32)
|
30 |
-
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
|
31 |
-
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
|
32 |
-
cropped_boxes = cropped_boxes.clamp(min=0)
|
33 |
-
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
|
34 |
-
target["boxes"] = cropped_boxes.reshape(-1, 4)
|
35 |
-
target["area"] = area
|
36 |
-
fields.append("boxes")
|
37 |
-
|
38 |
-
if "masks" in target:
|
39 |
-
# FIXME should we update the area here if there are no boxes?
|
40 |
-
target['masks'] = target['masks'][:, i:i + h, j:j + w]
|
41 |
-
fields.append("masks")
|
42 |
-
|
43 |
-
|
44 |
-
# remove elements for which the boxes or masks that have zero area
|
45 |
-
if "boxes" in target or "masks" in target:
|
46 |
-
# favor boxes selection when defining which elements to keep
|
47 |
-
# this is compatible with previous implementation
|
48 |
-
if "boxes" in target:
|
49 |
-
cropped_boxes = target['boxes'].reshape(-1, 2, 2)
|
50 |
-
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
|
51 |
-
else:
|
52 |
-
keep = target['masks'].flatten(1).any(1)
|
53 |
-
|
54 |
-
for field in fields:
|
55 |
-
target[field] = target[field][keep]
|
56 |
-
|
57 |
-
return cropped_image, target
|
58 |
-
|
59 |
-
|
60 |
-
def hflip(image, target):
|
61 |
-
flipped_image = F.hflip(image)
|
62 |
-
|
63 |
-
w, h = image.size
|
64 |
-
|
65 |
-
target = target.copy()
|
66 |
-
if "boxes" in target:
|
67 |
-
boxes = target["boxes"]
|
68 |
-
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
|
69 |
-
target["boxes"] = boxes
|
70 |
-
|
71 |
-
if "masks" in target:
|
72 |
-
target['masks'] = target['masks'].flip(-1)
|
73 |
-
|
74 |
-
return flipped_image, target
|
75 |
-
|
76 |
-
|
77 |
-
def resize(image, target, size, max_size=None):
|
78 |
-
# size can be min_size (scalar) or (w, h) tuple
|
79 |
-
|
80 |
-
def get_size_with_aspect_ratio(image_size, size, max_size=None):
|
81 |
-
w, h = image_size
|
82 |
-
if max_size is not None:
|
83 |
-
min_original_size = float(min((w, h)))
|
84 |
-
max_original_size = float(max((w, h)))
|
85 |
-
if max_original_size / min_original_size * size > max_size:
|
86 |
-
size = int(round(max_size * min_original_size / max_original_size))
|
87 |
-
|
88 |
-
if (w <= h and w == size) or (h <= w and h == size):
|
89 |
-
return (h, w)
|
90 |
-
|
91 |
-
if w < h:
|
92 |
-
ow = size
|
93 |
-
oh = int(size * h / w)
|
94 |
-
else:
|
95 |
-
oh = size
|
96 |
-
ow = int(size * w / h)
|
97 |
-
|
98 |
-
return (oh, ow)
|
99 |
-
|
100 |
-
def get_size(image_size, size, max_size=None):
|
101 |
-
if isinstance(size, (list, tuple)):
|
102 |
-
return size[::-1]
|
103 |
-
else:
|
104 |
-
return get_size_with_aspect_ratio(image_size, size, max_size)
|
105 |
-
|
106 |
-
size = get_size(image.size, size, max_size)
|
107 |
-
rescaled_image = F.resize(image, size)
|
108 |
-
|
109 |
-
if target is None:
|
110 |
-
return rescaled_image, None
|
111 |
-
|
112 |
-
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
|
113 |
-
ratio_width, ratio_height = ratios
|
114 |
-
|
115 |
-
target = target.copy()
|
116 |
-
if "boxes" in target:
|
117 |
-
boxes = target["boxes"]
|
118 |
-
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
|
119 |
-
target["boxes"] = scaled_boxes
|
120 |
-
|
121 |
-
if "area" in target:
|
122 |
-
area = target["area"]
|
123 |
-
scaled_area = area * (ratio_width * ratio_height)
|
124 |
-
target["area"] = scaled_area
|
125 |
-
|
126 |
-
h, w = size
|
127 |
-
target["size"] = torch.tensor([h, w])
|
128 |
-
|
129 |
-
if "masks" in target:
|
130 |
-
target['masks'] = interpolate(
|
131 |
-
target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5
|
132 |
-
|
133 |
-
return rescaled_image, target
|
134 |
-
|
135 |
-
|
136 |
-
def pad(image, target, padding):
|
137 |
-
# assumes that we only pad on the bottom right corners
|
138 |
-
padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
|
139 |
-
if target is None:
|
140 |
-
return padded_image, None
|
141 |
-
target = target.copy()
|
142 |
-
# should we do something wrt the original size?
|
143 |
-
target["size"] = torch.tensor(padded_image.size[::-1])
|
144 |
-
if "masks" in target:
|
145 |
-
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
|
146 |
-
return padded_image, target
|
147 |
-
|
148 |
-
|
149 |
-
class ResizeDebug(object):
|
150 |
-
def __init__(self, size):
|
151 |
-
self.size = size
|
152 |
-
|
153 |
-
def __call__(self, img, target):
|
154 |
-
return resize(img, target, self.size)
|
155 |
-
|
156 |
-
|
157 |
-
class RandomCrop(object):
|
158 |
-
def __init__(self, size):
|
159 |
-
self.size = size
|
160 |
-
|
161 |
-
def __call__(self, img, target):
|
162 |
-
region = T.RandomCrop.get_params(img, self.size)
|
163 |
-
return crop(img, target, region)
|
164 |
-
|
165 |
-
|
166 |
-
class RandomSizeCrop(object):
|
167 |
-
def __init__(self, min_size: int, max_size: int):
|
168 |
-
self.min_size = min_size
|
169 |
-
self.max_size = max_size
|
170 |
-
|
171 |
-
def __call__(self, img: PIL.Image.Image, target: dict):
|
172 |
-
w = random.randint(self.min_size, min(img.width, self.max_size))
|
173 |
-
h = random.randint(self.min_size, min(img.height, self.max_size))
|
174 |
-
region = T.RandomCrop.get_params(img, [h, w])
|
175 |
-
return crop(img, target, region)
|
176 |
-
|
177 |
-
|
178 |
-
class CenterCrop(object):
|
179 |
-
def __init__(self, size):
|
180 |
-
self.size = size
|
181 |
-
|
182 |
-
def __call__(self, img, target):
|
183 |
-
image_width, image_height = img.size
|
184 |
-
crop_height, crop_width = self.size
|
185 |
-
crop_top = int(round((image_height - crop_height) / 2.))
|
186 |
-
crop_left = int(round((image_width - crop_width) / 2.))
|
187 |
-
return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
|
188 |
-
|
189 |
-
|
190 |
-
class RandomHorizontalFlip(object):
|
191 |
-
def __init__(self, p=0.5):
|
192 |
-
self.p = p
|
193 |
-
|
194 |
-
def __call__(self, img, target):
|
195 |
-
if random.random() < self.p:
|
196 |
-
return hflip(img, target)
|
197 |
-
return img, target
|
198 |
-
|
199 |
-
|
200 |
-
class RandomResize(object):
|
201 |
-
def __init__(self, sizes, max_size=None):
|
202 |
-
assert isinstance(sizes, (list, tuple))
|
203 |
-
self.sizes = sizes
|
204 |
-
self.max_size = max_size
|
205 |
-
|
206 |
-
def __call__(self, img, target=None):
|
207 |
-
size = random.choice(self.sizes)
|
208 |
-
return resize(img, target, size, self.max_size)
|
209 |
-
|
210 |
-
|
211 |
-
class RandomPad(object):
|
212 |
-
def __init__(self, max_pad):
|
213 |
-
self.max_pad = max_pad
|
214 |
-
|
215 |
-
def __call__(self, img, target):
|
216 |
-
pad_x = random.randint(0, self.max_pad)
|
217 |
-
pad_y = random.randint(0, self.max_pad)
|
218 |
-
return pad(img, target, (pad_x, pad_y))
|
219 |
-
|
220 |
-
|
221 |
-
class RandomSelect(object):
|
222 |
-
"""
|
223 |
-
Randomly selects between transforms1 and transforms2,
|
224 |
-
with probability p for transforms1 and (1 - p) for transforms2
|
225 |
-
"""
|
226 |
-
def __init__(self, transforms1, transforms2, p=0.5):
|
227 |
-
self.transforms1 = transforms1
|
228 |
-
self.transforms2 = transforms2
|
229 |
-
self.p = p
|
230 |
-
|
231 |
-
def __call__(self, img, target):
|
232 |
-
if random.random() < self.p:
|
233 |
-
return self.transforms1(img, target)
|
234 |
-
return self.transforms2(img, target)
|
235 |
-
|
236 |
-
|
237 |
-
class ToTensor(object):
|
238 |
-
def __call__(self, img, target):
|
239 |
-
return F.to_tensor(img), target
|
240 |
-
|
241 |
-
|
242 |
-
class RandomErasing(object):
|
243 |
-
|
244 |
-
def __init__(self, *args, **kwargs):
|
245 |
-
self.eraser = T.RandomErasing(*args, **kwargs)
|
246 |
-
|
247 |
-
def __call__(self, img, target):
|
248 |
-
return self.eraser(img), target
|
249 |
-
|
250 |
-
|
251 |
-
class Normalize(object):
|
252 |
-
def __init__(self, mean, std):
|
253 |
-
self.mean = mean
|
254 |
-
self.std = std
|
255 |
-
|
256 |
-
def __call__(self, image, target=None):
|
257 |
-
image = F.normalize(image, mean=self.mean, std=self.std)
|
258 |
-
if target is None:
|
259 |
-
return image, None
|
260 |
-
target = target.copy()
|
261 |
-
h, w = image.shape[-2:]
|
262 |
-
if "boxes" in target:
|
263 |
-
boxes = target["boxes"]
|
264 |
-
boxes = box_xyxy_to_cxcywh(boxes)
|
265 |
-
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
|
266 |
-
target["boxes"] = boxes
|
267 |
-
return image, target
|
268 |
-
|
269 |
-
|
270 |
-
class Compose(object):
|
271 |
-
def __init__(self, transforms):
|
272 |
-
self.transforms = transforms
|
273 |
-
|
274 |
-
def __call__(self, image, target):
|
275 |
-
for t in self.transforms:
|
276 |
-
image, target = t(image, target)
|
277 |
-
return image, target
|
278 |
-
|
279 |
-
def __repr__(self):
|
280 |
-
format_string = self.__class__.__name__ + "("
|
281 |
-
for t in self.transforms:
|
282 |
-
format_string += "\n"
|
283 |
-
format_string += " {0}".format(t)
|
284 |
-
format_string += "\n)"
|
285 |
-
return format_string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/__init__.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
-
import torch.utils.data
|
3 |
-
import torchvision
|
4 |
-
from .coco import build as build_coco
|
5 |
-
|
6 |
-
|
7 |
-
def get_coco_api_from_dataset(dataset):
|
8 |
-
for _ in range(10):
|
9 |
-
# if isinstance(dataset, torchvision.datasets.CocoDetection):
|
10 |
-
# break
|
11 |
-
if isinstance(dataset, torch.utils.data.Subset):
|
12 |
-
dataset = dataset.dataset
|
13 |
-
if isinstance(dataset, torchvision.datasets.CocoDetection):
|
14 |
-
return dataset.coco
|
15 |
-
|
16 |
-
|
17 |
-
def build_dataset(image_set, args, datasetinfo):
|
18 |
-
if datasetinfo["dataset_mode"] == 'coco':
|
19 |
-
return build_coco(image_set, args, datasetinfo)
|
20 |
-
if datasetinfo["dataset_mode"] == 'odvg':
|
21 |
-
from .odvg import build_odvg
|
22 |
-
return build_odvg(image_set, args, datasetinfo)
|
23 |
-
raise ValueError(f'dataset {args.dataset_file} not supported')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (899 Bytes)
|
|
groundingdino/datasets/__pycache__/coco.cpython-310.pyc
DELETED
Binary file (20.2 kB)
|
|
groundingdino/datasets/__pycache__/coco_eval.cpython-310.pyc
DELETED
Binary file (7.42 kB)
|
|
groundingdino/datasets/__pycache__/cocogrounding_eval.cpython-310.pyc
DELETED
Binary file (7.44 kB)
|
|
groundingdino/datasets/__pycache__/data_util.cpython-310.pyc
DELETED
Binary file (4.55 kB)
|
|
groundingdino/datasets/__pycache__/odvg.cpython-310.pyc
DELETED
Binary file (8.21 kB)
|
|
groundingdino/datasets/__pycache__/panoptic_eval.cpython-310.pyc
DELETED
Binary file (1.87 kB)
|
|
groundingdino/datasets/__pycache__/random_crop.cpython-310.pyc
DELETED
Binary file (3.69 kB)
|
|
groundingdino/datasets/__pycache__/sltransform.cpython-310.pyc
DELETED
Binary file (7.68 kB)
|
|
groundingdino/datasets/__pycache__/transforms.cpython-310.pyc
DELETED
Binary file (9.53 kB)
|
|
groundingdino/datasets/coco.py
DELETED
@@ -1,649 +0,0 @@
|
|
1 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
-
"""
|
3 |
-
COCO dataset which returns image_id for evaluation.
|
4 |
-
|
5 |
-
Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py
|
6 |
-
"""
|
7 |
-
if __name__=="__main__":
|
8 |
-
# for debug only
|
9 |
-
import os, sys
|
10 |
-
sys.path.append(os.path.dirname(sys.path[0]))
|
11 |
-
from torchvision.datasets.vision import VisionDataset
|
12 |
-
|
13 |
-
import json
|
14 |
-
from pathlib import Path
|
15 |
-
import random
|
16 |
-
import os
|
17 |
-
from typing import Any, Callable, List, Optional, Tuple
|
18 |
-
|
19 |
-
from PIL import Image
|
20 |
-
|
21 |
-
import torch
|
22 |
-
import torch.utils.data
|
23 |
-
import torchvision
|
24 |
-
from pycocotools import mask as coco_mask
|
25 |
-
|
26 |
-
from datasets.data_util import preparing_dataset
|
27 |
-
import datasets.transforms as T
|
28 |
-
from util.box_ops import box_cxcywh_to_xyxy, box_iou
|
29 |
-
|
30 |
-
__all__ = ['build']
|
31 |
-
|
32 |
-
|
33 |
-
class label2compat():
|
34 |
-
def __init__(self) -> None:
|
35 |
-
self.category_map_str = {"1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "10": 10, "11": 11, "13": 12, "14": 13, "15": 14, "16": 15, "17": 16, "18": 17, "19": 18, "20": 19, "21": 20, "22": 21, "23": 22, "24": 23, "25": 24, "27": 25, "28": 26, "31": 27, "32": 28, "33": 29, "34": 30, "35": 31, "36": 32, "37": 33, "38": 34, "39": 35, "40": 36, "41": 37, "42": 38, "43": 39, "44": 40, "46": 41, "47": 42, "48": 43, "49": 44, "50": 45, "51": 46, "52": 47, "53": 48, "54": 49, "55": 50, "56": 51, "57": 52, "58": 53, "59": 54, "60": 55, "61": 56, "62": 57, "63": 58, "64": 59, "65": 60, "67": 61, "70": 62, "72": 63, "73": 64, "74": 65, "75": 66, "76": 67, "77": 68, "78": 69, "79": 70, "80": 71, "81": 72, "82": 73, "84": 74, "85": 75, "86": 76, "87": 77, "88": 78, "89": 79, "90": 80}
|
36 |
-
self.category_map = {int(k):v for k,v in self.category_map_str.items()}
|
37 |
-
|
38 |
-
def __call__(self, target, img=None):
|
39 |
-
labels = target['labels']
|
40 |
-
res = torch.zeros(labels.shape, dtype=labels.dtype)
|
41 |
-
for idx, item in enumerate(labels):
|
42 |
-
res[idx] = self.category_map[item.item()] - 1
|
43 |
-
target['label_compat'] = res
|
44 |
-
if img is not None:
|
45 |
-
return target, img
|
46 |
-
else:
|
47 |
-
return target
|
48 |
-
|
49 |
-
|
50 |
-
class label_compat2onehot():
|
51 |
-
def __init__(self, num_class=80, num_output_objs=1):
|
52 |
-
self.num_class = num_class
|
53 |
-
self.num_output_objs = num_output_objs
|
54 |
-
if num_output_objs != 1:
|
55 |
-
raise DeprecationWarning("num_output_objs!=1, which is only used for comparison")
|
56 |
-
|
57 |
-
def __call__(self, target, img=None):
|
58 |
-
labels = target['label_compat']
|
59 |
-
place_dict = {k:0 for k in range(self.num_class)}
|
60 |
-
if self.num_output_objs == 1:
|
61 |
-
res = torch.zeros(self.num_class)
|
62 |
-
for i in labels:
|
63 |
-
itm = i.item()
|
64 |
-
res[itm] = 1.0
|
65 |
-
else:
|
66 |
-
# compat with baseline
|
67 |
-
res = torch.zeros(self.num_class, self.num_output_objs)
|
68 |
-
for i in labels:
|
69 |
-
itm = i.item()
|
70 |
-
res[itm][place_dict[itm]] = 1.0
|
71 |
-
place_dict[itm] += 1
|
72 |
-
target['label_compat_onehot'] = res
|
73 |
-
if img is not None:
|
74 |
-
return target, img
|
75 |
-
else:
|
76 |
-
return target
|
77 |
-
|
78 |
-
|
79 |
-
class box_label_catter():
|
80 |
-
def __init__(self):
|
81 |
-
pass
|
82 |
-
|
83 |
-
def __call__(self, target, img=None):
|
84 |
-
labels = target['label_compat']
|
85 |
-
boxes = target['boxes']
|
86 |
-
box_label = torch.cat((boxes, labels.unsqueeze(-1)), 1)
|
87 |
-
target['box_label'] = box_label
|
88 |
-
if img is not None:
|
89 |
-
return target, img
|
90 |
-
else:
|
91 |
-
return target
|
92 |
-
|
93 |
-
|
94 |
-
class RandomSelectBoxlabels():
|
95 |
-
def __init__(self, num_classes, leave_one_out=False, blank_prob=0.8,
|
96 |
-
prob_first_item = 0.0,
|
97 |
-
prob_random_item = 0.0,
|
98 |
-
prob_last_item = 0.8,
|
99 |
-
prob_stop_sign = 0.2
|
100 |
-
) -> None:
|
101 |
-
self.num_classes = num_classes
|
102 |
-
self.leave_one_out = leave_one_out
|
103 |
-
self.blank_prob = blank_prob
|
104 |
-
|
105 |
-
self.set_state(prob_first_item, prob_random_item, prob_last_item, prob_stop_sign)
|
106 |
-
|
107 |
-
|
108 |
-
def get_state(self):
|
109 |
-
return [self.prob_first_item, self.prob_random_item, self.prob_last_item, self.prob_stop_sign]
|
110 |
-
|
111 |
-
def set_state(self, prob_first_item, prob_random_item, prob_last_item, prob_stop_sign):
|
112 |
-
sum_prob = prob_first_item + prob_random_item + prob_last_item + prob_stop_sign
|
113 |
-
assert sum_prob - 1 < 1e-6, \
|
114 |
-
f"Sum up all prob = {sum_prob}. prob_first_item:{prob_first_item}" \
|
115 |
-
+ f"prob_random_item:{prob_random_item}, prob_last_item:{prob_last_item}" \
|
116 |
-
+ f"prob_stop_sign:{prob_stop_sign}"
|
117 |
-
|
118 |
-
self.prob_first_item = prob_first_item
|
119 |
-
self.prob_random_item = prob_random_item
|
120 |
-
self.prob_last_item = prob_last_item
|
121 |
-
self.prob_stop_sign = prob_stop_sign
|
122 |
-
|
123 |
-
|
124 |
-
def sample_for_pred_first_item(self, box_label: torch.FloatTensor):
|
125 |
-
box_label_known = torch.Tensor(0,5)
|
126 |
-
box_label_unknown = box_label
|
127 |
-
return box_label_known, box_label_unknown
|
128 |
-
|
129 |
-
def sample_for_pred_random_item(self, box_label: torch.FloatTensor):
|
130 |
-
n_select = int(random.random() * box_label.shape[0])
|
131 |
-
box_label = box_label[torch.randperm(box_label.shape[0])]
|
132 |
-
box_label_known = box_label[:n_select]
|
133 |
-
box_label_unknown = box_label[n_select:]
|
134 |
-
return box_label_known, box_label_unknown
|
135 |
-
|
136 |
-
def sample_for_pred_last_item(self, box_label: torch.FloatTensor):
|
137 |
-
box_label_perm = box_label[torch.randperm(box_label.shape[0])]
|
138 |
-
known_label_list = []
|
139 |
-
box_label_known = []
|
140 |
-
box_label_unknown = []
|
141 |
-
for item in box_label_perm:
|
142 |
-
label_i = item[4].item()
|
143 |
-
if label_i in known_label_list:
|
144 |
-
box_label_known.append(item)
|
145 |
-
else:
|
146 |
-
# first item
|
147 |
-
box_label_unknown.append(item)
|
148 |
-
known_label_list.append(label_i)
|
149 |
-
box_label_known = torch.stack(box_label_known) if len(box_label_known) > 0 else torch.Tensor(0,5)
|
150 |
-
box_label_unknown = torch.stack(box_label_unknown) if len(box_label_unknown) > 0 else torch.Tensor(0,5)
|
151 |
-
return box_label_known, box_label_unknown
|
152 |
-
|
153 |
-
def sample_for_pred_stop_sign(self, box_label: torch.FloatTensor):
|
154 |
-
box_label_unknown = torch.Tensor(0,5)
|
155 |
-
box_label_known = box_label
|
156 |
-
return box_label_known, box_label_unknown
|
157 |
-
|
158 |
-
def __call__(self, target, img=None):
|
159 |
-
box_label = target['box_label'] # K, 5
|
160 |
-
|
161 |
-
dice_number = random.random()
|
162 |
-
|
163 |
-
if dice_number < self.prob_first_item:
|
164 |
-
box_label_known, box_label_unknown = self.sample_for_pred_first_item(box_label)
|
165 |
-
elif dice_number < self.prob_first_item + self.prob_random_item:
|
166 |
-
box_label_known, box_label_unknown = self.sample_for_pred_random_item(box_label)
|
167 |
-
elif dice_number < self.prob_first_item + self.prob_random_item + self.prob_last_item:
|
168 |
-
box_label_known, box_label_unknown = self.sample_for_pred_last_item(box_label)
|
169 |
-
else:
|
170 |
-
box_label_known, box_label_unknown = self.sample_for_pred_stop_sign(box_label)
|
171 |
-
|
172 |
-
target['label_onehot_known'] = label2onehot(box_label_known[:,-1], self.num_classes)
|
173 |
-
target['label_onehot_unknown'] = label2onehot(box_label_unknown[:, -1], self.num_classes)
|
174 |
-
target['box_label_known'] = box_label_known
|
175 |
-
target['box_label_unknown'] = box_label_unknown
|
176 |
-
|
177 |
-
return target, img
|
178 |
-
|
179 |
-
|
180 |
-
class RandomDrop():
|
181 |
-
def __init__(self, p=0.2) -> None:
|
182 |
-
self.p = p
|
183 |
-
|
184 |
-
def __call__(self, target, img=None):
|
185 |
-
known_box = target['box_label_known']
|
186 |
-
num_known_box = known_box.size(0)
|
187 |
-
idxs = torch.rand(num_known_box)
|
188 |
-
# indices = torch.randperm(num_known_box)[:int((1-self).p*num_known_box + 0.5 + random.random())]
|
189 |
-
target['box_label_known'] = known_box[idxs > self.p]
|
190 |
-
return target, img
|
191 |
-
|
192 |
-
|
193 |
-
class BboxPertuber():
|
194 |
-
def __init__(self, max_ratio = 0.02, generate_samples = 1000) -> None:
|
195 |
-
self.max_ratio = max_ratio
|
196 |
-
self.generate_samples = generate_samples
|
197 |
-
self.samples = self.generate_pertube_samples()
|
198 |
-
self.idx = 0
|
199 |
-
|
200 |
-
def generate_pertube_samples(self):
|
201 |
-
import torch
|
202 |
-
samples = (torch.rand(self.generate_samples, 5) - 0.5) * 2 * self.max_ratio
|
203 |
-
return samples
|
204 |
-
|
205 |
-
def __call__(self, target, img):
|
206 |
-
known_box = target['box_label_known'] # Tensor(K,5), K known bbox
|
207 |
-
K = known_box.shape[0]
|
208 |
-
known_box_pertube = torch.zeros(K, 6) # 4:bbox, 1:prob, 1:label
|
209 |
-
if K == 0:
|
210 |
-
pass
|
211 |
-
else:
|
212 |
-
if self.idx + K > self.generate_samples:
|
213 |
-
self.idx = 0
|
214 |
-
delta = self.samples[self.idx: self.idx + K, :]
|
215 |
-
known_box_pertube[:, :4] = known_box[:, :4] + delta[:, :4]
|
216 |
-
iou = (torch.diag(box_iou(box_cxcywh_to_xyxy(known_box[:, :4]), box_cxcywh_to_xyxy(known_box_pertube[:, :4]))[0])) * (1 + delta[:, -1])
|
217 |
-
known_box_pertube[:, 4].copy_(iou)
|
218 |
-
known_box_pertube[:, -1].copy_(known_box[:, -1])
|
219 |
-
|
220 |
-
target['box_label_known_pertube'] = known_box_pertube
|
221 |
-
return target, img
|
222 |
-
|
223 |
-
|
224 |
-
class RandomCutout():
|
225 |
-
def __init__(self, factor=0.5) -> None:
|
226 |
-
self.factor = factor
|
227 |
-
|
228 |
-
def __call__(self, target, img=None):
|
229 |
-
unknown_box = target['box_label_unknown'] # Ku, 5
|
230 |
-
known_box = target['box_label_known_pertube'] # Kk, 6
|
231 |
-
Ku = unknown_box.size(0)
|
232 |
-
|
233 |
-
known_box_add = torch.zeros(Ku, 6) # Ku, 6
|
234 |
-
known_box_add[:, :5] = unknown_box
|
235 |
-
known_box_add[:, 5].uniform_(0.5, 1)
|
236 |
-
|
237 |
-
|
238 |
-
known_box_add[:, :2] += known_box_add[:, 2:4] * (torch.rand(Ku, 2) - 0.5) / 2
|
239 |
-
known_box_add[:, 2:4] /= 2
|
240 |
-
|
241 |
-
target['box_label_known_pertube'] = torch.cat((known_box, known_box_add))
|
242 |
-
return target, img
|
243 |
-
|
244 |
-
|
245 |
-
class RandomSelectBoxes():
|
246 |
-
def __init__(self, num_class=80) -> None:
|
247 |
-
Warning("This is such a slow function and will be deprecated soon!!!")
|
248 |
-
self.num_class = num_class
|
249 |
-
|
250 |
-
def __call__(self, target, img=None):
|
251 |
-
boxes = target['boxes']
|
252 |
-
labels = target['label_compat']
|
253 |
-
|
254 |
-
# transform to list of tensors
|
255 |
-
boxs_list = [[] for i in range(self.num_class)]
|
256 |
-
for idx, item in enumerate(boxes):
|
257 |
-
label = labels[idx].item()
|
258 |
-
boxs_list[label].append(item)
|
259 |
-
boxs_list_tensor = [torch.stack(i) if len(i) > 0 else torch.Tensor(0,4) for i in boxs_list]
|
260 |
-
|
261 |
-
# random selection
|
262 |
-
box_known = []
|
263 |
-
box_unknown = []
|
264 |
-
for idx, item in enumerate(boxs_list_tensor):
|
265 |
-
ncnt = item.shape[0]
|
266 |
-
nselect = int(random.random() * ncnt) # close in both sides, much faster than random.randint
|
267 |
-
|
268 |
-
item = item[torch.randperm(ncnt)]
|
269 |
-
# random.shuffle(item)
|
270 |
-
box_known.append(item[:nselect])
|
271 |
-
box_unknown.append(item[nselect:])
|
272 |
-
|
273 |
-
# box_known_tensor = [torch.stack(i) if len(i) > 0 else torch.Tensor(0,4) for i in box_known]
|
274 |
-
# box_unknown_tensor = [torch.stack(i) if len(i) > 0 else torch.Tensor(0,4) for i in box_unknown]
|
275 |
-
# print('box_unknown_tensor:', box_unknown_tensor)
|
276 |
-
target['known_box'] = box_known
|
277 |
-
target['unknown_box'] = box_unknown
|
278 |
-
return target, img
|
279 |
-
|
280 |
-
|
281 |
-
def label2onehot(label, num_classes):
|
282 |
-
"""
|
283 |
-
label: Tensor(K)
|
284 |
-
"""
|
285 |
-
res = torch.zeros(num_classes)
|
286 |
-
for i in label:
|
287 |
-
itm = int(i.item())
|
288 |
-
res[itm] = 1.0
|
289 |
-
return res
|
290 |
-
|
291 |
-
|
292 |
-
class MaskCrop():
|
293 |
-
def __init__(self) -> None:
|
294 |
-
pass
|
295 |
-
|
296 |
-
def __call__(self, target, img):
|
297 |
-
known_box = target['known_box']
|
298 |
-
h,w = img.shape[1:] # h,w
|
299 |
-
# imgsize = target['orig_size'] # h,w
|
300 |
-
|
301 |
-
scale = torch.Tensor([w, h, w, h])
|
302 |
-
|
303 |
-
# _cnt = 0
|
304 |
-
for boxes in known_box:
|
305 |
-
if boxes.shape[0] == 0:
|
306 |
-
continue
|
307 |
-
box_xyxy = box_cxcywh_to_xyxy(boxes) * scale
|
308 |
-
for box in box_xyxy:
|
309 |
-
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
|
310 |
-
img[:, y1:y2, x1:x2] = 0
|
311 |
-
# _cnt += 1
|
312 |
-
# print("_cnt:", _cnt)
|
313 |
-
return target, img
|
314 |
-
|
315 |
-
|
316 |
-
dataset_hook_register = {
|
317 |
-
'label2compat': label2compat,
|
318 |
-
'label_compat2onehot': label_compat2onehot,
|
319 |
-
'box_label_catter': box_label_catter,
|
320 |
-
'RandomSelectBoxlabels': RandomSelectBoxlabels,
|
321 |
-
'RandomSelectBoxes': RandomSelectBoxes,
|
322 |
-
'MaskCrop': MaskCrop,
|
323 |
-
'BboxPertuber': BboxPertuber,
|
324 |
-
}
|
325 |
-
|
326 |
-
|
327 |
-
class CocoDetection(torchvision.datasets.CocoDetection):
|
328 |
-
def __init__(self, img_folder, ann_file, transforms, return_masks, aux_target_hacks=None):
|
329 |
-
super(CocoDetection, self).__init__(img_folder, ann_file)
|
330 |
-
self._transforms = transforms
|
331 |
-
self.prepare = ConvertCocoPolysToMask(return_masks)
|
332 |
-
self.aux_target_hacks = aux_target_hacks
|
333 |
-
|
334 |
-
def change_hack_attr(self, hackclassname, attrkv_dict):
|
335 |
-
target_class = dataset_hook_register[hackclassname]
|
336 |
-
for item in self.aux_target_hacks:
|
337 |
-
if isinstance(item, target_class):
|
338 |
-
for k,v in attrkv_dict.items():
|
339 |
-
setattr(item, k, v)
|
340 |
-
|
341 |
-
def get_hack(self, hackclassname):
|
342 |
-
target_class = dataset_hook_register[hackclassname]
|
343 |
-
for item in self.aux_target_hacks:
|
344 |
-
if isinstance(item, target_class):
|
345 |
-
return item
|
346 |
-
|
347 |
-
def _load_image(self, id: int) -> Image.Image:
|
348 |
-
path = self.coco.loadImgs(id)[0]["file_name"]
|
349 |
-
abs_path = os.path.join(self.root, path)
|
350 |
-
return Image.open(abs_path).convert("RGB")
|
351 |
-
|
352 |
-
def __getitem__(self, idx):
|
353 |
-
"""
|
354 |
-
Output:
|
355 |
-
- target: dict of multiple items
|
356 |
-
- boxes: Tensor[num_box, 4]. \
|
357 |
-
Init type: x0,y0,x1,y1. unnormalized data.
|
358 |
-
Final type: cx,cy,w,h. normalized data.
|
359 |
-
"""
|
360 |
-
try:
|
361 |
-
img, target = super(CocoDetection, self).__getitem__(idx)
|
362 |
-
except:
|
363 |
-
print("Error idx: {}".format(idx))
|
364 |
-
idx += 1
|
365 |
-
img, target = super(CocoDetection, self).__getitem__(idx)
|
366 |
-
image_id = self.ids[idx]
|
367 |
-
target = {'image_id': image_id, 'annotations': target}
|
368 |
-
img, target = self.prepare(img, target)
|
369 |
-
|
370 |
-
if self._transforms is not None:
|
371 |
-
img, target = self._transforms(img, target)
|
372 |
-
|
373 |
-
# convert to needed format
|
374 |
-
if self.aux_target_hacks is not None:
|
375 |
-
for hack_runner in self.aux_target_hacks:
|
376 |
-
target, img = hack_runner(target, img=img)
|
377 |
-
|
378 |
-
return img, target
|
379 |
-
|
380 |
-
|
381 |
-
def convert_coco_poly_to_mask(segmentations, height, width):
|
382 |
-
masks = []
|
383 |
-
for polygons in segmentations:
|
384 |
-
rles = coco_mask.frPyObjects(polygons, height, width)
|
385 |
-
mask = coco_mask.decode(rles)
|
386 |
-
if len(mask.shape) < 3:
|
387 |
-
mask = mask[..., None]
|
388 |
-
mask = torch.as_tensor(mask, dtype=torch.uint8)
|
389 |
-
mask = mask.any(dim=2)
|
390 |
-
masks.append(mask)
|
391 |
-
if masks:
|
392 |
-
masks = torch.stack(masks, dim=0)
|
393 |
-
else:
|
394 |
-
masks = torch.zeros((0, height, width), dtype=torch.uint8)
|
395 |
-
return masks
|
396 |
-
|
397 |
-
|
398 |
-
class ConvertCocoPolysToMask(object):
|
399 |
-
def __init__(self, return_masks=False):
|
400 |
-
self.return_masks = return_masks
|
401 |
-
|
402 |
-
def __call__(self, image, target):
|
403 |
-
w, h = image.size
|
404 |
-
|
405 |
-
image_id = target["image_id"]
|
406 |
-
image_id = torch.tensor([image_id])
|
407 |
-
|
408 |
-
anno = target["annotations"]
|
409 |
-
|
410 |
-
anno = [obj for obj in anno if 'iscrowd' not in obj or obj['iscrowd'] == 0]
|
411 |
-
|
412 |
-
boxes = [obj["bbox"] for obj in anno]
|
413 |
-
# guard against no boxes via resizing
|
414 |
-
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
|
415 |
-
boxes[:, 2:] += boxes[:, :2]
|
416 |
-
boxes[:, 0::2].clamp_(min=0, max=w)
|
417 |
-
boxes[:, 1::2].clamp_(min=0, max=h)
|
418 |
-
|
419 |
-
classes = [obj["category_id"] for obj in anno]
|
420 |
-
classes = torch.tensor(classes, dtype=torch.int64)
|
421 |
-
|
422 |
-
if self.return_masks:
|
423 |
-
segmentations = [obj["segmentation"] for obj in anno]
|
424 |
-
masks = convert_coco_poly_to_mask(segmentations, h, w)
|
425 |
-
|
426 |
-
keypoints = None
|
427 |
-
if anno and "keypoints" in anno[0]:
|
428 |
-
keypoints = [obj["keypoints"] for obj in anno]
|
429 |
-
keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
|
430 |
-
num_keypoints = keypoints.shape[0]
|
431 |
-
if num_keypoints:
|
432 |
-
keypoints = keypoints.view(num_keypoints, -1, 3)
|
433 |
-
|
434 |
-
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
|
435 |
-
boxes = boxes[keep]
|
436 |
-
classes = classes[keep]
|
437 |
-
if self.return_masks:
|
438 |
-
masks = masks[keep]
|
439 |
-
if keypoints is not None:
|
440 |
-
keypoints = keypoints[keep]
|
441 |
-
|
442 |
-
target = {}
|
443 |
-
target["boxes"] = boxes
|
444 |
-
target["labels"] = classes
|
445 |
-
if self.return_masks:
|
446 |
-
target["masks"] = masks
|
447 |
-
target["image_id"] = image_id
|
448 |
-
if keypoints is not None:
|
449 |
-
target["keypoints"] = keypoints
|
450 |
-
|
451 |
-
# for conversion to coco api
|
452 |
-
area = torch.tensor([obj["area"] for obj in anno])
|
453 |
-
iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno])
|
454 |
-
target["area"] = area[keep]
|
455 |
-
target["iscrowd"] = iscrowd[keep]
|
456 |
-
|
457 |
-
target["orig_size"] = torch.as_tensor([int(h), int(w)])
|
458 |
-
target["size"] = torch.as_tensor([int(h), int(w)])
|
459 |
-
|
460 |
-
return image, target
|
461 |
-
|
462 |
-
|
463 |
-
def make_coco_transforms(image_set, fix_size=False, strong_aug=False, args=None):
|
464 |
-
|
465 |
-
normalize = T.Compose([
|
466 |
-
T.ToTensor(),
|
467 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
468 |
-
])
|
469 |
-
|
470 |
-
# config the params for data aug
|
471 |
-
scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
|
472 |
-
max_size = 1333
|
473 |
-
scales2_resize = [400, 500, 600]
|
474 |
-
scales2_crop = [384, 600]
|
475 |
-
|
476 |
-
# update args from config files
|
477 |
-
scales = getattr(args, 'data_aug_scales', scales)
|
478 |
-
max_size = getattr(args, 'data_aug_max_size', max_size)
|
479 |
-
scales2_resize = getattr(args, 'data_aug_scales2_resize', scales2_resize)
|
480 |
-
scales2_crop = getattr(args, 'data_aug_scales2_crop', scales2_crop)
|
481 |
-
|
482 |
-
# resize them
|
483 |
-
data_aug_scale_overlap = getattr(args, 'data_aug_scale_overlap', None)
|
484 |
-
if data_aug_scale_overlap is not None and data_aug_scale_overlap > 0:
|
485 |
-
data_aug_scale_overlap = float(data_aug_scale_overlap)
|
486 |
-
scales = [int(i*data_aug_scale_overlap) for i in scales]
|
487 |
-
max_size = int(max_size*data_aug_scale_overlap)
|
488 |
-
scales2_resize = [int(i*data_aug_scale_overlap) for i in scales2_resize]
|
489 |
-
scales2_crop = [int(i*data_aug_scale_overlap) for i in scales2_crop]
|
490 |
-
|
491 |
-
datadict_for_print = {
|
492 |
-
'scales': scales,
|
493 |
-
'max_size': max_size,
|
494 |
-
'scales2_resize': scales2_resize,
|
495 |
-
'scales2_crop': scales2_crop
|
496 |
-
}
|
497 |
-
# print("data_aug_params:", json.dumps(datadict_for_print, indent=2))
|
498 |
-
|
499 |
-
if image_set == 'train':
|
500 |
-
if fix_size:
|
501 |
-
return T.Compose([
|
502 |
-
T.RandomHorizontalFlip(),
|
503 |
-
T.RandomResize([(max_size, max(scales))]),
|
504 |
-
# T.RandomResize([(512, 512)]),
|
505 |
-
normalize,
|
506 |
-
])
|
507 |
-
|
508 |
-
if strong_aug:
|
509 |
-
import datasets.sltransform as SLT
|
510 |
-
|
511 |
-
return T.Compose([
|
512 |
-
T.RandomHorizontalFlip(),
|
513 |
-
T.RandomSelect(
|
514 |
-
T.RandomResize(scales, max_size=max_size),
|
515 |
-
T.Compose([
|
516 |
-
T.RandomResize(scales2_resize),
|
517 |
-
T.RandomSizeCrop(*scales2_crop),
|
518 |
-
T.RandomResize(scales, max_size=max_size),
|
519 |
-
])
|
520 |
-
),
|
521 |
-
SLT.RandomSelectMulti([
|
522 |
-
SLT.RandomCrop(),
|
523 |
-
SLT.LightingNoise(),
|
524 |
-
SLT.AdjustBrightness(2),
|
525 |
-
SLT.AdjustContrast(2),
|
526 |
-
]),
|
527 |
-
normalize,
|
528 |
-
])
|
529 |
-
|
530 |
-
return T.Compose([
|
531 |
-
T.RandomHorizontalFlip(),
|
532 |
-
T.RandomSelect(
|
533 |
-
T.RandomResize(scales, max_size=max_size),
|
534 |
-
T.Compose([
|
535 |
-
T.RandomResize(scales2_resize),
|
536 |
-
T.RandomSizeCrop(*scales2_crop),
|
537 |
-
T.RandomResize(scales, max_size=max_size),
|
538 |
-
])
|
539 |
-
),
|
540 |
-
normalize,
|
541 |
-
])
|
542 |
-
|
543 |
-
if image_set in ['val', 'eval_debug', 'train_reg', 'test']:
|
544 |
-
|
545 |
-
if os.environ.get("GFLOPS_DEBUG_SHILONG", False) == 'INFO':
|
546 |
-
print("Under debug mode for flops calculation only!!!!!!!!!!!!!!!!")
|
547 |
-
return T.Compose([
|
548 |
-
T.ResizeDebug((1280, 800)),
|
549 |
-
normalize,
|
550 |
-
])
|
551 |
-
|
552 |
-
return T.Compose([
|
553 |
-
T.RandomResize([max(scales)], max_size=max_size),
|
554 |
-
normalize,
|
555 |
-
])
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
raise ValueError(f'unknown {image_set}')
|
560 |
-
|
561 |
-
|
562 |
-
def get_aux_target_hacks_list(image_set, args):
|
563 |
-
if args.modelname in ['q2bs_mask', 'q2bs']:
|
564 |
-
aux_target_hacks_list = [
|
565 |
-
label2compat(),
|
566 |
-
label_compat2onehot(),
|
567 |
-
RandomSelectBoxes(num_class=args.num_classes)
|
568 |
-
]
|
569 |
-
if args.masked_data and image_set == 'train':
|
570 |
-
# aux_target_hacks_list.append()
|
571 |
-
aux_target_hacks_list.append(MaskCrop())
|
572 |
-
elif args.modelname in ['q2bm_v2', 'q2bs_ce', 'q2op', 'q2ofocal', 'q2opclip', 'q2ocqonly']:
|
573 |
-
aux_target_hacks_list = [
|
574 |
-
label2compat(),
|
575 |
-
label_compat2onehot(),
|
576 |
-
box_label_catter(),
|
577 |
-
RandomSelectBoxlabels(num_classes=args.num_classes,
|
578 |
-
prob_first_item=args.prob_first_item,
|
579 |
-
prob_random_item=args.prob_random_item,
|
580 |
-
prob_last_item=args.prob_last_item,
|
581 |
-
prob_stop_sign=args.prob_stop_sign,
|
582 |
-
),
|
583 |
-
BboxPertuber(max_ratio=0.02, generate_samples=1000),
|
584 |
-
]
|
585 |
-
elif args.modelname in ['q2omask', 'q2osa']:
|
586 |
-
if args.coco_aug:
|
587 |
-
aux_target_hacks_list = [
|
588 |
-
label2compat(),
|
589 |
-
label_compat2onehot(),
|
590 |
-
box_label_catter(),
|
591 |
-
RandomSelectBoxlabels(num_classes=args.num_classes,
|
592 |
-
prob_first_item=args.prob_first_item,
|
593 |
-
prob_random_item=args.prob_random_item,
|
594 |
-
prob_last_item=args.prob_last_item,
|
595 |
-
prob_stop_sign=args.prob_stop_sign,
|
596 |
-
),
|
597 |
-
RandomDrop(p=0.2),
|
598 |
-
BboxPertuber(max_ratio=0.02, generate_samples=1000),
|
599 |
-
RandomCutout(factor=0.5)
|
600 |
-
]
|
601 |
-
else:
|
602 |
-
aux_target_hacks_list = [
|
603 |
-
label2compat(),
|
604 |
-
label_compat2onehot(),
|
605 |
-
box_label_catter(),
|
606 |
-
RandomSelectBoxlabels(num_classes=args.num_classes,
|
607 |
-
prob_first_item=args.prob_first_item,
|
608 |
-
prob_random_item=args.prob_random_item,
|
609 |
-
prob_last_item=args.prob_last_item,
|
610 |
-
prob_stop_sign=args.prob_stop_sign,
|
611 |
-
),
|
612 |
-
BboxPertuber(max_ratio=0.02, generate_samples=1000),
|
613 |
-
]
|
614 |
-
else:
|
615 |
-
aux_target_hacks_list = None
|
616 |
-
|
617 |
-
return aux_target_hacks_list
|
618 |
-
|
619 |
-
|
620 |
-
def build(image_set, args, datasetinfo):
|
621 |
-
img_folder = datasetinfo["root"]
|
622 |
-
ann_file = datasetinfo["anno"]
|
623 |
-
|
624 |
-
# copy to local path
|
625 |
-
if os.environ.get('DATA_COPY_SHILONG') == 'INFO':
|
626 |
-
preparing_dataset(dict(img_folder=img_folder, ann_file=ann_file), image_set, args)
|
627 |
-
|
628 |
-
try:
|
629 |
-
strong_aug = args.strong_aug
|
630 |
-
except:
|
631 |
-
strong_aug = False
|
632 |
-
print(img_folder, ann_file)
|
633 |
-
dataset = CocoDetection(img_folder, ann_file,
|
634 |
-
transforms=make_coco_transforms(image_set, fix_size=args.fix_size, strong_aug=strong_aug, args=args),
|
635 |
-
return_masks=args.masks,
|
636 |
-
aux_target_hacks=None,
|
637 |
-
)
|
638 |
-
return dataset
|
639 |
-
|
640 |
-
|
641 |
-
if __name__ == "__main__":
|
642 |
-
# Objects365 Val example
|
643 |
-
dataset_o365 = CocoDetection(
|
644 |
-
'/path/Objects365/train/',
|
645 |
-
"/path/Objects365/slannos/anno_preprocess_train_v2.json",
|
646 |
-
transforms=None,
|
647 |
-
return_masks=False,
|
648 |
-
)
|
649 |
-
print('len(dataset_o365):', len(dataset_o365))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/coco_eval.py
DELETED
@@ -1,266 +0,0 @@
|
|
1 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
-
"""
|
3 |
-
COCO evaluator that works in distributed mode.
|
4 |
-
|
5 |
-
Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
|
6 |
-
The difference is that there is less copy-pasting from pycocotools
|
7 |
-
in the end of the file, as python3 can suppress prints with contextlib
|
8 |
-
"""
|
9 |
-
import os
|
10 |
-
import contextlib
|
11 |
-
import copy
|
12 |
-
import numpy as np
|
13 |
-
import torch
|
14 |
-
|
15 |
-
from pycocotools.cocoeval import COCOeval
|
16 |
-
from pycocotools.coco import COCO
|
17 |
-
import pycocotools.mask as mask_util
|
18 |
-
|
19 |
-
from util.misc import all_gather
|
20 |
-
|
21 |
-
|
22 |
-
class CocoEvaluator(object):
|
23 |
-
def __init__(self, coco_gt, iou_types, useCats=True):
|
24 |
-
assert isinstance(iou_types, (list, tuple))
|
25 |
-
coco_gt = copy.deepcopy(coco_gt)
|
26 |
-
self.coco_gt = coco_gt
|
27 |
-
|
28 |
-
self.iou_types = iou_types
|
29 |
-
self.coco_eval = {}
|
30 |
-
for iou_type in iou_types:
|
31 |
-
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
|
32 |
-
self.coco_eval[iou_type].useCats = useCats
|
33 |
-
|
34 |
-
self.img_ids = []
|
35 |
-
self.eval_imgs = {k: [] for k in iou_types}
|
36 |
-
self.useCats = useCats
|
37 |
-
|
38 |
-
def update(self, predictions):
|
39 |
-
img_ids = list(np.unique(list(predictions.keys())))
|
40 |
-
self.img_ids.extend(img_ids)
|
41 |
-
|
42 |
-
for iou_type in self.iou_types:
|
43 |
-
results = self.prepare(predictions, iou_type)
|
44 |
-
|
45 |
-
# suppress pycocotools prints
|
46 |
-
with open(os.devnull, 'w') as devnull:
|
47 |
-
with contextlib.redirect_stdout(devnull):
|
48 |
-
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
|
49 |
-
coco_eval = self.coco_eval[iou_type]
|
50 |
-
|
51 |
-
coco_eval.cocoDt = coco_dt
|
52 |
-
coco_eval.params.imgIds = list(img_ids)
|
53 |
-
coco_eval.params.useCats = self.useCats
|
54 |
-
img_ids, eval_imgs = evaluate(coco_eval)
|
55 |
-
|
56 |
-
self.eval_imgs[iou_type].append(eval_imgs)
|
57 |
-
|
58 |
-
def synchronize_between_processes(self):
|
59 |
-
for iou_type in self.iou_types:
|
60 |
-
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
|
61 |
-
create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
|
62 |
-
|
63 |
-
def accumulate(self):
|
64 |
-
for coco_eval in self.coco_eval.values():
|
65 |
-
coco_eval.accumulate()
|
66 |
-
|
67 |
-
def summarize(self):
|
68 |
-
for iou_type, coco_eval in self.coco_eval.items():
|
69 |
-
print("IoU metric: {}".format(iou_type))
|
70 |
-
coco_eval.summarize()
|
71 |
-
|
72 |
-
def prepare(self, predictions, iou_type):
|
73 |
-
if iou_type == "bbox":
|
74 |
-
return self.prepare_for_coco_detection(predictions)
|
75 |
-
elif iou_type == "segm":
|
76 |
-
return self.prepare_for_coco_segmentation(predictions)
|
77 |
-
elif iou_type == "keypoints":
|
78 |
-
return self.prepare_for_coco_keypoint(predictions)
|
79 |
-
else:
|
80 |
-
raise ValueError("Unknown iou type {}".format(iou_type))
|
81 |
-
|
82 |
-
def prepare_for_coco_detection(self, predictions):
|
83 |
-
coco_results = []
|
84 |
-
for original_id, prediction in predictions.items():
|
85 |
-
if len(prediction) == 0:
|
86 |
-
continue
|
87 |
-
|
88 |
-
boxes = prediction["boxes"]
|
89 |
-
boxes = convert_to_xywh(boxes).tolist()
|
90 |
-
if not isinstance(prediction["scores"], list):
|
91 |
-
scores = prediction["scores"].tolist()
|
92 |
-
else:
|
93 |
-
scores = prediction["scores"]
|
94 |
-
if not isinstance(prediction["labels"], list):
|
95 |
-
labels = prediction["labels"].tolist()
|
96 |
-
else:
|
97 |
-
labels = prediction["labels"]
|
98 |
-
|
99 |
-
|
100 |
-
try:
|
101 |
-
coco_results.extend(
|
102 |
-
[
|
103 |
-
{
|
104 |
-
"image_id": original_id,
|
105 |
-
"category_id": labels[k],
|
106 |
-
"bbox": box,
|
107 |
-
"score": scores[k],
|
108 |
-
}
|
109 |
-
for k, box in enumerate(boxes)
|
110 |
-
]
|
111 |
-
)
|
112 |
-
except:
|
113 |
-
import ipdb; ipdb.set_trace()
|
114 |
-
return coco_results
|
115 |
-
|
116 |
-
def prepare_for_coco_segmentation(self, predictions):
|
117 |
-
coco_results = []
|
118 |
-
for original_id, prediction in predictions.items():
|
119 |
-
if len(prediction) == 0:
|
120 |
-
continue
|
121 |
-
|
122 |
-
scores = prediction["scores"]
|
123 |
-
labels = prediction["labels"]
|
124 |
-
masks = prediction["masks"]
|
125 |
-
|
126 |
-
masks = masks > 0.5
|
127 |
-
|
128 |
-
scores = prediction["scores"].tolist()
|
129 |
-
labels = prediction["labels"].tolist()
|
130 |
-
|
131 |
-
rles = [
|
132 |
-
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
|
133 |
-
for mask in masks
|
134 |
-
]
|
135 |
-
for rle in rles:
|
136 |
-
rle["counts"] = rle["counts"].decode("utf-8")
|
137 |
-
|
138 |
-
coco_results.extend(
|
139 |
-
[
|
140 |
-
{
|
141 |
-
"image_id": original_id,
|
142 |
-
"category_id": labels[k],
|
143 |
-
"segmentation": rle,
|
144 |
-
"score": scores[k],
|
145 |
-
}
|
146 |
-
for k, rle in enumerate(rles)
|
147 |
-
]
|
148 |
-
)
|
149 |
-
return coco_results
|
150 |
-
|
151 |
-
def prepare_for_coco_keypoint(self, predictions):
|
152 |
-
coco_results = []
|
153 |
-
for original_id, prediction in predictions.items():
|
154 |
-
if len(prediction) == 0:
|
155 |
-
continue
|
156 |
-
|
157 |
-
boxes = prediction["boxes"]
|
158 |
-
boxes = convert_to_xywh(boxes).tolist()
|
159 |
-
scores = prediction["scores"].tolist()
|
160 |
-
labels = prediction["labels"].tolist()
|
161 |
-
keypoints = prediction["keypoints"]
|
162 |
-
keypoints = keypoints.flatten(start_dim=1).tolist()
|
163 |
-
|
164 |
-
coco_results.extend(
|
165 |
-
[
|
166 |
-
{
|
167 |
-
"image_id": original_id,
|
168 |
-
"category_id": labels[k],
|
169 |
-
'keypoints': keypoint,
|
170 |
-
"score": scores[k],
|
171 |
-
}
|
172 |
-
for k, keypoint in enumerate(keypoints)
|
173 |
-
]
|
174 |
-
)
|
175 |
-
return coco_results
|
176 |
-
|
177 |
-
|
178 |
-
def convert_to_xywh(boxes):
|
179 |
-
xmin, ymin, xmax, ymax = boxes.unbind(1)
|
180 |
-
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
|
181 |
-
|
182 |
-
|
183 |
-
def merge(img_ids, eval_imgs):
|
184 |
-
all_img_ids = all_gather(img_ids)
|
185 |
-
all_eval_imgs = all_gather(eval_imgs)
|
186 |
-
|
187 |
-
merged_img_ids = []
|
188 |
-
for p in all_img_ids:
|
189 |
-
merged_img_ids.extend(p)
|
190 |
-
|
191 |
-
merged_eval_imgs = []
|
192 |
-
for p in all_eval_imgs:
|
193 |
-
merged_eval_imgs.append(p)
|
194 |
-
|
195 |
-
merged_img_ids = np.array(merged_img_ids)
|
196 |
-
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
|
197 |
-
|
198 |
-
# keep only unique (and in sorted order) images
|
199 |
-
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
|
200 |
-
merged_eval_imgs = merged_eval_imgs[..., idx]
|
201 |
-
|
202 |
-
return merged_img_ids, merged_eval_imgs
|
203 |
-
|
204 |
-
|
205 |
-
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
|
206 |
-
img_ids, eval_imgs = merge(img_ids, eval_imgs)
|
207 |
-
img_ids = list(img_ids)
|
208 |
-
eval_imgs = list(eval_imgs.flatten())
|
209 |
-
|
210 |
-
coco_eval.evalImgs = eval_imgs
|
211 |
-
coco_eval.params.imgIds = img_ids
|
212 |
-
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
|
213 |
-
|
214 |
-
|
215 |
-
#################################################################
|
216 |
-
# From pycocotools, just removed the prints and fixed
|
217 |
-
# a Python3 bug about unicode not defined
|
218 |
-
#################################################################
|
219 |
-
|
220 |
-
|
221 |
-
def evaluate(self):
|
222 |
-
'''
|
223 |
-
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
|
224 |
-
:return: None
|
225 |
-
'''
|
226 |
-
p = self.params
|
227 |
-
# add backward compatibility if useSegm is specified in params
|
228 |
-
if p.useSegm is not None:
|
229 |
-
p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
|
230 |
-
print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
|
231 |
-
p.imgIds = list(np.unique(p.imgIds))
|
232 |
-
if p.useCats:
|
233 |
-
p.catIds = list(np.unique(p.catIds))
|
234 |
-
p.maxDets = sorted(p.maxDets)
|
235 |
-
self.params = p
|
236 |
-
|
237 |
-
self._prepare()
|
238 |
-
# loop through images, area range, max detection number
|
239 |
-
catIds = p.catIds if p.useCats else [-1]
|
240 |
-
|
241 |
-
if p.iouType == 'segm' or p.iouType == 'bbox':
|
242 |
-
computeIoU = self.computeIoU
|
243 |
-
elif p.iouType == 'keypoints':
|
244 |
-
computeIoU = self.computeOks
|
245 |
-
self.ious = {
|
246 |
-
(imgId, catId): computeIoU(imgId, catId)
|
247 |
-
for imgId in p.imgIds
|
248 |
-
for catId in catIds}
|
249 |
-
|
250 |
-
evaluateImg = self.evaluateImg
|
251 |
-
maxDet = p.maxDets[-1]
|
252 |
-
evalImgs = [
|
253 |
-
evaluateImg(imgId, catId, areaRng, maxDet)
|
254 |
-
for catId in catIds
|
255 |
-
for areaRng in p.areaRng
|
256 |
-
for imgId in p.imgIds
|
257 |
-
]
|
258 |
-
# this is NOT in the pycocotools code, but could be done outside
|
259 |
-
evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
|
260 |
-
self._paramsEval = copy.deepcopy(self.params)
|
261 |
-
|
262 |
-
return p.imgIds, evalImgs
|
263 |
-
|
264 |
-
#################################################################
|
265 |
-
# end of straight copy from pycocotools, just removing the prints
|
266 |
-
#################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/coco_panoptic.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
-
import json
|
3 |
-
from pathlib import Path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
from panopticapi.utils import rgb2id
|
10 |
-
from util.box_ops import masks_to_boxes
|
11 |
-
|
12 |
-
from .coco import make_coco_transforms
|
13 |
-
|
14 |
-
|
15 |
-
class CocoPanoptic:
|
16 |
-
def __init__(self, img_folder, ann_folder, ann_file, transforms=None, return_masks=True):
|
17 |
-
with open(ann_file, 'r') as f:
|
18 |
-
self.coco = json.load(f)
|
19 |
-
|
20 |
-
# sort 'images' field so that they are aligned with 'annotations'
|
21 |
-
# i.e., in alphabetical order
|
22 |
-
self.coco['images'] = sorted(self.coco['images'], key=lambda x: x['id'])
|
23 |
-
# sanity check
|
24 |
-
if "annotations" in self.coco:
|
25 |
-
for img, ann in zip(self.coco['images'], self.coco['annotations']):
|
26 |
-
assert img['file_name'][:-4] == ann['file_name'][:-4]
|
27 |
-
|
28 |
-
self.img_folder = img_folder
|
29 |
-
self.ann_folder = ann_folder
|
30 |
-
self.ann_file = ann_file
|
31 |
-
self.transforms = transforms
|
32 |
-
self.return_masks = return_masks
|
33 |
-
|
34 |
-
def __getitem__(self, idx):
|
35 |
-
ann_info = self.coco['annotations'][idx] if "annotations" in self.coco else self.coco['images'][idx]
|
36 |
-
img_path = Path(self.img_folder) / ann_info['file_name'].replace('.png', '.jpg')
|
37 |
-
ann_path = Path(self.ann_folder) / ann_info['file_name']
|
38 |
-
|
39 |
-
img = Image.open(img_path).convert('RGB')
|
40 |
-
w, h = img.size
|
41 |
-
if "segments_info" in ann_info:
|
42 |
-
masks = np.asarray(Image.open(ann_path), dtype=np.uint32)
|
43 |
-
masks = rgb2id(masks)
|
44 |
-
|
45 |
-
ids = np.array([ann['id'] for ann in ann_info['segments_info']])
|
46 |
-
masks = masks == ids[:, None, None]
|
47 |
-
|
48 |
-
masks = torch.as_tensor(masks, dtype=torch.uint8)
|
49 |
-
labels = torch.tensor([ann['category_id'] for ann in ann_info['segments_info']], dtype=torch.int64)
|
50 |
-
|
51 |
-
target = {}
|
52 |
-
target['image_id'] = torch.tensor([ann_info['image_id'] if "image_id" in ann_info else ann_info["id"]])
|
53 |
-
if self.return_masks:
|
54 |
-
target['masks'] = masks
|
55 |
-
target['labels'] = labels
|
56 |
-
|
57 |
-
target["boxes"] = masks_to_boxes(masks)
|
58 |
-
|
59 |
-
target['size'] = torch.as_tensor([int(h), int(w)])
|
60 |
-
target['orig_size'] = torch.as_tensor([int(h), int(w)])
|
61 |
-
if "segments_info" in ann_info:
|
62 |
-
for name in ['iscrowd', 'area']:
|
63 |
-
target[name] = torch.tensor([ann[name] for ann in ann_info['segments_info']])
|
64 |
-
|
65 |
-
if self.transforms is not None:
|
66 |
-
img, target = self.transforms(img, target)
|
67 |
-
|
68 |
-
return img, target
|
69 |
-
|
70 |
-
def __len__(self):
|
71 |
-
return len(self.coco['images'])
|
72 |
-
|
73 |
-
def get_height_and_width(self, idx):
|
74 |
-
img_info = self.coco['images'][idx]
|
75 |
-
height = img_info['height']
|
76 |
-
width = img_info['width']
|
77 |
-
return height, width
|
78 |
-
|
79 |
-
|
80 |
-
def build(image_set, args):
|
81 |
-
img_folder_root = Path(args.coco_path)
|
82 |
-
ann_folder_root = Path(args.coco_panoptic_path)
|
83 |
-
assert img_folder_root.exists(), f'provided COCO path {img_folder_root} does not exist'
|
84 |
-
assert ann_folder_root.exists(), f'provided COCO path {ann_folder_root} does not exist'
|
85 |
-
mode = 'panoptic'
|
86 |
-
PATHS = {
|
87 |
-
"train": ("train2017", Path("annotations") / f'{mode}_train2017.json'),
|
88 |
-
"val": ("val2017", Path("annotations") / f'{mode}_val2017.json'),
|
89 |
-
}
|
90 |
-
|
91 |
-
img_folder, ann_file = PATHS[image_set]
|
92 |
-
img_folder_path = img_folder_root / img_folder
|
93 |
-
ann_folder = ann_folder_root / f'{mode}_{img_folder}'
|
94 |
-
ann_file = ann_folder_root / ann_file
|
95 |
-
|
96 |
-
dataset = CocoPanoptic(img_folder_path, ann_folder, ann_file,
|
97 |
-
transforms=make_coco_transforms(image_set), return_masks=args.masks)
|
98 |
-
|
99 |
-
return dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/cocogrounding_eval.py
DELETED
@@ -1,271 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# Grounding DINO. Midified by Shilong Liu.
|
3 |
-
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
-
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
-
# ------------------------------------------------------------------------
|
7 |
-
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
|
8 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
9 |
-
"""
|
10 |
-
COCO evaluator that works in distributed mode.
|
11 |
-
|
12 |
-
Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
|
13 |
-
The difference is that there is less copy-pasting from pycocotools
|
14 |
-
in the end of the file, as python3 can suppress prints with contextlib
|
15 |
-
"""
|
16 |
-
import contextlib
|
17 |
-
import copy
|
18 |
-
import os
|
19 |
-
|
20 |
-
import numpy as np
|
21 |
-
import pycocotools.mask as mask_util
|
22 |
-
import torch
|
23 |
-
from pycocotools.coco import COCO
|
24 |
-
from pycocotools.cocoeval import COCOeval
|
25 |
-
|
26 |
-
from groundingdino.util.misc import all_gather
|
27 |
-
|
28 |
-
|
29 |
-
class CocoGroundingEvaluator(object):
|
30 |
-
def __init__(self, coco_gt, iou_types, useCats=True):
|
31 |
-
assert isinstance(iou_types, (list, tuple))
|
32 |
-
coco_gt = copy.deepcopy(coco_gt)
|
33 |
-
self.coco_gt = coco_gt
|
34 |
-
|
35 |
-
self.iou_types = iou_types
|
36 |
-
self.coco_eval = {}
|
37 |
-
for iou_type in iou_types:
|
38 |
-
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
|
39 |
-
self.coco_eval[iou_type].useCats = useCats
|
40 |
-
|
41 |
-
self.img_ids = []
|
42 |
-
self.eval_imgs = {k: [] for k in iou_types}
|
43 |
-
self.useCats = useCats
|
44 |
-
|
45 |
-
def update(self, predictions):
|
46 |
-
img_ids = list(np.unique(list(predictions.keys())))
|
47 |
-
self.img_ids.extend(img_ids)
|
48 |
-
# import pdb;pdb.set_trace()
|
49 |
-
for iou_type in self.iou_types:
|
50 |
-
results = self.prepare(predictions, iou_type)
|
51 |
-
|
52 |
-
# suppress pycocotools prints
|
53 |
-
with open(os.devnull, "w") as devnull:
|
54 |
-
with contextlib.redirect_stdout(devnull):
|
55 |
-
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
|
56 |
-
|
57 |
-
coco_eval = self.coco_eval[iou_type]
|
58 |
-
|
59 |
-
coco_eval.cocoDt = coco_dt
|
60 |
-
coco_eval.params.imgIds = list(img_ids)
|
61 |
-
coco_eval.params.useCats = self.useCats
|
62 |
-
img_ids, eval_imgs = evaluate(coco_eval)
|
63 |
-
|
64 |
-
self.eval_imgs[iou_type].append(eval_imgs)
|
65 |
-
|
66 |
-
def synchronize_between_processes(self):
|
67 |
-
for iou_type in self.iou_types:
|
68 |
-
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
|
69 |
-
create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
|
70 |
-
|
71 |
-
def accumulate(self):
|
72 |
-
for coco_eval in self.coco_eval.values():
|
73 |
-
coco_eval.accumulate()
|
74 |
-
|
75 |
-
def summarize(self):
|
76 |
-
for iou_type, coco_eval in self.coco_eval.items():
|
77 |
-
print("IoU metric: {}".format(iou_type))
|
78 |
-
coco_eval.summarize()
|
79 |
-
|
80 |
-
def prepare(self, predictions, iou_type):
|
81 |
-
if iou_type == "bbox":
|
82 |
-
return self.prepare_for_coco_detection(predictions)
|
83 |
-
elif iou_type == "segm":
|
84 |
-
return self.prepare_for_coco_segmentation(predictions)
|
85 |
-
elif iou_type == "keypoints":
|
86 |
-
return self.prepare_for_coco_keypoint(predictions)
|
87 |
-
else:
|
88 |
-
raise ValueError("Unknown iou type {}".format(iou_type))
|
89 |
-
|
90 |
-
def prepare_for_coco_detection(self, predictions):
|
91 |
-
coco_results = []
|
92 |
-
for original_id, prediction in predictions.items():
|
93 |
-
if len(prediction) == 0:
|
94 |
-
continue
|
95 |
-
|
96 |
-
boxes = prediction["boxes"]
|
97 |
-
boxes = convert_to_xywh(boxes).tolist()
|
98 |
-
scores = prediction["scores"].tolist()
|
99 |
-
labels = prediction["labels"].tolist()
|
100 |
-
|
101 |
-
coco_results.extend(
|
102 |
-
[
|
103 |
-
{
|
104 |
-
"image_id": original_id,
|
105 |
-
"category_id": labels[k],
|
106 |
-
"bbox": box,
|
107 |
-
"score": scores[k],
|
108 |
-
}
|
109 |
-
for k, box in enumerate(boxes)
|
110 |
-
]
|
111 |
-
)
|
112 |
-
return coco_results
|
113 |
-
|
114 |
-
def prepare_for_coco_segmentation(self, predictions):
|
115 |
-
coco_results = []
|
116 |
-
for original_id, prediction in predictions.items():
|
117 |
-
if len(prediction) == 0:
|
118 |
-
continue
|
119 |
-
|
120 |
-
scores = prediction["scores"]
|
121 |
-
labels = prediction["labels"]
|
122 |
-
masks = prediction["masks"]
|
123 |
-
|
124 |
-
masks = masks > 0.5
|
125 |
-
|
126 |
-
scores = prediction["scores"].tolist()
|
127 |
-
labels = prediction["labels"].tolist()
|
128 |
-
|
129 |
-
rles = [
|
130 |
-
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
|
131 |
-
for mask in masks
|
132 |
-
]
|
133 |
-
for rle in rles:
|
134 |
-
rle["counts"] = rle["counts"].decode("utf-8")
|
135 |
-
|
136 |
-
coco_results.extend(
|
137 |
-
[
|
138 |
-
{
|
139 |
-
"image_id": original_id,
|
140 |
-
"category_id": labels[k],
|
141 |
-
"segmentation": rle,
|
142 |
-
"score": scores[k],
|
143 |
-
}
|
144 |
-
for k, rle in enumerate(rles)
|
145 |
-
]
|
146 |
-
)
|
147 |
-
return coco_results
|
148 |
-
|
149 |
-
def prepare_for_coco_keypoint(self, predictions):
|
150 |
-
coco_results = []
|
151 |
-
for original_id, prediction in predictions.items():
|
152 |
-
if len(prediction) == 0:
|
153 |
-
continue
|
154 |
-
|
155 |
-
boxes = prediction["boxes"]
|
156 |
-
boxes = convert_to_xywh(boxes).tolist()
|
157 |
-
scores = prediction["scores"].tolist()
|
158 |
-
labels = prediction["labels"].tolist()
|
159 |
-
keypoints = prediction["keypoints"]
|
160 |
-
keypoints = keypoints.flatten(start_dim=1).tolist()
|
161 |
-
|
162 |
-
coco_results.extend(
|
163 |
-
[
|
164 |
-
{
|
165 |
-
"image_id": original_id,
|
166 |
-
"category_id": labels[k],
|
167 |
-
"keypoints": keypoint,
|
168 |
-
"score": scores[k],
|
169 |
-
}
|
170 |
-
for k, keypoint in enumerate(keypoints)
|
171 |
-
]
|
172 |
-
)
|
173 |
-
return coco_results
|
174 |
-
|
175 |
-
|
176 |
-
def convert_to_xywh(boxes):
|
177 |
-
xmin, ymin, xmax, ymax = boxes.unbind(1)
|
178 |
-
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
|
179 |
-
|
180 |
-
|
181 |
-
def merge(img_ids, eval_imgs):
|
182 |
-
all_img_ids = all_gather(img_ids)
|
183 |
-
all_eval_imgs = all_gather(eval_imgs)
|
184 |
-
|
185 |
-
merged_img_ids = []
|
186 |
-
for p in all_img_ids:
|
187 |
-
merged_img_ids.extend(p)
|
188 |
-
|
189 |
-
merged_eval_imgs = []
|
190 |
-
for p in all_eval_imgs:
|
191 |
-
merged_eval_imgs.append(p)
|
192 |
-
|
193 |
-
merged_img_ids = np.array(merged_img_ids)
|
194 |
-
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
|
195 |
-
|
196 |
-
# keep only unique (and in sorted order) images
|
197 |
-
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
|
198 |
-
merged_eval_imgs = merged_eval_imgs[..., idx]
|
199 |
-
|
200 |
-
return merged_img_ids, merged_eval_imgs
|
201 |
-
|
202 |
-
|
203 |
-
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
|
204 |
-
img_ids, eval_imgs = merge(img_ids, eval_imgs)
|
205 |
-
img_ids = list(img_ids)
|
206 |
-
eval_imgs = list(eval_imgs.flatten())
|
207 |
-
|
208 |
-
coco_eval.evalImgs = eval_imgs
|
209 |
-
coco_eval.params.imgIds = img_ids
|
210 |
-
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
|
211 |
-
|
212 |
-
|
213 |
-
#################################################################
|
214 |
-
# From pycocotools, just removed the prints and fixed
|
215 |
-
# a Python3 bug about unicode not defined
|
216 |
-
#################################################################
|
217 |
-
|
218 |
-
|
219 |
-
def evaluate(self):
|
220 |
-
"""
|
221 |
-
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
|
222 |
-
:return: None
|
223 |
-
"""
|
224 |
-
# tic = time.time()
|
225 |
-
# print('Running per image evaluation...')
|
226 |
-
|
227 |
-
# import pdb;pdb.set_trace()
|
228 |
-
p = self.params
|
229 |
-
# add backward compatibility if useSegm is specified in params
|
230 |
-
if p.useSegm is not None:
|
231 |
-
p.iouType = "segm" if p.useSegm == 1 else "bbox"
|
232 |
-
print("useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType))
|
233 |
-
# print('Evaluate annotation type *{}*'.format(p.iouType))
|
234 |
-
p.imgIds = list(np.unique(p.imgIds))
|
235 |
-
if p.useCats:
|
236 |
-
p.catIds = list(np.unique(p.catIds))
|
237 |
-
p.maxDets = sorted(p.maxDets)
|
238 |
-
self.params = p
|
239 |
-
|
240 |
-
self._prepare()
|
241 |
-
# loop through images, area range, max detection number
|
242 |
-
catIds = p.catIds if p.useCats else [-1]
|
243 |
-
|
244 |
-
if p.iouType == "segm" or p.iouType == "bbox":
|
245 |
-
computeIoU = self.computeIoU
|
246 |
-
elif p.iouType == "keypoints":
|
247 |
-
computeIoU = self.computeOks
|
248 |
-
self.ious = {
|
249 |
-
(imgId, catId): computeIoU(imgId, catId)
|
250 |
-
for imgId in p.imgIds
|
251 |
-
for catId in catIds}
|
252 |
-
|
253 |
-
evaluateImg = self.evaluateImg
|
254 |
-
maxDet = p.maxDets[-1]
|
255 |
-
evalImgs = [
|
256 |
-
evaluateImg(imgId, catId, areaRng, maxDet)
|
257 |
-
for catId in catIds
|
258 |
-
for areaRng in p.areaRng
|
259 |
-
for imgId in p.imgIds
|
260 |
-
]
|
261 |
-
# this is NOT in the pycocotools code, but could be done outside
|
262 |
-
evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
|
263 |
-
self._paramsEval = copy.deepcopy(self.params)
|
264 |
-
# toc = time.time()
|
265 |
-
# print('DONE (t={:0.2f}s).'.format(toc-tic))
|
266 |
-
return p.imgIds, evalImgs
|
267 |
-
|
268 |
-
|
269 |
-
#################################################################
|
270 |
-
# end of straight copy from pycocotools, just removing the prints
|
271 |
-
#################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/data_util.py
DELETED
@@ -1,170 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import os.path as osp
|
3 |
-
import shutil
|
4 |
-
import time
|
5 |
-
import datetime
|
6 |
-
|
7 |
-
import torch
|
8 |
-
|
9 |
-
from util.slconfig import SLConfig
|
10 |
-
|
11 |
-
class Error(OSError):
|
12 |
-
pass
|
13 |
-
|
14 |
-
def slcopytree(src, dst, symlinks=False, ignore=None, copy_function=shutil.copyfile,
|
15 |
-
ignore_dangling_symlinks=False):
|
16 |
-
"""
|
17 |
-
modified from shutil.copytree without copystat.
|
18 |
-
|
19 |
-
Recursively copy a directory tree.
|
20 |
-
|
21 |
-
The destination directory must not already exist.
|
22 |
-
If exception(s) occur, an Error is raised with a list of reasons.
|
23 |
-
|
24 |
-
If the optional symlinks flag is true, symbolic links in the
|
25 |
-
source tree result in symbolic links in the destination tree; if
|
26 |
-
it is false, the contents of the files pointed to by symbolic
|
27 |
-
links are copied. If the file pointed by the symlink doesn't
|
28 |
-
exist, an exception will be added in the list of errors raised in
|
29 |
-
an Error exception at the end of the copy process.
|
30 |
-
|
31 |
-
You can set the optional ignore_dangling_symlinks flag to true if you
|
32 |
-
want to silence this exception. Notice that this has no effect on
|
33 |
-
platforms that don't support os.symlink.
|
34 |
-
|
35 |
-
The optional ignore argument is a callable. If given, it
|
36 |
-
is called with the `src` parameter, which is the directory
|
37 |
-
being visited by copytree(), and `names` which is the list of
|
38 |
-
`src` contents, as returned by os.listdir():
|
39 |
-
|
40 |
-
callable(src, names) -> ignored_names
|
41 |
-
|
42 |
-
Since copytree() is called recursively, the callable will be
|
43 |
-
called once for each directory that is copied. It returns a
|
44 |
-
list of names relative to the `src` directory that should
|
45 |
-
not be copied.
|
46 |
-
|
47 |
-
The optional copy_function argument is a callable that will be used
|
48 |
-
to copy each file. It will be called with the source path and the
|
49 |
-
destination path as arguments. By default, copy2() is used, but any
|
50 |
-
function that supports the same signature (like copy()) can be used.
|
51 |
-
|
52 |
-
"""
|
53 |
-
errors = []
|
54 |
-
if os.path.isdir(src):
|
55 |
-
names = os.listdir(src)
|
56 |
-
if ignore is not None:
|
57 |
-
ignored_names = ignore(src, names)
|
58 |
-
else:
|
59 |
-
ignored_names = set()
|
60 |
-
|
61 |
-
os.makedirs(dst)
|
62 |
-
for name in names:
|
63 |
-
if name in ignored_names:
|
64 |
-
continue
|
65 |
-
srcname = os.path.join(src, name)
|
66 |
-
dstname = os.path.join(dst, name)
|
67 |
-
try:
|
68 |
-
if os.path.islink(srcname):
|
69 |
-
linkto = os.readlink(srcname)
|
70 |
-
if symlinks:
|
71 |
-
# We can't just leave it to `copy_function` because legacy
|
72 |
-
# code with a custom `copy_function` may rely on copytree
|
73 |
-
# doing the right thing.
|
74 |
-
os.symlink(linkto, dstname)
|
75 |
-
else:
|
76 |
-
# ignore dangling symlink if the flag is on
|
77 |
-
if not os.path.exists(linkto) and ignore_dangling_symlinks:
|
78 |
-
continue
|
79 |
-
# otherwise let the copy occurs. copy2 will raise an error
|
80 |
-
if os.path.isdir(srcname):
|
81 |
-
slcopytree(srcname, dstname, symlinks, ignore,
|
82 |
-
copy_function)
|
83 |
-
else:
|
84 |
-
copy_function(srcname, dstname)
|
85 |
-
elif os.path.isdir(srcname):
|
86 |
-
slcopytree(srcname, dstname, symlinks, ignore, copy_function)
|
87 |
-
else:
|
88 |
-
# Will raise a SpecialFileError for unsupported file types
|
89 |
-
copy_function(srcname, dstname)
|
90 |
-
# catch the Error from the recursive copytree so that we can
|
91 |
-
# continue with other files
|
92 |
-
except Error as err:
|
93 |
-
errors.extend(err.args[0])
|
94 |
-
except OSError as why:
|
95 |
-
errors.append((srcname, dstname, str(why)))
|
96 |
-
else:
|
97 |
-
copy_function(src, dst)
|
98 |
-
|
99 |
-
if errors:
|
100 |
-
raise Error(errors)
|
101 |
-
return dst
|
102 |
-
|
103 |
-
def check_and_copy(src_path, tgt_path):
|
104 |
-
if os.path.exists(tgt_path):
|
105 |
-
return None
|
106 |
-
|
107 |
-
return slcopytree(src_path, tgt_path)
|
108 |
-
|
109 |
-
|
110 |
-
def remove(srcpath):
|
111 |
-
if os.path.isdir(srcpath):
|
112 |
-
return shutil.rmtree(srcpath)
|
113 |
-
else:
|
114 |
-
return os.remove(srcpath)
|
115 |
-
|
116 |
-
|
117 |
-
def preparing_dataset(pathdict, image_set, args):
|
118 |
-
start_time = time.time()
|
119 |
-
dataset_file = args.dataset_file
|
120 |
-
data_static_info = SLConfig.fromfile('util/static_data_path.py')
|
121 |
-
static_dict = data_static_info[dataset_file][image_set]
|
122 |
-
|
123 |
-
copyfilelist = []
|
124 |
-
for k,tgt_v in pathdict.items():
|
125 |
-
if os.path.exists(tgt_v):
|
126 |
-
if args.local_rank == 0:
|
127 |
-
print("path <{}> exist. remove it!".format(tgt_v))
|
128 |
-
remove(tgt_v)
|
129 |
-
# continue
|
130 |
-
|
131 |
-
if args.local_rank == 0:
|
132 |
-
src_v = static_dict[k]
|
133 |
-
assert isinstance(src_v, str)
|
134 |
-
if src_v.endswith('.zip'):
|
135 |
-
# copy
|
136 |
-
cp_tgt_dir = os.path.dirname(tgt_v)
|
137 |
-
filename = os.path.basename(src_v)
|
138 |
-
cp_tgt_path = os.path.join(cp_tgt_dir, filename)
|
139 |
-
print('Copy from <{}> to <{}>.'.format(src_v, cp_tgt_path))
|
140 |
-
os.makedirs(cp_tgt_dir, exist_ok=True)
|
141 |
-
check_and_copy(src_v, cp_tgt_path)
|
142 |
-
|
143 |
-
# unzip
|
144 |
-
import zipfile
|
145 |
-
print("Starting unzip <{}>".format(cp_tgt_path))
|
146 |
-
with zipfile.ZipFile(cp_tgt_path, 'r') as zip_ref:
|
147 |
-
zip_ref.extractall(os.path.dirname(cp_tgt_path))
|
148 |
-
|
149 |
-
copyfilelist.append(cp_tgt_path)
|
150 |
-
copyfilelist.append(tgt_v)
|
151 |
-
else:
|
152 |
-
print('Copy from <{}> to <{}>.'.format(src_v, tgt_v))
|
153 |
-
os.makedirs(os.path.dirname(tgt_v), exist_ok=True)
|
154 |
-
check_and_copy(src_v, tgt_v)
|
155 |
-
copyfilelist.append(tgt_v)
|
156 |
-
|
157 |
-
if len(copyfilelist) == 0:
|
158 |
-
copyfilelist = None
|
159 |
-
args.copyfilelist = copyfilelist
|
160 |
-
|
161 |
-
if args.distributed:
|
162 |
-
torch.distributed.barrier()
|
163 |
-
total_time = time.time() - start_time
|
164 |
-
if copyfilelist:
|
165 |
-
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
166 |
-
print('Data copy time {}'.format(total_time_str))
|
167 |
-
return copyfilelist
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/dataset.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
from __future__ import print_function
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torchvision.datasets as datasets
|
5 |
-
from torch.utils.data import Dataset
|
6 |
-
from PIL import Image
|
7 |
-
from .tsv_io import TSVFile
|
8 |
-
import numpy as np
|
9 |
-
import base64
|
10 |
-
import io
|
11 |
-
|
12 |
-
|
13 |
-
class TSVDataset(Dataset):
|
14 |
-
""" TSV dataset for ImageNet 1K training
|
15 |
-
"""
|
16 |
-
def __init__(self, tsv_file, transform=None, target_transform=None):
|
17 |
-
self.tsv = TSVFile(tsv_file)
|
18 |
-
self.transform = transform
|
19 |
-
self.target_transform = target_transform
|
20 |
-
|
21 |
-
def __getitem__(self, index):
|
22 |
-
"""
|
23 |
-
Args:
|
24 |
-
index (int): Index
|
25 |
-
Returns:
|
26 |
-
tuple: (image, target) where target is class_index of the target class.
|
27 |
-
"""
|
28 |
-
row = self.tsv.seek(index)
|
29 |
-
image_data = base64.b64decode(row[-1])
|
30 |
-
image = Image.open(io.BytesIO(image_data))
|
31 |
-
image = image.convert('RGB')
|
32 |
-
target = int(row[1])
|
33 |
-
|
34 |
-
if self.transform is not None:
|
35 |
-
img = self.transform(image)
|
36 |
-
else:
|
37 |
-
img = image
|
38 |
-
if self.target_transform is not None:
|
39 |
-
target = self.target_transform(target)
|
40 |
-
|
41 |
-
return img, target
|
42 |
-
|
43 |
-
def __len__(self):
|
44 |
-
return self.tsv.num_rows()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/odvg.py
DELETED
@@ -1,258 +0,0 @@
|
|
1 |
-
from torchvision.datasets.vision import VisionDataset
|
2 |
-
import os.path
|
3 |
-
from typing import Callable, Optional
|
4 |
-
import json
|
5 |
-
from PIL import Image
|
6 |
-
import torch
|
7 |
-
import random
|
8 |
-
import os, sys
|
9 |
-
sys.path.append(os.path.dirname(sys.path[0]))
|
10 |
-
|
11 |
-
import datasets.transforms as T
|
12 |
-
|
13 |
-
class ODVGDataset(VisionDataset):
|
14 |
-
"""
|
15 |
-
Args:
|
16 |
-
root (string): Root directory where images are downloaded to.
|
17 |
-
anno (string): Path to json annotation file.
|
18 |
-
label_map_anno (string): Path to json label mapping file. Only for Object Detection
|
19 |
-
transform (callable, optional): A function/transform that takes in an PIL image
|
20 |
-
and returns a transformed version. E.g, ``transforms.PILToTensor``
|
21 |
-
target_transform (callable, optional): A function/transform that takes in the
|
22 |
-
target and transforms it.
|
23 |
-
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
24 |
-
and returns a transformed version.
|
25 |
-
"""
|
26 |
-
|
27 |
-
def __init__(
|
28 |
-
self,
|
29 |
-
root: str,
|
30 |
-
anno: str,
|
31 |
-
label_map_anno: str = None,
|
32 |
-
max_labels: int = 80,
|
33 |
-
transform: Optional[Callable] = None,
|
34 |
-
target_transform: Optional[Callable] = None,
|
35 |
-
transforms: Optional[Callable] = None,
|
36 |
-
) -> None:
|
37 |
-
super().__init__(root, transforms, transform, target_transform)
|
38 |
-
self.root = root
|
39 |
-
self.dataset_mode = "OD" if label_map_anno else "VG"
|
40 |
-
self.max_labels = max_labels
|
41 |
-
if self.dataset_mode == "OD":
|
42 |
-
self.load_label_map(label_map_anno)
|
43 |
-
self._load_metas(anno)
|
44 |
-
self.get_dataset_info()
|
45 |
-
|
46 |
-
def load_label_map(self, label_map_anno):
|
47 |
-
with open(label_map_anno, 'r') as file:
|
48 |
-
self.label_map = json.load(file)
|
49 |
-
self.label_index = set(self.label_map.keys())
|
50 |
-
|
51 |
-
def _load_metas(self, anno):
|
52 |
-
with open(anno, 'r') as f:
|
53 |
-
self.metas = json.load(f)
|
54 |
-
|
55 |
-
|
56 |
-
def get_dataset_info(self):
|
57 |
-
print(f" == total images: {len(self)}")
|
58 |
-
if self.dataset_mode == "OD":
|
59 |
-
print(f" == total labels: {len(self.label_map)}")
|
60 |
-
|
61 |
-
def __getitem__(self, index: int):
|
62 |
-
meta = self.metas[index]
|
63 |
-
rel_path = meta["filename"]
|
64 |
-
abs_path = os.path.join(self.root, rel_path)
|
65 |
-
if not os.path.exists(abs_path):
|
66 |
-
raise FileNotFoundError(f"{abs_path} not found.")
|
67 |
-
image = Image.open(abs_path).convert('RGB')
|
68 |
-
w, h = image.size
|
69 |
-
if self.dataset_mode == "OD":
|
70 |
-
anno = meta["detection"]
|
71 |
-
instances = [obj for obj in anno["instances"]]
|
72 |
-
boxes = [obj["bbox"] for obj in instances]
|
73 |
-
# generate vg_labels
|
74 |
-
# pos bbox labels
|
75 |
-
ori_classes = [str(obj["label"]) for obj in instances]
|
76 |
-
pos_labels = set(ori_classes)
|
77 |
-
# neg bbox labels
|
78 |
-
neg_labels = self.label_index.difference(pos_labels)
|
79 |
-
|
80 |
-
vg_labels = list(pos_labels)
|
81 |
-
num_to_add = min(len(neg_labels), self.max_labels-len(pos_labels))
|
82 |
-
if num_to_add > 0:
|
83 |
-
vg_labels.extend(random.sample(neg_labels, num_to_add))
|
84 |
-
|
85 |
-
# shuffle
|
86 |
-
for i in range(len(vg_labels)-1, 0, -1):
|
87 |
-
j = random.randint(0, i)
|
88 |
-
vg_labels[i], vg_labels[j] = vg_labels[j], vg_labels[i]
|
89 |
-
|
90 |
-
caption_list = [self.label_map[lb] for lb in vg_labels]
|
91 |
-
caption_dict = {item:index for index, item in enumerate(caption_list)}
|
92 |
-
|
93 |
-
caption = ' . '.join(caption_list) + ' .'
|
94 |
-
classes = [caption_dict[self.label_map[str(obj["label"])]] for obj in instances]
|
95 |
-
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
|
96 |
-
classes = torch.tensor(classes, dtype=torch.int64)
|
97 |
-
elif self.dataset_mode == "VG":
|
98 |
-
anno = meta["Grounding"]
|
99 |
-
instances = [obj for obj in anno["regions"]]
|
100 |
-
boxes = [obj["bbox"] for obj in instances]
|
101 |
-
caption_list = [obj["phrase"] for obj in instances]
|
102 |
-
c = list(zip(boxes, caption_list))
|
103 |
-
random.shuffle(c)
|
104 |
-
boxes[:], caption_list[:] = zip(*c)
|
105 |
-
uni_caption_list = list(set(caption_list))
|
106 |
-
label_map = {}
|
107 |
-
for idx in range(len(uni_caption_list)):
|
108 |
-
label_map[uni_caption_list[idx]] = idx
|
109 |
-
classes = [label_map[cap] for cap in caption_list]
|
110 |
-
caption = ' . '.join(uni_caption_list) + ' .'
|
111 |
-
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
|
112 |
-
classes = torch.tensor(classes, dtype=torch.int64)
|
113 |
-
caption_list = uni_caption_list
|
114 |
-
# print("caption_list" , caption_list)
|
115 |
-
# print("caption" , caption)
|
116 |
-
# print("boxes" , boxes)
|
117 |
-
target = {}
|
118 |
-
target["image_id"] = rel_path.strip(".jpg")
|
119 |
-
target["size"] = torch.as_tensor([int(h), int(w)])
|
120 |
-
target["cap_list"] = caption_list
|
121 |
-
target["caption"] = caption
|
122 |
-
target["boxes"] = boxes
|
123 |
-
target["labels"] = classes
|
124 |
-
# print(" image_id " , target["image_id"])
|
125 |
-
# size, cap_list, caption, bboxes, labels
|
126 |
-
|
127 |
-
if self.transforms is not None:
|
128 |
-
image, target = self.transforms(image, target)
|
129 |
-
|
130 |
-
return image, target
|
131 |
-
|
132 |
-
|
133 |
-
def __len__(self) -> int:
|
134 |
-
return len(self.metas)
|
135 |
-
|
136 |
-
|
137 |
-
def make_coco_transforms(image_set, fix_size=False, strong_aug=False, args=None):
|
138 |
-
|
139 |
-
normalize = T.Compose([
|
140 |
-
T.ToTensor(),
|
141 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
142 |
-
])
|
143 |
-
|
144 |
-
# config the params for data aug
|
145 |
-
scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
|
146 |
-
max_size = 1333
|
147 |
-
scales2_resize = [400, 500, 600]
|
148 |
-
scales2_crop = [384, 600]
|
149 |
-
|
150 |
-
# update args from config files
|
151 |
-
scales = getattr(args, 'data_aug_scales', scales)
|
152 |
-
max_size = getattr(args, 'data_aug_max_size', max_size)
|
153 |
-
scales2_resize = getattr(args, 'data_aug_scales2_resize', scales2_resize)
|
154 |
-
scales2_crop = getattr(args, 'data_aug_scales2_crop', scales2_crop)
|
155 |
-
|
156 |
-
# resize them
|
157 |
-
data_aug_scale_overlap = getattr(args, 'data_aug_scale_overlap', None)
|
158 |
-
if data_aug_scale_overlap is not None and data_aug_scale_overlap > 0:
|
159 |
-
data_aug_scale_overlap = float(data_aug_scale_overlap)
|
160 |
-
scales = [int(i*data_aug_scale_overlap) for i in scales]
|
161 |
-
max_size = int(max_size*data_aug_scale_overlap)
|
162 |
-
scales2_resize = [int(i*data_aug_scale_overlap) for i in scales2_resize]
|
163 |
-
scales2_crop = [int(i*data_aug_scale_overlap) for i in scales2_crop]
|
164 |
-
|
165 |
-
# datadict_for_print = {
|
166 |
-
# 'scales': scales,
|
167 |
-
# 'max_size': max_size,
|
168 |
-
# 'scales2_resize': scales2_resize,
|
169 |
-
# 'scales2_crop': scales2_crop
|
170 |
-
# }
|
171 |
-
# print("data_aug_params:", json.dumps(datadict_for_print, indent=2))
|
172 |
-
|
173 |
-
if image_set == 'train':
|
174 |
-
if fix_size:
|
175 |
-
return T.Compose([
|
176 |
-
T.RandomHorizontalFlip(),
|
177 |
-
T.RandomResize([(max_size, max(scales))]),
|
178 |
-
normalize,
|
179 |
-
])
|
180 |
-
|
181 |
-
if strong_aug:
|
182 |
-
import datasets.sltransform as SLT
|
183 |
-
|
184 |
-
return T.Compose([
|
185 |
-
T.RandomHorizontalFlip(),
|
186 |
-
T.RandomSelect(
|
187 |
-
T.RandomResize(scales, max_size=max_size),
|
188 |
-
T.Compose([
|
189 |
-
T.RandomResize(scales2_resize),
|
190 |
-
T.RandomSizeCrop(*scales2_crop),
|
191 |
-
T.RandomResize(scales, max_size=max_size),
|
192 |
-
])
|
193 |
-
),
|
194 |
-
SLT.RandomSelectMulti([
|
195 |
-
SLT.RandomCrop(),
|
196 |
-
SLT.LightingNoise(),
|
197 |
-
SLT.AdjustBrightness(2),
|
198 |
-
SLT.AdjustContrast(2),
|
199 |
-
]),
|
200 |
-
normalize,
|
201 |
-
])
|
202 |
-
|
203 |
-
return T.Compose([
|
204 |
-
T.RandomHorizontalFlip(),
|
205 |
-
T.RandomSelect(
|
206 |
-
T.RandomResize(scales, max_size=max_size),
|
207 |
-
T.Compose([
|
208 |
-
T.RandomResize(scales2_resize),
|
209 |
-
T.RandomSizeCrop(*scales2_crop),
|
210 |
-
T.RandomResize(scales, max_size=max_size),
|
211 |
-
])
|
212 |
-
),
|
213 |
-
normalize,
|
214 |
-
])
|
215 |
-
|
216 |
-
if image_set in ['val', 'eval_debug', 'train_reg', 'test']:
|
217 |
-
|
218 |
-
if os.environ.get("GFLOPS_DEBUG_SHILONG", False) == 'INFO':
|
219 |
-
print("Under debug mode for flops calculation only!!!!!!!!!!!!!!!!")
|
220 |
-
return T.Compose([
|
221 |
-
T.ResizeDebug((1280, 800)),
|
222 |
-
normalize,
|
223 |
-
])
|
224 |
-
|
225 |
-
return T.Compose([
|
226 |
-
T.RandomResize([max(scales)], max_size=max_size),
|
227 |
-
normalize,
|
228 |
-
])
|
229 |
-
|
230 |
-
raise ValueError(f'unknown {image_set}')
|
231 |
-
|
232 |
-
def build_odvg(image_set, args, datasetinfo):
|
233 |
-
img_folder = datasetinfo["root"]
|
234 |
-
ann_file = datasetinfo["anno"]
|
235 |
-
label_map = datasetinfo["label_map"] if "label_map" in datasetinfo else None
|
236 |
-
try:
|
237 |
-
strong_aug = args.strong_aug
|
238 |
-
except:
|
239 |
-
strong_aug = False # False originally
|
240 |
-
print(img_folder, ann_file, label_map)
|
241 |
-
dataset = ODVGDataset(img_folder, ann_file, label_map, max_labels=args.max_labels,
|
242 |
-
transforms=make_coco_transforms(image_set, fix_size=args.fix_size, strong_aug=strong_aug, args=args),
|
243 |
-
)
|
244 |
-
return dataset
|
245 |
-
|
246 |
-
|
247 |
-
if __name__=="__main__":
|
248 |
-
dataset_vg = ODVGDataset("path/GRIT-20M/data/","path/GRIT-20M/anno/grit_odvg_10k.jsonl",)
|
249 |
-
print(len(dataset_vg))
|
250 |
-
data = dataset_vg[random.randint(0, 100)]
|
251 |
-
print(data)
|
252 |
-
dataset_od = ODVGDataset("pathl/V3Det/",
|
253 |
-
"path/V3Det/annotations/v3det_2023_v1_all_odvg.jsonl",
|
254 |
-
"path/V3Det/annotations/v3det_label_map.json",
|
255 |
-
)
|
256 |
-
print(len(dataset_od))
|
257 |
-
data = dataset_od[random.randint(0, 100)]
|
258 |
-
print(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/panoptic_eval.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
-
import json
|
3 |
-
import os
|
4 |
-
|
5 |
-
import util.misc as utils
|
6 |
-
|
7 |
-
try:
|
8 |
-
from panopticapi.evaluation import pq_compute
|
9 |
-
except ImportError:
|
10 |
-
pass
|
11 |
-
|
12 |
-
|
13 |
-
class PanopticEvaluator(object):
|
14 |
-
def __init__(self, ann_file, ann_folder, output_dir="panoptic_eval"):
|
15 |
-
self.gt_json = ann_file
|
16 |
-
self.gt_folder = ann_folder
|
17 |
-
if utils.is_main_process():
|
18 |
-
if not os.path.exists(output_dir):
|
19 |
-
os.mkdir(output_dir)
|
20 |
-
self.output_dir = output_dir
|
21 |
-
self.predictions = []
|
22 |
-
|
23 |
-
def update(self, predictions):
|
24 |
-
for p in predictions:
|
25 |
-
with open(os.path.join(self.output_dir, p["file_name"]), "wb") as f:
|
26 |
-
f.write(p.pop("png_string"))
|
27 |
-
|
28 |
-
self.predictions += predictions
|
29 |
-
|
30 |
-
def synchronize_between_processes(self):
|
31 |
-
all_predictions = utils.all_gather(self.predictions)
|
32 |
-
merged_predictions = []
|
33 |
-
for p in all_predictions:
|
34 |
-
merged_predictions += p
|
35 |
-
self.predictions = merged_predictions
|
36 |
-
|
37 |
-
def summarize(self):
|
38 |
-
if utils.is_main_process():
|
39 |
-
json_data = {"annotations": self.predictions}
|
40 |
-
predictions_json = os.path.join(self.output_dir, "predictions.json")
|
41 |
-
with open(predictions_json, "w") as f:
|
42 |
-
f.write(json.dumps(json_data))
|
43 |
-
return pq_compute(self.gt_json, predictions_json, gt_folder=self.gt_folder, pred_folder=self.output_dir)
|
44 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/random_crop.py
DELETED
@@ -1,135 +0,0 @@
|
|
1 |
-
import PIL #version 1.2.0
|
2 |
-
import torch
|
3 |
-
import os
|
4 |
-
import torchvision.transforms.functional as F
|
5 |
-
import numpy as np
|
6 |
-
import random
|
7 |
-
|
8 |
-
|
9 |
-
def intersect(boxes1, boxes2):
|
10 |
-
'''
|
11 |
-
Find intersection of every box combination between two sets of box
|
12 |
-
boxes1: bounding boxes 1, a tensor of dimensions (n1, 4)
|
13 |
-
boxes2: bounding boxes 2, a tensor of dimensions (n2, 4)
|
14 |
-
|
15 |
-
Out: Intersection each of boxes1 with respect to each of boxes2,
|
16 |
-
a tensor of dimensions (n1, n2)
|
17 |
-
'''
|
18 |
-
n1 = boxes1.size(0)
|
19 |
-
n2 = boxes2.size(0)
|
20 |
-
max_xy = torch.min(boxes1[:, 2:].unsqueeze(1).expand(n1, n2, 2),
|
21 |
-
boxes2[:, 2:].unsqueeze(0).expand(n1, n2, 2))
|
22 |
-
|
23 |
-
min_xy = torch.max(boxes1[:, :2].unsqueeze(1).expand(n1, n2, 2),
|
24 |
-
boxes2[:, :2].unsqueeze(0).expand(n1, n2, 2))
|
25 |
-
inter = torch.clamp(max_xy - min_xy , min=0) # (n1, n2, 2)
|
26 |
-
return inter[:, :, 0] * inter[:, :, 1] #(n1, n2)
|
27 |
-
def find_IoU(boxes1, boxes2):
|
28 |
-
'''
|
29 |
-
Find IoU between every boxes set of boxes
|
30 |
-
boxes1: a tensor of dimensions (n1, 4) (left, top, right , bottom)
|
31 |
-
boxes2: a tensor of dimensions (n2, 4)
|
32 |
-
|
33 |
-
Out: IoU each of boxes1 with respect to each of boxes2, a tensor of
|
34 |
-
dimensions (n1, n2)
|
35 |
-
|
36 |
-
Formula:
|
37 |
-
(box1 ∩ box2) / (box1 u box2) = (box1 ∩ box2) / (area(box1) + area(box2) - (box1 ∩ box2 ))
|
38 |
-
'''
|
39 |
-
inter = intersect(boxes1, boxes2)
|
40 |
-
area_boxes1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1])
|
41 |
-
area_boxes2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1])
|
42 |
-
|
43 |
-
area_boxes1 = area_boxes1.unsqueeze(1).expand_as(inter) #(n1, n2)
|
44 |
-
area_boxes2 = area_boxes2.unsqueeze(0).expand_as(inter) #(n1, n2)
|
45 |
-
union = (area_boxes1 + area_boxes2 - inter)
|
46 |
-
return inter / union
|
47 |
-
|
48 |
-
|
49 |
-
def random_crop(image, boxes, labels, difficulties=None):
|
50 |
-
'''
|
51 |
-
image: A PIL image
|
52 |
-
boxes: Bounding boxes, a tensor of dimensions (#objects, 4)
|
53 |
-
labels: labels of object, a tensor of dimensions (#objects)
|
54 |
-
difficulties: difficulties of detect object, a tensor of dimensions (#objects)
|
55 |
-
|
56 |
-
Out: cropped image , new boxes, new labels, new difficulties
|
57 |
-
'''
|
58 |
-
if type(image) == PIL.Image.Image:
|
59 |
-
image = F.to_tensor(image)
|
60 |
-
original_h = image.size(1)
|
61 |
-
original_w = image.size(2)
|
62 |
-
|
63 |
-
while True:
|
64 |
-
mode = random.choice([0.1, 0.3, 0.5, 0.9, None])
|
65 |
-
|
66 |
-
if mode is None:
|
67 |
-
return F.to_pil_image(image), boxes, labels, difficulties
|
68 |
-
|
69 |
-
new_image = image
|
70 |
-
new_boxes = boxes
|
71 |
-
new_difficulties = difficulties
|
72 |
-
new_labels = labels
|
73 |
-
for _ in range(50):
|
74 |
-
# Crop dimensions: [0.3, 1] of original dimensions
|
75 |
-
new_h = random.uniform(0.3*original_h, original_h)
|
76 |
-
new_w = random.uniform(0.3*original_w, original_w)
|
77 |
-
|
78 |
-
# Aspect ratio constraint b/t .5 & 2
|
79 |
-
if new_h/new_w < 0.5 or new_h/new_w > 2:
|
80 |
-
continue
|
81 |
-
|
82 |
-
#Crop coordinate
|
83 |
-
left = random.uniform(0, original_w - new_w)
|
84 |
-
right = left + new_w
|
85 |
-
top = random.uniform(0, original_h - new_h)
|
86 |
-
bottom = top + new_h
|
87 |
-
crop = torch.FloatTensor([int(left), int(top), int(right), int(bottom)])
|
88 |
-
|
89 |
-
# Calculate IoU between the crop and the bounding boxes
|
90 |
-
overlap = find_IoU(crop.unsqueeze(0), boxes) #(1, #objects)
|
91 |
-
overlap = overlap.squeeze(0)
|
92 |
-
|
93 |
-
# If not a single bounding box has a IoU of greater than the minimum, try again
|
94 |
-
if overlap.shape[0] == 0:
|
95 |
-
continue
|
96 |
-
if overlap.max().item() < mode:
|
97 |
-
continue
|
98 |
-
|
99 |
-
#Crop
|
100 |
-
new_image = image[:, int(top):int(bottom), int(left):int(right)] #(3, new_h, new_w)
|
101 |
-
|
102 |
-
#Center of bounding boxes
|
103 |
-
center_bb = (boxes[:, :2] + boxes[:, 2:])/2.0
|
104 |
-
|
105 |
-
#Find bounding box has been had center in crop
|
106 |
-
center_in_crop = (center_bb[:, 0] >left) * (center_bb[:, 0] < right
|
107 |
-
) *(center_bb[:, 1] > top) * (center_bb[:, 1] < bottom) #( #objects)
|
108 |
-
|
109 |
-
if not center_in_crop.any():
|
110 |
-
continue
|
111 |
-
|
112 |
-
#take matching bounding box
|
113 |
-
new_boxes = boxes[center_in_crop, :]
|
114 |
-
|
115 |
-
#take matching labels
|
116 |
-
new_labels = labels[center_in_crop]
|
117 |
-
|
118 |
-
#take matching difficulities
|
119 |
-
if difficulties is not None:
|
120 |
-
new_difficulties = difficulties[center_in_crop]
|
121 |
-
else:
|
122 |
-
new_difficulties = None
|
123 |
-
|
124 |
-
#Use the box left and top corner or the crop's
|
125 |
-
new_boxes[:, :2] = torch.max(new_boxes[:, :2], crop[:2])
|
126 |
-
|
127 |
-
#adjust to crop
|
128 |
-
new_boxes[:, :2] -= crop[:2]
|
129 |
-
|
130 |
-
new_boxes[:, 2:] = torch.min(new_boxes[:, 2:],crop[2:])
|
131 |
-
|
132 |
-
#adjust to crop
|
133 |
-
new_boxes[:, 2:] -= crop[:2]
|
134 |
-
|
135 |
-
return F.to_pil_image(new_image), new_boxes, new_labels, new_difficulties
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/sltransform.py
DELETED
@@ -1,247 +0,0 @@
|
|
1 |
-
# modified from https://github.com/anhtuan85/Data-Augmentation-for-Object-Detection/blob/master/augmentation.ipynb
|
2 |
-
|
3 |
-
import PIL #version 1.2.0
|
4 |
-
from PIL import Image #version 6.1.0
|
5 |
-
import torch
|
6 |
-
import os
|
7 |
-
import torchvision.transforms.functional as F
|
8 |
-
import numpy as np
|
9 |
-
import random
|
10 |
-
|
11 |
-
from .random_crop import random_crop
|
12 |
-
from util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
|
13 |
-
|
14 |
-
class AdjustContrast:
|
15 |
-
def __init__(self, contrast_factor):
|
16 |
-
self.contrast_factor = contrast_factor
|
17 |
-
|
18 |
-
def __call__(self, img, target):
|
19 |
-
"""
|
20 |
-
img (PIL Image or Tensor): Image to be adjusted.
|
21 |
-
"""
|
22 |
-
_contrast_factor = ((random.random() + 1.0) / 2.0) * self.contrast_factor
|
23 |
-
img = F.adjust_contrast(img, _contrast_factor)
|
24 |
-
return img, target
|
25 |
-
|
26 |
-
class AdjustBrightness:
|
27 |
-
def __init__(self, brightness_factor):
|
28 |
-
self.brightness_factor = brightness_factor
|
29 |
-
|
30 |
-
def __call__(self, img, target):
|
31 |
-
"""
|
32 |
-
img (PIL Image or Tensor): Image to be adjusted.
|
33 |
-
"""
|
34 |
-
_brightness_factor = ((random.random() + 1.0) / 2.0) * self.brightness_factor
|
35 |
-
img = F.adjust_brightness(img, _brightness_factor)
|
36 |
-
return img, target
|
37 |
-
|
38 |
-
def lighting_noise(image):
|
39 |
-
'''
|
40 |
-
color channel swap in image
|
41 |
-
image: A PIL image
|
42 |
-
'''
|
43 |
-
new_image = image
|
44 |
-
perms = ((0, 1, 2), (0, 2, 1), (1, 0, 2),
|
45 |
-
(1, 2, 0), (2, 0, 1), (2, 1, 0))
|
46 |
-
swap = perms[random.randint(0, len(perms)- 1)]
|
47 |
-
new_image = F.to_tensor(new_image)
|
48 |
-
new_image = new_image[swap, :, :]
|
49 |
-
new_image = F.to_pil_image(new_image)
|
50 |
-
return new_image
|
51 |
-
|
52 |
-
class LightingNoise:
|
53 |
-
def __init__(self) -> None:
|
54 |
-
pass
|
55 |
-
|
56 |
-
def __call__(self, img, target):
|
57 |
-
return lighting_noise(img), target
|
58 |
-
|
59 |
-
|
60 |
-
def rotate(image, boxes, angle):
|
61 |
-
'''
|
62 |
-
Rotate image and bounding box
|
63 |
-
image: A Pil image (w, h)
|
64 |
-
boxes: A tensors of dimensions (#objects, 4)
|
65 |
-
|
66 |
-
Out: rotated image (w, h), rotated boxes
|
67 |
-
'''
|
68 |
-
new_image = image.copy()
|
69 |
-
new_boxes = boxes.clone()
|
70 |
-
|
71 |
-
#Rotate image, expand = True
|
72 |
-
w = image.width
|
73 |
-
h = image.height
|
74 |
-
cx = w/2
|
75 |
-
cy = h/2
|
76 |
-
new_image = new_image.rotate(angle, expand=True)
|
77 |
-
angle = np.radians(angle)
|
78 |
-
alpha = np.cos(angle)
|
79 |
-
beta = np.sin(angle)
|
80 |
-
#Get affine matrix
|
81 |
-
AffineMatrix = torch.tensor([[alpha, beta, (1-alpha)*cx - beta*cy],
|
82 |
-
[-beta, alpha, beta*cx + (1-alpha)*cy]])
|
83 |
-
|
84 |
-
#Rotation boxes
|
85 |
-
box_width = (boxes[:,2] - boxes[:,0]).reshape(-1,1)
|
86 |
-
box_height = (boxes[:,3] - boxes[:,1]).reshape(-1,1)
|
87 |
-
|
88 |
-
#Get corners for boxes
|
89 |
-
x1 = boxes[:,0].reshape(-1,1)
|
90 |
-
y1 = boxes[:,1].reshape(-1,1)
|
91 |
-
|
92 |
-
x2 = x1 + box_width
|
93 |
-
y2 = y1
|
94 |
-
|
95 |
-
x3 = x1
|
96 |
-
y3 = y1 + box_height
|
97 |
-
|
98 |
-
x4 = boxes[:,2].reshape(-1,1)
|
99 |
-
y4 = boxes[:,3].reshape(-1,1)
|
100 |
-
|
101 |
-
corners = torch.stack((x1,y1,x2,y2,x3,y3,x4,y4), dim= 1)
|
102 |
-
# corners.reshape(-1, 8) #Tensors of dimensions (#objects, 8)
|
103 |
-
corners = corners.reshape(-1,2) #Tensors of dimension (4* #objects, 2)
|
104 |
-
corners = torch.cat((corners, torch.ones(corners.shape[0], 1)), dim= 1) #(Tensors of dimension (4* #objects, 3))
|
105 |
-
|
106 |
-
cos = np.abs(AffineMatrix[0, 0])
|
107 |
-
sin = np.abs(AffineMatrix[0, 1])
|
108 |
-
|
109 |
-
nW = int((h * sin) + (w * cos))
|
110 |
-
nH = int((h * cos) + (w * sin))
|
111 |
-
AffineMatrix[0, 2] += (nW / 2) - cx
|
112 |
-
AffineMatrix[1, 2] += (nH / 2) - cy
|
113 |
-
|
114 |
-
|
115 |
-
#Apply affine transform
|
116 |
-
rotate_corners = torch.mm(AffineMatrix, corners.t().to(torch.float64)).t()
|
117 |
-
rotate_corners = rotate_corners.reshape(-1,8)
|
118 |
-
|
119 |
-
x_corners = rotate_corners[:,[0,2,4,6]]
|
120 |
-
y_corners = rotate_corners[:,[1,3,5,7]]
|
121 |
-
|
122 |
-
#Get (x_min, y_min, x_max, y_max)
|
123 |
-
x_min, _ = torch.min(x_corners, dim= 1)
|
124 |
-
x_min = x_min.reshape(-1, 1)
|
125 |
-
y_min, _ = torch.min(y_corners, dim= 1)
|
126 |
-
y_min = y_min.reshape(-1, 1)
|
127 |
-
x_max, _ = torch.max(x_corners, dim= 1)
|
128 |
-
x_max = x_max.reshape(-1, 1)
|
129 |
-
y_max, _ = torch.max(y_corners, dim= 1)
|
130 |
-
y_max = y_max.reshape(-1, 1)
|
131 |
-
|
132 |
-
new_boxes = torch.cat((x_min, y_min, x_max, y_max), dim= 1)
|
133 |
-
|
134 |
-
scale_x = new_image.width / w
|
135 |
-
scale_y = new_image.height / h
|
136 |
-
|
137 |
-
#Resize new image to (w, h)
|
138 |
-
|
139 |
-
new_image = new_image.resize((w, h))
|
140 |
-
|
141 |
-
#Resize boxes
|
142 |
-
new_boxes /= torch.Tensor([scale_x, scale_y, scale_x, scale_y])
|
143 |
-
new_boxes[:, 0] = torch.clamp(new_boxes[:, 0], 0, w)
|
144 |
-
new_boxes[:, 1] = torch.clamp(new_boxes[:, 1], 0, h)
|
145 |
-
new_boxes[:, 2] = torch.clamp(new_boxes[:, 2], 0, w)
|
146 |
-
new_boxes[:, 3] = torch.clamp(new_boxes[:, 3], 0, h)
|
147 |
-
return new_image, new_boxes
|
148 |
-
|
149 |
-
# def convert_xywh_to_xyxy(boxes: torch.Tensor):
|
150 |
-
# _boxes = boxes.clone()
|
151 |
-
# box_xy = _boxes[:, :2]
|
152 |
-
# box_wh = _boxes[:, 2:]
|
153 |
-
# box_x1y1 = box_xy - box_wh/2
|
154 |
-
# box_x2y2 = box_xy + box_wh/2
|
155 |
-
# box_xyxy = torch.cat((box_x1y1, box_x2y2), dim=-1)
|
156 |
-
# return box_xyxy
|
157 |
-
|
158 |
-
class Rotate:
|
159 |
-
def __init__(self, angle=10) -> None:
|
160 |
-
self.angle = angle
|
161 |
-
|
162 |
-
def __call__(self, img, target):
|
163 |
-
w,h = img.size
|
164 |
-
whwh = torch.Tensor([w, h, w, h])
|
165 |
-
boxes_xyxy = box_cxcywh_to_xyxy(target['boxes']) * whwh
|
166 |
-
img, boxes_new = rotate(img, boxes_xyxy, self.angle)
|
167 |
-
target['boxes'] = box_xyxy_to_cxcywh(boxes_new).to(boxes_xyxy.dtype) / (whwh + 1e-3)
|
168 |
-
return img, target
|
169 |
-
|
170 |
-
|
171 |
-
class RandomCrop:
|
172 |
-
def __init__(self) -> None:
|
173 |
-
pass
|
174 |
-
|
175 |
-
def __call__(self, img, target):
|
176 |
-
w,h = img.size
|
177 |
-
try:
|
178 |
-
boxes_xyxy = target['boxes']
|
179 |
-
labels = target['labels']
|
180 |
-
img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels)
|
181 |
-
target['boxes'] = new_boxes
|
182 |
-
target['labels'] = new_labels
|
183 |
-
except Exception as e:
|
184 |
-
pass
|
185 |
-
return img, target
|
186 |
-
|
187 |
-
|
188 |
-
class RandomCropDebug:
|
189 |
-
def __init__(self) -> None:
|
190 |
-
pass
|
191 |
-
|
192 |
-
def __call__(self, img, target):
|
193 |
-
boxes_xyxy = target['boxes'].clone()
|
194 |
-
labels = target['labels'].clone()
|
195 |
-
img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels)
|
196 |
-
target['boxes'] = new_boxes
|
197 |
-
target['labels'] = new_labels
|
198 |
-
|
199 |
-
|
200 |
-
return img, target
|
201 |
-
|
202 |
-
class RandomSelectMulti(object):
|
203 |
-
"""
|
204 |
-
Randomly selects between transforms1 and transforms2,
|
205 |
-
"""
|
206 |
-
def __init__(self, transformslist, p=-1):
|
207 |
-
self.transformslist = transformslist
|
208 |
-
self.p = p
|
209 |
-
assert p == -1
|
210 |
-
|
211 |
-
def __call__(self, img, target):
|
212 |
-
if self.p == -1:
|
213 |
-
return random.choice(self.transformslist)(img, target)
|
214 |
-
|
215 |
-
|
216 |
-
class Albumentations:
|
217 |
-
def __init__(self):
|
218 |
-
import albumentations as A
|
219 |
-
self.transform = A.Compose([
|
220 |
-
A.Blur(p=0.01),
|
221 |
-
A.MedianBlur(p=0.01),
|
222 |
-
A.ToGray(p=0.01),
|
223 |
-
A.CLAHE(p=0.01),
|
224 |
-
A.RandomBrightnessContrast(p=0.005),
|
225 |
-
A.RandomGamma(p=0.005),
|
226 |
-
A.ImageCompression(quality_lower=75, p=0.005)],
|
227 |
-
bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']))
|
228 |
-
|
229 |
-
def __call__(self, img, target, p=1.0):
|
230 |
-
"""
|
231 |
-
Input:
|
232 |
-
target['boxes']: xyxy, unnormalized data.
|
233 |
-
|
234 |
-
"""
|
235 |
-
boxes_raw = target['boxes']
|
236 |
-
labels_raw = target['labels']
|
237 |
-
img_np = np.array(img)
|
238 |
-
if self.transform and random.random() < p:
|
239 |
-
new_res = self.transform(image=img_np, bboxes=boxes_raw, class_labels=labels_raw) # transformed
|
240 |
-
boxes_new = torch.Tensor(new_res['bboxes']).to(boxes_raw.dtype).reshape_as(boxes_raw)
|
241 |
-
img_np = new_res['image']
|
242 |
-
labels_new = torch.Tensor(new_res['class_labels']).to(labels_raw.dtype)
|
243 |
-
img_new = Image.fromarray(img_np)
|
244 |
-
target['boxes'] = boxes_new
|
245 |
-
target['labels'] = labels_new
|
246 |
-
|
247 |
-
return img_new, target
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/datasets/transforms.py
DELETED
@@ -1,285 +0,0 @@
|
|
1 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
-
"""
|
3 |
-
Transforms and data augmentation for both image + bbox.
|
4 |
-
"""
|
5 |
-
import random
|
6 |
-
|
7 |
-
import PIL
|
8 |
-
import torch
|
9 |
-
import torchvision.transforms as T
|
10 |
-
import torchvision.transforms.functional as F
|
11 |
-
|
12 |
-
from util.box_ops import box_xyxy_to_cxcywh
|
13 |
-
from util.misc import interpolate
|
14 |
-
|
15 |
-
|
16 |
-
def crop(image, target, region):
|
17 |
-
cropped_image = F.crop(image, *region)
|
18 |
-
|
19 |
-
target = target.copy()
|
20 |
-
i, j, h, w = region
|
21 |
-
|
22 |
-
# should we do something wrt the original size?
|
23 |
-
target["size"] = torch.tensor([h, w])
|
24 |
-
|
25 |
-
fields = ["labels", "area"]
|
26 |
-
|
27 |
-
if "boxes" in target:
|
28 |
-
boxes = target["boxes"]
|
29 |
-
max_size = torch.as_tensor([w, h], dtype=torch.float32)
|
30 |
-
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
|
31 |
-
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
|
32 |
-
cropped_boxes = cropped_boxes.clamp(min=0)
|
33 |
-
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
|
34 |
-
target["boxes"] = cropped_boxes.reshape(-1, 4)
|
35 |
-
target["area"] = area
|
36 |
-
fields.append("boxes")
|
37 |
-
|
38 |
-
if "masks" in target:
|
39 |
-
# FIXME should we update the area here if there are no boxes?
|
40 |
-
target['masks'] = target['masks'][:, i:i + h, j:j + w]
|
41 |
-
fields.append("masks")
|
42 |
-
|
43 |
-
|
44 |
-
# remove elements for which the boxes or masks that have zero area
|
45 |
-
if "boxes" in target or "masks" in target:
|
46 |
-
# favor boxes selection when defining which elements to keep
|
47 |
-
# this is compatible with previous implementation
|
48 |
-
if "boxes" in target:
|
49 |
-
cropped_boxes = target['boxes'].reshape(-1, 2, 2)
|
50 |
-
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
|
51 |
-
else:
|
52 |
-
keep = target['masks'].flatten(1).any(1)
|
53 |
-
|
54 |
-
for field in fields:
|
55 |
-
target[field] = target[field][keep]
|
56 |
-
|
57 |
-
return cropped_image, target
|
58 |
-
|
59 |
-
|
60 |
-
def hflip(image, target):
|
61 |
-
flipped_image = F.hflip(image)
|
62 |
-
|
63 |
-
w, h = image.size
|
64 |
-
|
65 |
-
target = target.copy()
|
66 |
-
if "boxes" in target:
|
67 |
-
boxes = target["boxes"]
|
68 |
-
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
|
69 |
-
target["boxes"] = boxes
|
70 |
-
|
71 |
-
if "masks" in target:
|
72 |
-
target['masks'] = target['masks'].flip(-1)
|
73 |
-
|
74 |
-
return flipped_image, target
|
75 |
-
|
76 |
-
|
77 |
-
def resize(image, target, size, max_size=None):
|
78 |
-
# size can be min_size (scalar) or (w, h) tuple
|
79 |
-
|
80 |
-
def get_size_with_aspect_ratio(image_size, size, max_size=None):
|
81 |
-
w, h = image_size
|
82 |
-
if max_size is not None:
|
83 |
-
min_original_size = float(min((w, h)))
|
84 |
-
max_original_size = float(max((w, h)))
|
85 |
-
if max_original_size / min_original_size * size > max_size:
|
86 |
-
size = int(round(max_size * min_original_size / max_original_size))
|
87 |
-
|
88 |
-
if (w <= h and w == size) or (h <= w and h == size):
|
89 |
-
return (h, w)
|
90 |
-
|
91 |
-
if w < h:
|
92 |
-
ow = size
|
93 |
-
oh = int(size * h / w)
|
94 |
-
else:
|
95 |
-
oh = size
|
96 |
-
ow = int(size * w / h)
|
97 |
-
|
98 |
-
return (oh, ow)
|
99 |
-
|
100 |
-
def get_size(image_size, size, max_size=None):
|
101 |
-
if isinstance(size, (list, tuple)):
|
102 |
-
return size[::-1]
|
103 |
-
else:
|
104 |
-
return get_size_with_aspect_ratio(image_size, size, max_size)
|
105 |
-
|
106 |
-
size = get_size(image.size, size, max_size)
|
107 |
-
rescaled_image = F.resize(image, size)
|
108 |
-
|
109 |
-
if target is None:
|
110 |
-
return rescaled_image, None
|
111 |
-
|
112 |
-
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
|
113 |
-
ratio_width, ratio_height = ratios
|
114 |
-
|
115 |
-
target = target.copy()
|
116 |
-
if "boxes" in target:
|
117 |
-
boxes = target["boxes"]
|
118 |
-
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
|
119 |
-
target["boxes"] = scaled_boxes
|
120 |
-
|
121 |
-
if "area" in target:
|
122 |
-
area = target["area"]
|
123 |
-
scaled_area = area * (ratio_width * ratio_height)
|
124 |
-
target["area"] = scaled_area
|
125 |
-
|
126 |
-
h, w = size
|
127 |
-
target["size"] = torch.tensor([h, w])
|
128 |
-
|
129 |
-
if "masks" in target:
|
130 |
-
target['masks'] = interpolate(
|
131 |
-
target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5
|
132 |
-
|
133 |
-
return rescaled_image, target
|
134 |
-
|
135 |
-
|
136 |
-
def pad(image, target, padding):
|
137 |
-
# assumes that we only pad on the bottom right corners
|
138 |
-
padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
|
139 |
-
if target is None:
|
140 |
-
return padded_image, None
|
141 |
-
target = target.copy()
|
142 |
-
# should we do something wrt the original size?
|
143 |
-
target["size"] = torch.tensor(padded_image.size[::-1])
|
144 |
-
if "masks" in target:
|
145 |
-
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
|
146 |
-
return padded_image, target
|
147 |
-
|
148 |
-
|
149 |
-
class ResizeDebug(object):
|
150 |
-
def __init__(self, size):
|
151 |
-
self.size = size
|
152 |
-
|
153 |
-
def __call__(self, img, target):
|
154 |
-
return resize(img, target, self.size)
|
155 |
-
|
156 |
-
|
157 |
-
class RandomCrop(object):
|
158 |
-
def __init__(self, size):
|
159 |
-
self.size = size
|
160 |
-
|
161 |
-
def __call__(self, img, target):
|
162 |
-
region = T.RandomCrop.get_params(img, self.size)
|
163 |
-
return crop(img, target, region)
|
164 |
-
|
165 |
-
|
166 |
-
class RandomSizeCrop(object):
|
167 |
-
def __init__(self, min_size: int, max_size: int):
|
168 |
-
self.min_size = min_size
|
169 |
-
self.max_size = max_size
|
170 |
-
|
171 |
-
def __call__(self, img: PIL.Image.Image, target: dict):
|
172 |
-
w = random.randint(self.min_size, min(img.width, self.max_size))
|
173 |
-
h = random.randint(self.min_size, min(img.height, self.max_size))
|
174 |
-
region = T.RandomCrop.get_params(img, [h, w])
|
175 |
-
return crop(img, target, region)
|
176 |
-
|
177 |
-
|
178 |
-
class CenterCrop(object):
|
179 |
-
def __init__(self, size):
|
180 |
-
self.size = size
|
181 |
-
|
182 |
-
def __call__(self, img, target):
|
183 |
-
image_width, image_height = img.size
|
184 |
-
crop_height, crop_width = self.size
|
185 |
-
crop_top = int(round((image_height - crop_height) / 2.))
|
186 |
-
crop_left = int(round((image_width - crop_width) / 2.))
|
187 |
-
return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
|
188 |
-
|
189 |
-
|
190 |
-
class RandomHorizontalFlip(object):
|
191 |
-
def __init__(self, p=0.5):
|
192 |
-
self.p = p
|
193 |
-
|
194 |
-
def __call__(self, img, target):
|
195 |
-
if random.random() < self.p:
|
196 |
-
return hflip(img, target)
|
197 |
-
return img, target
|
198 |
-
|
199 |
-
|
200 |
-
class RandomResize(object):
|
201 |
-
def __init__(self, sizes, max_size=None):
|
202 |
-
assert isinstance(sizes, (list, tuple))
|
203 |
-
self.sizes = sizes
|
204 |
-
self.max_size = max_size
|
205 |
-
|
206 |
-
def __call__(self, img, target=None):
|
207 |
-
size = random.choice(self.sizes)
|
208 |
-
return resize(img, target, size, self.max_size)
|
209 |
-
|
210 |
-
|
211 |
-
class RandomPad(object):
|
212 |
-
def __init__(self, max_pad):
|
213 |
-
self.max_pad = max_pad
|
214 |
-
|
215 |
-
def __call__(self, img, target):
|
216 |
-
pad_x = random.randint(0, self.max_pad)
|
217 |
-
pad_y = random.randint(0, self.max_pad)
|
218 |
-
return pad(img, target, (pad_x, pad_y))
|
219 |
-
|
220 |
-
|
221 |
-
class RandomSelect(object):
|
222 |
-
"""
|
223 |
-
Randomly selects between transforms1 and transforms2,
|
224 |
-
with probability p for transforms1 and (1 - p) for transforms2
|
225 |
-
"""
|
226 |
-
def __init__(self, transforms1, transforms2, p=0.5):
|
227 |
-
self.transforms1 = transforms1
|
228 |
-
self.transforms2 = transforms2
|
229 |
-
self.p = p
|
230 |
-
|
231 |
-
def __call__(self, img, target):
|
232 |
-
if random.random() < self.p:
|
233 |
-
return self.transforms1(img, target)
|
234 |
-
return self.transforms2(img, target)
|
235 |
-
|
236 |
-
|
237 |
-
class ToTensor(object):
|
238 |
-
def __call__(self, img, target):
|
239 |
-
return F.to_tensor(img), target
|
240 |
-
|
241 |
-
|
242 |
-
class RandomErasing(object):
|
243 |
-
|
244 |
-
def __init__(self, *args, **kwargs):
|
245 |
-
self.eraser = T.RandomErasing(*args, **kwargs)
|
246 |
-
|
247 |
-
def __call__(self, img, target):
|
248 |
-
return self.eraser(img), target
|
249 |
-
|
250 |
-
|
251 |
-
class Normalize(object):
|
252 |
-
def __init__(self, mean, std):
|
253 |
-
self.mean = mean
|
254 |
-
self.std = std
|
255 |
-
|
256 |
-
def __call__(self, image, target=None):
|
257 |
-
image = F.normalize(image, mean=self.mean, std=self.std)
|
258 |
-
if target is None:
|
259 |
-
return image, None
|
260 |
-
target = target.copy()
|
261 |
-
h, w = image.shape[-2:]
|
262 |
-
if "boxes" in target:
|
263 |
-
boxes = target["boxes"]
|
264 |
-
boxes = box_xyxy_to_cxcywh(boxes)
|
265 |
-
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
|
266 |
-
target["boxes"] = boxes
|
267 |
-
return image, target
|
268 |
-
|
269 |
-
|
270 |
-
class Compose(object):
|
271 |
-
def __init__(self, transforms):
|
272 |
-
self.transforms = transforms
|
273 |
-
|
274 |
-
def __call__(self, image, target):
|
275 |
-
for t in self.transforms:
|
276 |
-
image, target = t(image, target)
|
277 |
-
return image, target
|
278 |
-
|
279 |
-
def __repr__(self):
|
280 |
-
format_string = self.__class__.__name__ + "("
|
281 |
-
for t in self.transforms:
|
282 |
-
format_string += "\n"
|
283 |
-
format_string += " {0}".format(t)
|
284 |
-
format_string += "\n)"
|
285 |
-
return format_string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/bertwarper-checkpoint.py
DELETED
@@ -1,273 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# Grounding DINO
|
3 |
-
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
-
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
-
# ------------------------------------------------------------------------
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn.functional as F
|
10 |
-
import torch.utils.checkpoint as checkpoint
|
11 |
-
from torch import Tensor, nn
|
12 |
-
from torchvision.ops.boxes import nms
|
13 |
-
from transformers import BertConfig, BertModel, BertPreTrainedModel
|
14 |
-
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
15 |
-
|
16 |
-
|
17 |
-
class BertModelWarper(nn.Module):
|
18 |
-
def __init__(self, bert_model):
|
19 |
-
super().__init__()
|
20 |
-
# self.bert = bert_modelc
|
21 |
-
|
22 |
-
self.config = bert_model.config
|
23 |
-
self.embeddings = bert_model.embeddings
|
24 |
-
self.encoder = bert_model.encoder
|
25 |
-
self.pooler = bert_model.pooler
|
26 |
-
|
27 |
-
self.get_extended_attention_mask = bert_model.get_extended_attention_mask
|
28 |
-
self.invert_attention_mask = bert_model.invert_attention_mask
|
29 |
-
self.get_head_mask = bert_model.get_head_mask
|
30 |
-
|
31 |
-
def forward(
|
32 |
-
self,
|
33 |
-
input_ids=None,
|
34 |
-
attention_mask=None,
|
35 |
-
token_type_ids=None,
|
36 |
-
position_ids=None,
|
37 |
-
head_mask=None,
|
38 |
-
inputs_embeds=None,
|
39 |
-
encoder_hidden_states=None,
|
40 |
-
encoder_attention_mask=None,
|
41 |
-
past_key_values=None,
|
42 |
-
use_cache=None,
|
43 |
-
output_attentions=None,
|
44 |
-
output_hidden_states=None,
|
45 |
-
return_dict=None,
|
46 |
-
):
|
47 |
-
r"""
|
48 |
-
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
49 |
-
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
50 |
-
the model is configured as a decoder.
|
51 |
-
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
52 |
-
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
53 |
-
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
54 |
-
|
55 |
-
- 1 for tokens that are **not masked**,
|
56 |
-
- 0 for tokens that are **masked**.
|
57 |
-
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
58 |
-
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
59 |
-
|
60 |
-
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
61 |
-
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
62 |
-
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
63 |
-
use_cache (:obj:`bool`, `optional`):
|
64 |
-
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
65 |
-
decoding (see :obj:`past_key_values`).
|
66 |
-
"""
|
67 |
-
output_attentions = (
|
68 |
-
output_attentions if output_attentions is not None else self.config.output_attentions
|
69 |
-
)
|
70 |
-
output_hidden_states = (
|
71 |
-
output_hidden_states
|
72 |
-
if output_hidden_states is not None
|
73 |
-
else self.config.output_hidden_states
|
74 |
-
)
|
75 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
76 |
-
|
77 |
-
if self.config.is_decoder:
|
78 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
79 |
-
else:
|
80 |
-
use_cache = False
|
81 |
-
|
82 |
-
if input_ids is not None and inputs_embeds is not None:
|
83 |
-
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
84 |
-
elif input_ids is not None:
|
85 |
-
input_shape = input_ids.size()
|
86 |
-
batch_size, seq_length = input_shape
|
87 |
-
elif inputs_embeds is not None:
|
88 |
-
input_shape = inputs_embeds.size()[:-1]
|
89 |
-
batch_size, seq_length = input_shape
|
90 |
-
else:
|
91 |
-
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
92 |
-
|
93 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
94 |
-
|
95 |
-
# past_key_values_length
|
96 |
-
past_key_values_length = (
|
97 |
-
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
98 |
-
)
|
99 |
-
|
100 |
-
if attention_mask is None:
|
101 |
-
attention_mask = torch.ones(
|
102 |
-
((batch_size, seq_length + past_key_values_length)), device=device
|
103 |
-
)
|
104 |
-
if token_type_ids is None:
|
105 |
-
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
106 |
-
|
107 |
-
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
108 |
-
# ourselves in which case we just need to make it broadcastable to all heads.
|
109 |
-
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
110 |
-
attention_mask, input_shape, device
|
111 |
-
)
|
112 |
-
|
113 |
-
# If a 2D or 3D attention mask is provided for the cross-attention
|
114 |
-
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
115 |
-
if self.config.is_decoder and encoder_hidden_states is not None:
|
116 |
-
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
117 |
-
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
118 |
-
if encoder_attention_mask is None:
|
119 |
-
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
120 |
-
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
121 |
-
else:
|
122 |
-
encoder_extended_attention_mask = None
|
123 |
-
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
124 |
-
# import ipdb; ipdb.set_trace()
|
125 |
-
|
126 |
-
# Prepare head mask if needed
|
127 |
-
# 1.0 in head_mask indicate we keep the head
|
128 |
-
# attention_probs has shape bsz x n_heads x N x N
|
129 |
-
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
130 |
-
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
131 |
-
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
132 |
-
|
133 |
-
embedding_output = self.embeddings(
|
134 |
-
input_ids=input_ids,
|
135 |
-
position_ids=position_ids,
|
136 |
-
token_type_ids=token_type_ids,
|
137 |
-
inputs_embeds=inputs_embeds,
|
138 |
-
past_key_values_length=past_key_values_length,
|
139 |
-
)
|
140 |
-
|
141 |
-
encoder_outputs = self.encoder(
|
142 |
-
embedding_output,
|
143 |
-
attention_mask=extended_attention_mask,
|
144 |
-
head_mask=head_mask,
|
145 |
-
encoder_hidden_states=encoder_hidden_states,
|
146 |
-
encoder_attention_mask=encoder_extended_attention_mask,
|
147 |
-
past_key_values=past_key_values,
|
148 |
-
use_cache=use_cache,
|
149 |
-
output_attentions=output_attentions,
|
150 |
-
output_hidden_states=output_hidden_states,
|
151 |
-
return_dict=return_dict,
|
152 |
-
)
|
153 |
-
sequence_output = encoder_outputs[0]
|
154 |
-
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
155 |
-
|
156 |
-
if not return_dict:
|
157 |
-
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
158 |
-
|
159 |
-
return BaseModelOutputWithPoolingAndCrossAttentions(
|
160 |
-
last_hidden_state=sequence_output,
|
161 |
-
pooler_output=pooled_output,
|
162 |
-
past_key_values=encoder_outputs.past_key_values,
|
163 |
-
hidden_states=encoder_outputs.hidden_states,
|
164 |
-
attentions=encoder_outputs.attentions,
|
165 |
-
cross_attentions=encoder_outputs.cross_attentions,
|
166 |
-
)
|
167 |
-
|
168 |
-
|
169 |
-
class TextEncoderShell(nn.Module):
|
170 |
-
def __init__(self, text_encoder):
|
171 |
-
super().__init__()
|
172 |
-
self.text_encoder = text_encoder
|
173 |
-
self.config = self.text_encoder.config
|
174 |
-
|
175 |
-
def forward(self, **kw):
|
176 |
-
# feed into text encoder
|
177 |
-
return self.text_encoder(**kw)
|
178 |
-
|
179 |
-
|
180 |
-
def generate_masks_with_special_tokens(tokenized, special_tokens_list, tokenizer):
|
181 |
-
"""Generate attention mask between each pair of special tokens
|
182 |
-
Args:
|
183 |
-
input_ids (torch.Tensor): input ids. Shape: [bs, num_token]
|
184 |
-
special_tokens_mask (list): special tokens mask.
|
185 |
-
Returns:
|
186 |
-
torch.Tensor: attention mask between each special tokens.
|
187 |
-
"""
|
188 |
-
input_ids = tokenized["input_ids"]
|
189 |
-
bs, num_token = input_ids.shape
|
190 |
-
# special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens
|
191 |
-
special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool()
|
192 |
-
for special_token in special_tokens_list:
|
193 |
-
special_tokens_mask |= input_ids == special_token
|
194 |
-
|
195 |
-
# idxs: each row is a list of indices of special tokens
|
196 |
-
idxs = torch.nonzero(special_tokens_mask)
|
197 |
-
|
198 |
-
# generate attention mask and positional ids
|
199 |
-
attention_mask = (
|
200 |
-
torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1)
|
201 |
-
)
|
202 |
-
position_ids = torch.zeros((bs, num_token), device=input_ids.device)
|
203 |
-
previous_col = 0
|
204 |
-
for i in range(idxs.shape[0]):
|
205 |
-
row, col = idxs[i]
|
206 |
-
if (col == 0) or (col == num_token - 1):
|
207 |
-
attention_mask[row, col, col] = True
|
208 |
-
position_ids[row, col] = 0
|
209 |
-
else:
|
210 |
-
attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True
|
211 |
-
position_ids[row, previous_col + 1 : col + 1] = torch.arange(
|
212 |
-
0, col - previous_col, device=input_ids.device
|
213 |
-
)
|
214 |
-
|
215 |
-
previous_col = col
|
216 |
-
|
217 |
-
# # padding mask
|
218 |
-
# padding_mask = tokenized['attention_mask']
|
219 |
-
# attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool()
|
220 |
-
|
221 |
-
return attention_mask, position_ids.to(torch.long)
|
222 |
-
|
223 |
-
|
224 |
-
def generate_masks_with_special_tokens_and_transfer_map(tokenized, special_tokens_list, tokenizer):
|
225 |
-
"""Generate attention mask between each pair of special tokens
|
226 |
-
Args:
|
227 |
-
input_ids (torch.Tensor): input ids. Shape: [bs, num_token]
|
228 |
-
special_tokens_mask (list): special tokens mask.
|
229 |
-
Returns:
|
230 |
-
torch.Tensor: attention mask between each special tokens.
|
231 |
-
"""
|
232 |
-
input_ids = tokenized["input_ids"]
|
233 |
-
bs, num_token = input_ids.shape
|
234 |
-
# special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens
|
235 |
-
special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool()
|
236 |
-
for special_token in special_tokens_list:
|
237 |
-
special_tokens_mask |= input_ids == special_token
|
238 |
-
|
239 |
-
# idxs: each row is a list of indices of special tokens
|
240 |
-
idxs = torch.nonzero(special_tokens_mask)
|
241 |
-
|
242 |
-
# generate attention mask and positional ids
|
243 |
-
attention_mask = (
|
244 |
-
torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1)
|
245 |
-
)
|
246 |
-
position_ids = torch.zeros((bs, num_token), device=input_ids.device)
|
247 |
-
cate_to_token_mask_list = [[] for _ in range(bs)]
|
248 |
-
previous_col = 0
|
249 |
-
for i in range(idxs.shape[0]):
|
250 |
-
row, col = idxs[i]
|
251 |
-
if (col == 0) or (col == num_token - 1):
|
252 |
-
attention_mask[row, col, col] = True
|
253 |
-
position_ids[row, col] = 0
|
254 |
-
else:
|
255 |
-
attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True
|
256 |
-
position_ids[row, previous_col + 1 : col + 1] = torch.arange(
|
257 |
-
0, col - previous_col, device=input_ids.device
|
258 |
-
)
|
259 |
-
c2t_maski = torch.zeros((num_token), device=input_ids.device).bool()
|
260 |
-
c2t_maski[previous_col + 1 : col] = True
|
261 |
-
cate_to_token_mask_list[row].append(c2t_maski)
|
262 |
-
previous_col = col
|
263 |
-
|
264 |
-
cate_to_token_mask_list = [
|
265 |
-
torch.stack(cate_to_token_mask_listi, dim=0)
|
266 |
-
for cate_to_token_mask_listi in cate_to_token_mask_list
|
267 |
-
]
|
268 |
-
|
269 |
-
# # padding mask
|
270 |
-
# padding_mask = tokenized['attention_mask']
|
271 |
-
# attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool()
|
272 |
-
|
273 |
-
return attention_mask, position_ids.to(torch.long), cate_to_token_mask_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/fuse_modules-checkpoint.py
DELETED
@@ -1,298 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# Grounding DINO
|
3 |
-
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
-
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
-
# ------------------------------------------------------------------------
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
import torch.nn.functional as F
|
11 |
-
from timm.models.layers import DropPath
|
12 |
-
import loralib as lora
|
13 |
-
|
14 |
-
class FeatureResizer(nn.Module):
|
15 |
-
"""
|
16 |
-
This class takes as input a set of embeddings of dimension C1 and outputs a set of
|
17 |
-
embedding of dimension C2, after a linear transformation, dropout and normalization (LN).
|
18 |
-
"""
|
19 |
-
|
20 |
-
def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True):
|
21 |
-
super().__init__()
|
22 |
-
self.do_ln = do_ln
|
23 |
-
r = 12
|
24 |
-
# Object feature encoding
|
25 |
-
self.fc = lora.Linear(input_feat_size, output_feat_size,r=r, bias=True)
|
26 |
-
self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12)
|
27 |
-
self.dropout = nn.Dropout(dropout)
|
28 |
-
|
29 |
-
def forward(self, encoder_features):
|
30 |
-
x = self.fc(encoder_features)
|
31 |
-
if self.do_ln:
|
32 |
-
x = self.layer_norm(x)
|
33 |
-
output = self.dropout(x)
|
34 |
-
return output
|
35 |
-
|
36 |
-
|
37 |
-
def l1norm(X, dim, eps=1e-8):
|
38 |
-
"""L1-normalize columns of X"""
|
39 |
-
norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
|
40 |
-
X = torch.div(X, norm)
|
41 |
-
return X
|
42 |
-
|
43 |
-
|
44 |
-
def l2norm(X, dim, eps=1e-8):
|
45 |
-
"""L2-normalize columns of X"""
|
46 |
-
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
|
47 |
-
X = torch.div(X, norm)
|
48 |
-
return X
|
49 |
-
|
50 |
-
|
51 |
-
def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8):
|
52 |
-
"""
|
53 |
-
query: (n_context, queryL, d)
|
54 |
-
context: (n_context, sourceL, d)
|
55 |
-
"""
|
56 |
-
batch_size_q, queryL = query.size(0), query.size(1)
|
57 |
-
batch_size, sourceL = context.size(0), context.size(1)
|
58 |
-
|
59 |
-
# Get attention
|
60 |
-
# --> (batch, d, queryL)
|
61 |
-
queryT = torch.transpose(query, 1, 2)
|
62 |
-
|
63 |
-
# (batch, sourceL, d)(batch, d, queryL)
|
64 |
-
# --> (batch, sourceL, queryL)
|
65 |
-
attn = torch.bmm(context, queryT)
|
66 |
-
if raw_feature_norm == "softmax":
|
67 |
-
# --> (batch*sourceL, queryL)
|
68 |
-
attn = attn.view(batch_size * sourceL, queryL)
|
69 |
-
attn = nn.Softmax()(attn)
|
70 |
-
# --> (batch, sourceL, queryL)
|
71 |
-
attn = attn.view(batch_size, sourceL, queryL)
|
72 |
-
elif raw_feature_norm == "l2norm":
|
73 |
-
attn = l2norm(attn, 2)
|
74 |
-
elif raw_feature_norm == "clipped_l2norm":
|
75 |
-
attn = nn.LeakyReLU(0.1)(attn)
|
76 |
-
attn = l2norm(attn, 2)
|
77 |
-
else:
|
78 |
-
raise ValueError("unknown first norm type:", raw_feature_norm)
|
79 |
-
# --> (batch, queryL, sourceL)
|
80 |
-
attn = torch.transpose(attn, 1, 2).contiguous()
|
81 |
-
# --> (batch*queryL, sourceL)
|
82 |
-
attn = attn.view(batch_size * queryL, sourceL)
|
83 |
-
attn = nn.Softmax()(attn * smooth)
|
84 |
-
# --> (batch, queryL, sourceL)
|
85 |
-
attn = attn.view(batch_size, queryL, sourceL)
|
86 |
-
# --> (batch, sourceL, queryL)
|
87 |
-
attnT = torch.transpose(attn, 1, 2).contiguous()
|
88 |
-
|
89 |
-
# --> (batch, d, sourceL)
|
90 |
-
contextT = torch.transpose(context, 1, 2)
|
91 |
-
# (batch x d x sourceL)(batch x sourceL x queryL)
|
92 |
-
# --> (batch, d, queryL)
|
93 |
-
weightedContext = torch.bmm(contextT, attnT)
|
94 |
-
# --> (batch, queryL, d)
|
95 |
-
weightedContext = torch.transpose(weightedContext, 1, 2)
|
96 |
-
|
97 |
-
return weightedContext, attnT
|
98 |
-
|
99 |
-
|
100 |
-
class BiMultiHeadAttention(nn.Module):
|
101 |
-
def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None):
|
102 |
-
super(BiMultiHeadAttention, self).__init__()
|
103 |
-
|
104 |
-
self.embed_dim = embed_dim
|
105 |
-
self.num_heads = num_heads
|
106 |
-
self.head_dim = embed_dim // num_heads
|
107 |
-
self.v_dim = v_dim
|
108 |
-
self.l_dim = l_dim
|
109 |
-
|
110 |
-
assert (
|
111 |
-
self.head_dim * self.num_heads == self.embed_dim
|
112 |
-
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
|
113 |
-
self.scale = self.head_dim ** (-0.5)
|
114 |
-
self.dropout = dropout
|
115 |
-
r = 12
|
116 |
-
self.v_proj = lora.Linear(self.v_dim, self.embed_dim , r=r)
|
117 |
-
self.l_proj = lora.Linear(self.l_dim, self.embed_dim , r=r )
|
118 |
-
self.values_v_proj = lora.Linear(self.v_dim, self.embed_dim , r=r )
|
119 |
-
self.values_l_proj = lora.Linear(self.l_dim, self.embed_dim , r=r )
|
120 |
-
|
121 |
-
self.out_v_proj = lora.Linear(self.embed_dim, self.v_dim , r=r )
|
122 |
-
self.out_l_proj = lora.Linear(self.embed_dim, self.l_dim , r=r )
|
123 |
-
|
124 |
-
self.stable_softmax_2d = True
|
125 |
-
self.clamp_min_for_underflow = True
|
126 |
-
self.clamp_max_for_overflow = True
|
127 |
-
|
128 |
-
self._reset_parameters()
|
129 |
-
|
130 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
131 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
132 |
-
|
133 |
-
def _reset_parameters(self):
|
134 |
-
nn.init.xavier_uniform_(self.v_proj.weight)
|
135 |
-
self.v_proj.bias.data.fill_(0)
|
136 |
-
nn.init.xavier_uniform_(self.l_proj.weight)
|
137 |
-
self.l_proj.bias.data.fill_(0)
|
138 |
-
nn.init.xavier_uniform_(self.values_v_proj.weight)
|
139 |
-
self.values_v_proj.bias.data.fill_(0)
|
140 |
-
nn.init.xavier_uniform_(self.values_l_proj.weight)
|
141 |
-
self.values_l_proj.bias.data.fill_(0)
|
142 |
-
nn.init.xavier_uniform_(self.out_v_proj.weight)
|
143 |
-
self.out_v_proj.bias.data.fill_(0)
|
144 |
-
nn.init.xavier_uniform_(self.out_l_proj.weight)
|
145 |
-
self.out_l_proj.bias.data.fill_(0)
|
146 |
-
|
147 |
-
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
|
148 |
-
"""_summary_
|
149 |
-
|
150 |
-
Args:
|
151 |
-
v (_type_): bs, n_img, dim
|
152 |
-
l (_type_): bs, n_text, dim
|
153 |
-
attention_mask_v (_type_, optional): _description_. bs, n_img
|
154 |
-
attention_mask_l (_type_, optional): _description_. bs, n_text
|
155 |
-
|
156 |
-
Returns:
|
157 |
-
_type_: _description_
|
158 |
-
"""
|
159 |
-
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
160 |
-
# import ipdb; ipdb.set_trace()
|
161 |
-
bsz, tgt_len, _ = v.size()
|
162 |
-
|
163 |
-
query_states = self.v_proj(v) * self.scale
|
164 |
-
key_states = self._shape(self.l_proj(l), -1, bsz)
|
165 |
-
value_v_states = self._shape(self.values_v_proj(v), -1, bsz)
|
166 |
-
value_l_states = self._shape(self.values_l_proj(l), -1, bsz)
|
167 |
-
|
168 |
-
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
169 |
-
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
170 |
-
key_states = key_states.view(*proj_shape)
|
171 |
-
value_v_states = value_v_states.view(*proj_shape)
|
172 |
-
value_l_states = value_l_states.view(*proj_shape)
|
173 |
-
|
174 |
-
src_len = key_states.size(1)
|
175 |
-
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bs*nhead, nimg, ntxt
|
176 |
-
|
177 |
-
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
178 |
-
raise ValueError(
|
179 |
-
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
|
180 |
-
)
|
181 |
-
|
182 |
-
if self.stable_softmax_2d:
|
183 |
-
attn_weights = attn_weights - attn_weights.max()
|
184 |
-
|
185 |
-
if self.clamp_min_for_underflow:
|
186 |
-
attn_weights = torch.clamp(
|
187 |
-
attn_weights, min=-50000
|
188 |
-
) # Do not increase -50000, data type half has quite limited range
|
189 |
-
if self.clamp_max_for_overflow:
|
190 |
-
attn_weights = torch.clamp(
|
191 |
-
attn_weights, max=50000
|
192 |
-
) # Do not increase 50000, data type half has quite limited range
|
193 |
-
|
194 |
-
attn_weights_T = attn_weights.transpose(1, 2)
|
195 |
-
attn_weights_l = attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[0]
|
196 |
-
if self.clamp_min_for_underflow:
|
197 |
-
attn_weights_l = torch.clamp(
|
198 |
-
attn_weights_l, min=-50000
|
199 |
-
) # Do not increase -50000, data type half has quite limited range
|
200 |
-
if self.clamp_max_for_overflow:
|
201 |
-
attn_weights_l = torch.clamp(
|
202 |
-
attn_weights_l, max=50000
|
203 |
-
) # Do not increase 50000, data type half has quite limited range
|
204 |
-
|
205 |
-
# mask vison for language
|
206 |
-
if attention_mask_v is not None:
|
207 |
-
attention_mask_v = (
|
208 |
-
attention_mask_v[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
|
209 |
-
)
|
210 |
-
attn_weights_l.masked_fill_(attention_mask_v, float("-inf"))
|
211 |
-
|
212 |
-
attn_weights_l = attn_weights_l.softmax(dim=-1)
|
213 |
-
|
214 |
-
# mask language for vision
|
215 |
-
if attention_mask_l is not None:
|
216 |
-
attention_mask_l = (
|
217 |
-
attention_mask_l[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
|
218 |
-
)
|
219 |
-
attn_weights.masked_fill_(attention_mask_l, float("-inf"))
|
220 |
-
attn_weights_v = attn_weights.softmax(dim=-1)
|
221 |
-
|
222 |
-
attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training)
|
223 |
-
attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training)
|
224 |
-
|
225 |
-
attn_output_v = torch.bmm(attn_probs_v, value_l_states)
|
226 |
-
attn_output_l = torch.bmm(attn_probs_l, value_v_states)
|
227 |
-
|
228 |
-
if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
229 |
-
raise ValueError(
|
230 |
-
f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}"
|
231 |
-
)
|
232 |
-
|
233 |
-
if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim):
|
234 |
-
raise ValueError(
|
235 |
-
f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}"
|
236 |
-
)
|
237 |
-
|
238 |
-
attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
239 |
-
attn_output_v = attn_output_v.transpose(1, 2)
|
240 |
-
attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim)
|
241 |
-
|
242 |
-
attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim)
|
243 |
-
attn_output_l = attn_output_l.transpose(1, 2)
|
244 |
-
attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim)
|
245 |
-
|
246 |
-
attn_output_v = self.out_v_proj(attn_output_v)
|
247 |
-
attn_output_l = self.out_l_proj(attn_output_l)
|
248 |
-
|
249 |
-
return attn_output_v, attn_output_l
|
250 |
-
|
251 |
-
|
252 |
-
# Bi-Direction MHA (text->image, image->text)
|
253 |
-
class BiAttentionBlock(nn.Module):
|
254 |
-
def __init__(
|
255 |
-
self,
|
256 |
-
v_dim,
|
257 |
-
l_dim,
|
258 |
-
embed_dim,
|
259 |
-
num_heads,
|
260 |
-
dropout=0.1,
|
261 |
-
drop_path=0.0,
|
262 |
-
init_values=1e-4,
|
263 |
-
cfg=None,
|
264 |
-
):
|
265 |
-
"""
|
266 |
-
Inputs:
|
267 |
-
embed_dim - Dimensionality of input and attention feature vectors
|
268 |
-
hidden_dim - Dimensionality of hidden layer in feed-forward network
|
269 |
-
(usually 2-4x larger than embed_dim)
|
270 |
-
num_heads - Number of heads to use in the Multi-Head Attention block
|
271 |
-
dropout - Amount of dropout to apply in the feed-forward network
|
272 |
-
"""
|
273 |
-
super(BiAttentionBlock, self).__init__()
|
274 |
-
|
275 |
-
# pre layer norm
|
276 |
-
self.layer_norm_v = nn.LayerNorm(v_dim)
|
277 |
-
self.layer_norm_l = nn.LayerNorm(l_dim)
|
278 |
-
self.attn = BiMultiHeadAttention(
|
279 |
-
v_dim=v_dim, l_dim=l_dim, embed_dim=embed_dim, num_heads=num_heads, dropout=dropout
|
280 |
-
)
|
281 |
-
|
282 |
-
# add layer scale for training stability
|
283 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
284 |
-
self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True)
|
285 |
-
self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True)
|
286 |
-
|
287 |
-
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
|
288 |
-
v = self.layer_norm_v(v)
|
289 |
-
l = self.layer_norm_l(l)
|
290 |
-
delta_v, delta_l = self.attn(
|
291 |
-
v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l
|
292 |
-
)
|
293 |
-
# v, l = v + delta_v, l + delta_l
|
294 |
-
v = v + self.drop_path(self.gamma_v * delta_v)
|
295 |
-
l = l + self.drop_path(self.gamma_l * delta_l)
|
296 |
-
return v, l
|
297 |
-
|
298 |
-
# def forward(self, v:List[torch.Tensor], l, attention_mask_v=None, attention_mask_l=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/groundingdino-checkpoint.py
DELETED
@@ -1,857 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# Grounding DINO
|
3 |
-
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
-
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
-
# ------------------------------------------------------------------------
|
7 |
-
# Conditional DETR model and criterion classes.
|
8 |
-
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
9 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
-
# ------------------------------------------------------------------------
|
11 |
-
# Modified from DETR (https://github.com/facebookresearch/detr)
|
12 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
13 |
-
# ------------------------------------------------------------------------
|
14 |
-
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
|
15 |
-
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
16 |
-
# ------------------------------------------------------------------------
|
17 |
-
import copy
|
18 |
-
from typing import List
|
19 |
-
|
20 |
-
import torch
|
21 |
-
import torch.nn.functional as F
|
22 |
-
from torch import nn
|
23 |
-
from torchvision.ops.boxes import nms
|
24 |
-
from transformers import AutoTokenizer, BertModel, BertTokenizer, RobertaModel, RobertaTokenizerFast
|
25 |
-
|
26 |
-
from groundingdino.util import box_ops, get_tokenlizer
|
27 |
-
from groundingdino.util.misc import (
|
28 |
-
NestedTensor,
|
29 |
-
accuracy,
|
30 |
-
get_world_size,
|
31 |
-
interpolate,
|
32 |
-
inverse_sigmoid,
|
33 |
-
is_dist_avail_and_initialized,
|
34 |
-
nested_tensor_from_tensor_list,
|
35 |
-
)
|
36 |
-
from groundingdino.util.utils import get_phrases_from_posmap
|
37 |
-
from groundingdino.util.visualizer import COCOVisualizer
|
38 |
-
from groundingdino.util.vl_utils import create_positive_map_from_span
|
39 |
-
|
40 |
-
from ..registry import MODULE_BUILD_FUNCS
|
41 |
-
from .backbone import build_backbone
|
42 |
-
from .bertwarper import (
|
43 |
-
BertModelWarper,
|
44 |
-
generate_masks_with_special_tokens,
|
45 |
-
generate_masks_with_special_tokens_and_transfer_map,
|
46 |
-
)
|
47 |
-
from .transformer import build_transformer
|
48 |
-
from .utils import MLP, ContrastiveEmbed, sigmoid_focal_loss
|
49 |
-
|
50 |
-
from .matcher import build_matcher
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
class GroundingDINO(nn.Module):
|
56 |
-
"""This is the Cross-Attention Detector module that performs object detection"""
|
57 |
-
|
58 |
-
def __init__(
|
59 |
-
self,
|
60 |
-
backbone,
|
61 |
-
transformer,
|
62 |
-
num_queries,
|
63 |
-
aux_loss=False,
|
64 |
-
iter_update=False,
|
65 |
-
query_dim=2,
|
66 |
-
num_feature_levels=1,
|
67 |
-
nheads=8,
|
68 |
-
# two stage
|
69 |
-
two_stage_type="no", # ['no', 'standard']
|
70 |
-
dec_pred_bbox_embed_share=True,
|
71 |
-
two_stage_class_embed_share=True,
|
72 |
-
two_stage_bbox_embed_share=True,
|
73 |
-
num_patterns=0,
|
74 |
-
dn_number=100,
|
75 |
-
dn_box_noise_scale=0.4,
|
76 |
-
dn_label_noise_ratio=0.5,
|
77 |
-
dn_labelbook_size=100,
|
78 |
-
text_encoder_type="bert-base-uncased",
|
79 |
-
sub_sentence_present=True,
|
80 |
-
max_text_len=256,
|
81 |
-
):
|
82 |
-
"""Initializes the model.
|
83 |
-
Parameters:
|
84 |
-
backbone: torch module of the backbone to be used. See backbone.py
|
85 |
-
transformer: torch module of the transformer architecture. See transformer.py
|
86 |
-
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
87 |
-
Conditional DETR can detect in a single image. For COCO, we recommend 100 queries.
|
88 |
-
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
89 |
-
"""
|
90 |
-
super().__init__()
|
91 |
-
self.num_queries = num_queries
|
92 |
-
self.transformer = transformer
|
93 |
-
self.hidden_dim = hidden_dim = transformer.d_model
|
94 |
-
self.num_feature_levels = num_feature_levels
|
95 |
-
self.nheads = nheads
|
96 |
-
self.max_text_len = 256
|
97 |
-
self.sub_sentence_present = sub_sentence_present
|
98 |
-
|
99 |
-
# setting query dim
|
100 |
-
self.query_dim = query_dim
|
101 |
-
assert query_dim == 4
|
102 |
-
|
103 |
-
# for dn training
|
104 |
-
self.num_patterns = num_patterns
|
105 |
-
self.dn_number = dn_number
|
106 |
-
self.dn_box_noise_scale = dn_box_noise_scale
|
107 |
-
self.dn_label_noise_ratio = dn_label_noise_ratio
|
108 |
-
self.dn_labelbook_size = dn_labelbook_size
|
109 |
-
|
110 |
-
# bert
|
111 |
-
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
|
112 |
-
self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type)
|
113 |
-
self.bert.pooler.dense.weight.requires_grad_(False)
|
114 |
-
self.bert.pooler.dense.bias.requires_grad_(False)
|
115 |
-
self.bert = BertModelWarper(bert_model=self.bert)
|
116 |
-
|
117 |
-
self.feat_map = nn.Linear(self.bert.config.hidden_size, self.hidden_dim, bias=True)
|
118 |
-
nn.init.constant_(self.feat_map.bias.data, 0)
|
119 |
-
nn.init.xavier_uniform_(self.feat_map.weight.data)
|
120 |
-
# freeze
|
121 |
-
|
122 |
-
# special tokens
|
123 |
-
self.specical_tokens = self.tokenizer.convert_tokens_to_ids(["[CLS]", "[SEP]", ".", "?"])
|
124 |
-
|
125 |
-
# prepare input projection layers
|
126 |
-
if num_feature_levels > 1:
|
127 |
-
num_backbone_outs = len(backbone.num_channels)
|
128 |
-
input_proj_list = []
|
129 |
-
for _ in range(num_backbone_outs):
|
130 |
-
in_channels = backbone.num_channels[_]
|
131 |
-
input_proj_list.append(
|
132 |
-
nn.Sequential(
|
133 |
-
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
|
134 |
-
nn.GroupNorm(32, hidden_dim),
|
135 |
-
)
|
136 |
-
)
|
137 |
-
for _ in range(num_feature_levels - num_backbone_outs):
|
138 |
-
input_proj_list.append(
|
139 |
-
nn.Sequential(
|
140 |
-
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
|
141 |
-
nn.GroupNorm(32, hidden_dim),
|
142 |
-
)
|
143 |
-
)
|
144 |
-
in_channels = hidden_dim
|
145 |
-
self.input_proj = nn.ModuleList(input_proj_list)
|
146 |
-
else:
|
147 |
-
assert two_stage_type == "no", "two_stage_type should be no if num_feature_levels=1 !!!"
|
148 |
-
self.input_proj = nn.ModuleList(
|
149 |
-
[
|
150 |
-
nn.Sequential(
|
151 |
-
nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1),
|
152 |
-
nn.GroupNorm(32, hidden_dim),
|
153 |
-
)
|
154 |
-
]
|
155 |
-
)
|
156 |
-
|
157 |
-
self.backbone = backbone
|
158 |
-
self.aux_loss = aux_loss
|
159 |
-
self.box_pred_damping = box_pred_damping = None
|
160 |
-
|
161 |
-
self.iter_update = iter_update
|
162 |
-
assert iter_update, "Why not iter_update?"
|
163 |
-
|
164 |
-
# prepare pred layers
|
165 |
-
self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
|
166 |
-
# prepare class & box embed
|
167 |
-
_class_embed = ContrastiveEmbed()
|
168 |
-
|
169 |
-
_bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
|
170 |
-
nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
|
171 |
-
nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)
|
172 |
-
|
173 |
-
if dec_pred_bbox_embed_share:
|
174 |
-
box_embed_layerlist = [_bbox_embed for i in range(transformer.num_decoder_layers)]
|
175 |
-
else:
|
176 |
-
box_embed_layerlist = [
|
177 |
-
copy.deepcopy(_bbox_embed) for i in range(transformer.num_decoder_layers)
|
178 |
-
]
|
179 |
-
class_embed_layerlist = [_class_embed for i in range(transformer.num_decoder_layers)]
|
180 |
-
self.bbox_embed = nn.ModuleList(box_embed_layerlist)
|
181 |
-
self.class_embed = nn.ModuleList(class_embed_layerlist)
|
182 |
-
self.transformer.decoder.bbox_embed = self.bbox_embed
|
183 |
-
self.transformer.decoder.class_embed = self.class_embed
|
184 |
-
|
185 |
-
# two stage
|
186 |
-
self.two_stage_type = two_stage_type
|
187 |
-
assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
|
188 |
-
two_stage_type
|
189 |
-
)
|
190 |
-
if two_stage_type != "no":
|
191 |
-
if two_stage_bbox_embed_share:
|
192 |
-
assert dec_pred_bbox_embed_share
|
193 |
-
self.transformer.enc_out_bbox_embed = _bbox_embed
|
194 |
-
else:
|
195 |
-
self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed)
|
196 |
-
|
197 |
-
if two_stage_class_embed_share:
|
198 |
-
assert dec_pred_bbox_embed_share
|
199 |
-
self.transformer.enc_out_class_embed = _class_embed
|
200 |
-
else:
|
201 |
-
self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed)
|
202 |
-
|
203 |
-
self.refpoint_embed = None
|
204 |
-
|
205 |
-
self._reset_parameters()
|
206 |
-
|
207 |
-
def _reset_parameters(self):
|
208 |
-
# init input_proj
|
209 |
-
for proj in self.input_proj:
|
210 |
-
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
211 |
-
nn.init.constant_(proj[0].bias, 0)
|
212 |
-
|
213 |
-
def init_ref_points(self, use_num_queries):
|
214 |
-
self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
|
215 |
-
|
216 |
-
def forward(self, samples: NestedTensor, targets: List = None, **kw):
|
217 |
-
"""The forward expects a NestedTensor, which consists of:
|
218 |
-
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
|
219 |
-
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
|
220 |
-
|
221 |
-
It returns a dict with the following elements:
|
222 |
-
- "pred_logits": the classification logits (including no-object) for all queries.
|
223 |
-
Shape= [batch_size x num_queries x num_classes]
|
224 |
-
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
|
225 |
-
(center_x, center_y, width, height). These values are normalized in [0, 1],
|
226 |
-
relative to the size of each individual image (disregarding possible padding).
|
227 |
-
See PostProcess for information on how to retrieve the unnormalized bounding box.
|
228 |
-
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
|
229 |
-
dictionnaries containing the two above keys for each decoder layer.
|
230 |
-
"""
|
231 |
-
if targets is None:
|
232 |
-
captions = kw["captions"]
|
233 |
-
else:
|
234 |
-
captions = [t["caption"] for t in targets]
|
235 |
-
# encoder texts
|
236 |
-
|
237 |
-
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
|
238 |
-
samples.device
|
239 |
-
)
|
240 |
-
one_hot_token = tokenized
|
241 |
-
|
242 |
-
(
|
243 |
-
text_self_attention_masks,
|
244 |
-
position_ids,
|
245 |
-
cate_to_token_mask_list,
|
246 |
-
) = generate_masks_with_special_tokens_and_transfer_map(
|
247 |
-
tokenized, self.specical_tokens, self.tokenizer
|
248 |
-
)
|
249 |
-
|
250 |
-
if text_self_attention_masks.shape[1] > self.max_text_len:
|
251 |
-
text_self_attention_masks = text_self_attention_masks[
|
252 |
-
:, : self.max_text_len, : self.max_text_len
|
253 |
-
]
|
254 |
-
position_ids = position_ids[:, : self.max_text_len]
|
255 |
-
tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len]
|
256 |
-
tokenized["attention_mask"] = tokenized["attention_mask"][:, : self.max_text_len]
|
257 |
-
tokenized["token_type_ids"] = tokenized["token_type_ids"][:, : self.max_text_len]
|
258 |
-
|
259 |
-
# extract text embeddings
|
260 |
-
if self.sub_sentence_present:
|
261 |
-
tokenized_for_encoder = {k: v for k, v in tokenized.items() if k != "attention_mask"}
|
262 |
-
tokenized_for_encoder["attention_mask"] = text_self_attention_masks
|
263 |
-
tokenized_for_encoder["position_ids"] = position_ids
|
264 |
-
else:
|
265 |
-
tokenized_for_encoder = tokenized
|
266 |
-
|
267 |
-
bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768
|
268 |
-
|
269 |
-
encoded_text = self.feat_map(bert_output["last_hidden_state"]) # bs, 195, d_model
|
270 |
-
text_token_mask = tokenized.attention_mask.bool() # bs, 195
|
271 |
-
# text_token_mask: True for nomask, False for mask
|
272 |
-
# text_self_attention_masks: True for nomask, False for mask
|
273 |
-
|
274 |
-
if encoded_text.shape[1] > self.max_text_len:
|
275 |
-
encoded_text = encoded_text[:, : self.max_text_len, :]
|
276 |
-
text_token_mask = text_token_mask[:, : self.max_text_len]
|
277 |
-
position_ids = position_ids[:, : self.max_text_len]
|
278 |
-
text_self_attention_masks = text_self_attention_masks[
|
279 |
-
:, : self.max_text_len, : self.max_text_len
|
280 |
-
]
|
281 |
-
|
282 |
-
text_dict = {
|
283 |
-
"encoded_text": encoded_text, # bs, 195, d_model
|
284 |
-
"text_token_mask": text_token_mask, # bs, 195
|
285 |
-
"position_ids": position_ids, # bs, 195
|
286 |
-
"text_self_attention_masks": text_self_attention_masks, # bs, 195,195
|
287 |
-
}
|
288 |
-
|
289 |
-
|
290 |
-
if isinstance(samples, (list, torch.Tensor)):
|
291 |
-
samples = nested_tensor_from_tensor_list(samples)
|
292 |
-
features, poss = self.backbone(samples)
|
293 |
-
srcs = []
|
294 |
-
masks = []
|
295 |
-
for l, feat in enumerate(features):
|
296 |
-
src, mask = feat.decompose()
|
297 |
-
srcs.append(self.input_proj[l](src))
|
298 |
-
masks.append(mask)
|
299 |
-
assert mask is not None
|
300 |
-
if self.num_feature_levels > len(srcs):
|
301 |
-
_len_srcs = len(srcs)
|
302 |
-
for l in range(_len_srcs, self.num_feature_levels):
|
303 |
-
if l == _len_srcs:
|
304 |
-
src = self.input_proj[l](features[-1].tensors)
|
305 |
-
else:
|
306 |
-
src = self.input_proj[l](srcs[-1])
|
307 |
-
m = samples.mask
|
308 |
-
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
|
309 |
-
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
|
310 |
-
srcs.append(src)
|
311 |
-
masks.append(mask)
|
312 |
-
poss.append(pos_l)
|
313 |
-
|
314 |
-
input_query_bbox = input_query_label = attn_mask = dn_meta = None
|
315 |
-
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
|
316 |
-
srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict
|
317 |
-
)
|
318 |
-
|
319 |
-
|
320 |
-
# deformable-detr-like anchor update
|
321 |
-
outputs_coord_list = []
|
322 |
-
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(
|
323 |
-
zip(reference[:-1], self.bbox_embed, hs)
|
324 |
-
):
|
325 |
-
layer_delta_unsig = layer_bbox_embed(layer_hs)
|
326 |
-
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig)
|
327 |
-
layer_outputs_unsig = layer_outputs_unsig.sigmoid()
|
328 |
-
outputs_coord_list.append(layer_outputs_unsig)
|
329 |
-
outputs_coord_list = torch.stack(outputs_coord_list)
|
330 |
-
|
331 |
-
|
332 |
-
outputs_class = torch.stack(
|
333 |
-
[
|
334 |
-
layer_cls_embed(layer_hs, text_dict)
|
335 |
-
for layer_cls_embed, layer_hs in zip(self.class_embed, hs)
|
336 |
-
]
|
337 |
-
)
|
338 |
-
|
339 |
-
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]}
|
340 |
-
|
341 |
-
# Used to calculate losses
|
342 |
-
bs, len_td = text_dict['text_token_mask'].shape
|
343 |
-
out['text_mask']=torch.zeros(bs, self.max_text_len, dtype=torch.bool).to(
|
344 |
-
samples.device
|
345 |
-
)
|
346 |
-
for b in range(bs):
|
347 |
-
for j in range(len_td):
|
348 |
-
if text_dict['text_token_mask'][b][j] == True:
|
349 |
-
out['text_mask'][b][j] = True
|
350 |
-
|
351 |
-
# for intermediate outputs
|
352 |
-
if self.aux_loss:
|
353 |
-
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord_list)
|
354 |
-
out['token']=one_hot_token
|
355 |
-
# # for encoder output
|
356 |
-
if hs_enc is not None:
|
357 |
-
# prepare intermediate outputs
|
358 |
-
interm_coord = ref_enc[-1]
|
359 |
-
interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
|
360 |
-
out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord}
|
361 |
-
out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal}
|
362 |
-
|
363 |
-
# outputs['pred_logits'].shape
|
364 |
-
# torch.Size([4, 900, 256])
|
365 |
-
|
366 |
-
# outputs['pred_boxes'].shape
|
367 |
-
# torch.Size([4, 900, 4])
|
368 |
-
|
369 |
-
# outputs['text_mask'].shape
|
370 |
-
# torch.Size([256])
|
371 |
-
|
372 |
-
# outputs['text_mask']
|
373 |
-
|
374 |
-
# outputs['aux_outputs'][0].keys()
|
375 |
-
# dict_keys(['pred_logits', 'pred_boxes', 'one_hot', 'text_mask'])
|
376 |
-
|
377 |
-
# outputs['aux_outputs'][img_idx]
|
378 |
-
|
379 |
-
# outputs['token']
|
380 |
-
# <class 'transformers.tokenization_utils_base.BatchEncoding'>
|
381 |
-
|
382 |
-
# outputs['interm_outputs'].keys()
|
383 |
-
# dict_keys(['pred_logits', 'pred_boxes', 'one_hot', 'text_mask'])
|
384 |
-
|
385 |
-
|
386 |
-
# outputs['interm_outputs_for_matching_pre'].keys()
|
387 |
-
# dict_keys(['pred_logits', 'pred_boxes'])
|
388 |
-
|
389 |
-
# outputs['one_hot'].shape
|
390 |
-
# torch.Size([4, 900, 256])
|
391 |
-
|
392 |
-
return out
|
393 |
-
|
394 |
-
@torch.jit.unused
|
395 |
-
def _set_aux_loss(self, outputs_class, outputs_coord):
|
396 |
-
# this is a workaround to make torchscript happy, as torchscript
|
397 |
-
# doesn't support dictionary with non-homogeneous values, such
|
398 |
-
# as a dict having both a Tensor and a list.
|
399 |
-
return [
|
400 |
-
{"pred_logits": a, "pred_boxes": b}
|
401 |
-
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
|
402 |
-
]
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
class SetCriterion(nn.Module):
|
408 |
-
def __init__(self, matcher, weight_dict, focal_alpha,focal_gamma, losses):
|
409 |
-
""" Create the criterion.
|
410 |
-
Parameters:
|
411 |
-
matcher: module able to compute a matching between targets and proposals
|
412 |
-
weight_dict: dict containing as key the names of the losses and as values their relative weight.
|
413 |
-
losses: list of all the losses to be applied. See get_loss for list of available losses.
|
414 |
-
focal_alpha: alpha in Focal Loss
|
415 |
-
"""
|
416 |
-
super().__init__()
|
417 |
-
self.matcher = matcher
|
418 |
-
self.weight_dict = weight_dict
|
419 |
-
self.losses = losses
|
420 |
-
self.focal_alpha = focal_alpha
|
421 |
-
self.focal_gamma= focal_gamma
|
422 |
-
|
423 |
-
@torch.no_grad()
|
424 |
-
def loss_cardinality(self, outputs, targets, indices, num_boxes):
|
425 |
-
""" Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes
|
426 |
-
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
|
427 |
-
"""
|
428 |
-
|
429 |
-
pred_logits = outputs['pred_logits']
|
430 |
-
device = pred_logits.device
|
431 |
-
tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device)
|
432 |
-
# Count the number of predictions that are NOT "no-object" (which is the last class)
|
433 |
-
card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1)
|
434 |
-
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float())
|
435 |
-
losses = {'cardinality_error': card_err}
|
436 |
-
return losses
|
437 |
-
|
438 |
-
def loss_boxes(self, outputs, targets, indices, num_boxes):
|
439 |
-
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
|
440 |
-
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
|
441 |
-
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
|
442 |
-
"""
|
443 |
-
assert 'pred_boxes' in outputs
|
444 |
-
idx = self._get_src_permutation_idx(indices)
|
445 |
-
src_boxes = outputs['pred_boxes'][idx]
|
446 |
-
target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)
|
447 |
-
|
448 |
-
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
|
449 |
-
|
450 |
-
losses = {}
|
451 |
-
losses['loss_bbox'] = loss_bbox.sum() / num_boxes
|
452 |
-
|
453 |
-
loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
|
454 |
-
box_ops.box_cxcywh_to_xyxy(src_boxes),
|
455 |
-
box_ops.box_cxcywh_to_xyxy(target_boxes)))
|
456 |
-
losses['loss_giou'] = loss_giou.sum() / num_boxes
|
457 |
-
|
458 |
-
# calculate the x,y and h,w loss
|
459 |
-
with torch.no_grad():
|
460 |
-
losses['loss_xy'] = loss_bbox[..., :2].sum() / num_boxes
|
461 |
-
losses['loss_hw'] = loss_bbox[..., 2:].sum() / num_boxes
|
462 |
-
|
463 |
-
|
464 |
-
return losses
|
465 |
-
|
466 |
-
|
467 |
-
def token_sigmoid_binary_focal_loss(self, outputs, targets, indices, num_boxes):
|
468 |
-
pred_logits=outputs['pred_logits']
|
469 |
-
new_targets=outputs['one_hot'].to(pred_logits.device)
|
470 |
-
text_mask=outputs['text_mask']
|
471 |
-
|
472 |
-
assert (new_targets.dim() == 3)
|
473 |
-
assert (pred_logits.dim() == 3) # batch x from x to
|
474 |
-
|
475 |
-
bs, n, _ = pred_logits.shape
|
476 |
-
alpha=self.focal_alpha
|
477 |
-
gamma=self.focal_gamma
|
478 |
-
if text_mask is not None:
|
479 |
-
# ODVG: each sample has different mask
|
480 |
-
text_mask = text_mask.repeat(1, pred_logits.size(1)).view(outputs['text_mask'].shape[0],-1,outputs['text_mask'].shape[1])
|
481 |
-
pred_logits = torch.masked_select(pred_logits, text_mask)
|
482 |
-
new_targets = torch.masked_select(new_targets, text_mask)
|
483 |
-
|
484 |
-
new_targets=new_targets.float()
|
485 |
-
p = torch.sigmoid(pred_logits)
|
486 |
-
ce_loss = F.binary_cross_entropy_with_logits(pred_logits, new_targets, reduction="none")
|
487 |
-
p_t = p * new_targets + (1 - p) * (1 - new_targets)
|
488 |
-
loss = ce_loss * ((1 - p_t) ** gamma)
|
489 |
-
|
490 |
-
if alpha >= 0:
|
491 |
-
alpha_t = alpha * new_targets + (1 - alpha) * (1 - new_targets)
|
492 |
-
loss = alpha_t * loss
|
493 |
-
|
494 |
-
total_num_pos=0
|
495 |
-
for batch_indices in indices:
|
496 |
-
total_num_pos += len(batch_indices[0])
|
497 |
-
num_pos_avg_per_gpu = max(total_num_pos , 1.0)
|
498 |
-
loss=loss.sum()/num_pos_avg_per_gpu
|
499 |
-
|
500 |
-
losses = {'loss_ce': loss}
|
501 |
-
return losses
|
502 |
-
|
503 |
-
|
504 |
-
def _get_src_permutation_idx(self, indices):
|
505 |
-
# permute predictions following indices
|
506 |
-
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
|
507 |
-
src_idx = torch.cat([src for (src, _) in indices])
|
508 |
-
return batch_idx, src_idx
|
509 |
-
|
510 |
-
def _get_tgt_permutation_idx(self, indices):
|
511 |
-
# permute targets following indices
|
512 |
-
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
|
513 |
-
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
|
514 |
-
return batch_idx, tgt_idx
|
515 |
-
|
516 |
-
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
|
517 |
-
loss_map = {
|
518 |
-
'labels': self.token_sigmoid_binary_focal_loss,
|
519 |
-
'cardinality': self.loss_cardinality,
|
520 |
-
'boxes': self.loss_boxes,
|
521 |
-
}
|
522 |
-
assert loss in loss_map, f'do you really want to compute {loss} loss?'
|
523 |
-
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
|
524 |
-
|
525 |
-
def forward(self, outputs, targets, cat_list, caption, return_indices=False):
|
526 |
-
""" This performs the loss computation.
|
527 |
-
Parameters:
|
528 |
-
outputs: dict of tensors, see the output specification of the model for the format
|
529 |
-
targets: list of dicts, such that len(targets) == batch_size.
|
530 |
-
The expected keys in each dict depends on the losses applied, see each loss' doc
|
531 |
-
|
532 |
-
return_indices: used for vis. if True, the layer0-5 indices will be returned as well.
|
533 |
-
"""
|
534 |
-
device=next(iter(outputs.values())).device
|
535 |
-
one_hot = torch.zeros(outputs['pred_logits'].size(),dtype=torch.int64) # torch.Size([bs, 900, 256])
|
536 |
-
token = outputs['token']
|
537 |
-
|
538 |
-
label_map_list = []
|
539 |
-
indices = []
|
540 |
-
for j in range(len(cat_list)): # bs
|
541 |
-
label_map=[]
|
542 |
-
for i in range(len(cat_list[j])):
|
543 |
-
label_id=torch.tensor([i])
|
544 |
-
per_label=create_positive_map(token[j], label_id, cat_list[j], caption[j])
|
545 |
-
label_map.append(per_label)
|
546 |
-
label_map=torch.stack(label_map,dim=0).squeeze(1)
|
547 |
-
label_map_list.append(label_map)
|
548 |
-
for j in range(len(cat_list)): # bs
|
549 |
-
for_match = {
|
550 |
-
"pred_logits" : outputs['pred_logits'][j].unsqueeze(0),
|
551 |
-
"pred_boxes" : outputs['pred_boxes'][j].unsqueeze(0)
|
552 |
-
}
|
553 |
-
inds = self.matcher(for_match, [targets[j]], label_map_list[j])
|
554 |
-
indices.extend(inds)
|
555 |
-
# indices : A list of size batch_size, containing tuples of (index_i, index_j) where:
|
556 |
-
# - index_i is the indices of the selected predictions (in order)
|
557 |
-
# - index_j is the indices of the corresponding selected targets (in order)
|
558 |
-
|
559 |
-
# import pdb; pdb.set_trace()
|
560 |
-
tgt_ids = [v["labels"].cpu() for v in targets]
|
561 |
-
# len(tgt_ids) == bs
|
562 |
-
for i in range(len(indices)):
|
563 |
-
tgt_ids[i]=tgt_ids[i][indices[i][1]]
|
564 |
-
one_hot[i,indices[i][0]] = label_map_list[i][tgt_ids[i]].to(torch.long)
|
565 |
-
outputs['one_hot'] = one_hot
|
566 |
-
if return_indices:
|
567 |
-
indices0_copy = indices
|
568 |
-
indices_list = []
|
569 |
-
|
570 |
-
# Compute the average number of target boxes accross all nodes, for normalization purposes
|
571 |
-
num_boxes_list = [len(t["labels"]) for t in targets]
|
572 |
-
num_boxes = sum(num_boxes_list)
|
573 |
-
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=device)
|
574 |
-
if is_dist_avail_and_initialized():
|
575 |
-
torch.distributed.all_reduce(num_boxes)
|
576 |
-
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
|
577 |
-
|
578 |
-
# Compute all the requested losses
|
579 |
-
losses = {}
|
580 |
-
for loss in self.losses:
|
581 |
-
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
|
582 |
-
|
583 |
-
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
|
584 |
-
if 'aux_outputs' in outputs:
|
585 |
-
for idx, aux_outputs in enumerate(outputs['aux_outputs']):
|
586 |
-
indices = []
|
587 |
-
for j in range(len(cat_list)): # bs
|
588 |
-
aux_output_single = {
|
589 |
-
'pred_logits' : aux_outputs['pred_logits'][j].unsqueeze(0),
|
590 |
-
'pred_boxes': aux_outputs['pred_boxes'][j].unsqueeze(0)
|
591 |
-
}
|
592 |
-
inds = self.matcher(aux_output_single, [targets[j]], label_map_list[j])
|
593 |
-
indices.extend(inds)
|
594 |
-
one_hot_aux = torch.zeros(outputs['pred_logits'].size(),dtype=torch.int64)
|
595 |
-
tgt_ids = [v["labels"].cpu() for v in targets]
|
596 |
-
for i in range(len(indices)):
|
597 |
-
tgt_ids[i]=tgt_ids[i][indices[i][1]]
|
598 |
-
one_hot_aux[i,indices[i][0]] = label_map_list[i][tgt_ids[i]].to(torch.long)
|
599 |
-
aux_outputs['one_hot'] = one_hot_aux
|
600 |
-
aux_outputs['text_mask'] = outputs['text_mask']
|
601 |
-
if return_indices:
|
602 |
-
indices_list.append(indices)
|
603 |
-
for loss in self.losses:
|
604 |
-
kwargs = {}
|
605 |
-
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
|
606 |
-
l_dict = {k + f'_{idx}': v for k, v in l_dict.items()}
|
607 |
-
losses.update(l_dict)
|
608 |
-
|
609 |
-
# interm_outputs loss
|
610 |
-
if 'interm_outputs' in outputs:
|
611 |
-
interm_outputs = outputs['interm_outputs']
|
612 |
-
indices = []
|
613 |
-
for j in range(len(cat_list)): # bs
|
614 |
-
interm_output_single = {
|
615 |
-
'pred_logits' : interm_outputs['pred_logits'][j].unsqueeze(0),
|
616 |
-
'pred_boxes': interm_outputs['pred_boxes'][j].unsqueeze(0)
|
617 |
-
}
|
618 |
-
inds = self.matcher(interm_output_single, [targets[j]], label_map_list[j])
|
619 |
-
indices.extend(inds)
|
620 |
-
one_hot_aux = torch.zeros(outputs['pred_logits'].size(),dtype=torch.int64)
|
621 |
-
tgt_ids = [v["labels"].cpu() for v in targets]
|
622 |
-
for i in range(len(indices)):
|
623 |
-
tgt_ids[i]=tgt_ids[i][indices[i][1]]
|
624 |
-
one_hot_aux[i,indices[i][0]] = label_map_list[i][tgt_ids[i]].to(torch.long)
|
625 |
-
interm_outputs['one_hot'] = one_hot_aux
|
626 |
-
interm_outputs['text_mask'] = outputs['text_mask']
|
627 |
-
if return_indices:
|
628 |
-
indices_list.append(indices)
|
629 |
-
for loss in self.losses:
|
630 |
-
kwargs = {}
|
631 |
-
l_dict = self.get_loss(loss, interm_outputs, targets, indices, num_boxes, **kwargs)
|
632 |
-
l_dict = {k + f'_interm': v for k, v in l_dict.items()}
|
633 |
-
losses.update(l_dict)
|
634 |
-
|
635 |
-
if return_indices:
|
636 |
-
indices_list.append(indices0_copy)
|
637 |
-
return losses, indices_list
|
638 |
-
|
639 |
-
return losses
|
640 |
-
|
641 |
-
|
642 |
-
class PostProcess(nn.Module):
|
643 |
-
""" This module converts the model's output into the format expected by the coco api"""
|
644 |
-
def __init__(self, num_select=100,text_encoder_type='text_encoder_type', nms_iou_threshold=-1,use_coco_eval=False,args=None) -> None:
|
645 |
-
super().__init__()
|
646 |
-
self.num_select = num_select
|
647 |
-
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
|
648 |
-
if args.use_coco_eval:
|
649 |
-
from pycocotools.coco import COCO
|
650 |
-
coco = COCO(args.coco_val_path)
|
651 |
-
category_dict = coco.loadCats(coco.getCatIds())
|
652 |
-
cat_list = [item['name'] for item in category_dict]
|
653 |
-
else:
|
654 |
-
cat_list=args.label_list
|
655 |
-
caption = " . ".join(cat_list) + ' .'
|
656 |
-
tokenized = self.tokenizer(caption, padding="longest", return_tensors="pt")
|
657 |
-
label_list = torch.arange(len(cat_list))
|
658 |
-
pos_map=create_positive_map(tokenized,label_list,cat_list,caption)
|
659 |
-
# build a mapping from label_id to pos_map
|
660 |
-
if args.use_coco_eval:
|
661 |
-
id_map = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11: 13, 12: 14, 13: 15, 14: 16, 15: 17, 16: 18, 17: 19, 18: 20, 19: 21, 20: 22, 21: 23, 22: 24, 23: 25, 24: 27, 25: 28, 26: 31, 27: 32, 28: 33, 29: 34, 30: 35, 31: 36, 32: 37, 33: 38, 34: 39, 35: 40, 36: 41, 37: 42, 38: 43, 39: 44, 40: 46,
|
662 |
-
41: 47, 42: 48, 43: 49, 44: 50, 45: 51, 46: 52, 47: 53, 48: 54, 49: 55, 50: 56, 51: 57, 52: 58, 53: 59, 54: 60, 55: 61, 56: 62, 57: 63, 58: 64, 59: 65, 60: 67, 61: 70, 62: 72, 63: 73, 64: 74, 65: 75, 66: 76, 67: 77, 68: 78, 69: 79, 70: 80, 71: 81, 72: 82, 73: 84, 74: 85, 75: 86, 76: 87, 77: 88, 78: 89, 79: 90}
|
663 |
-
new_pos_map = torch.zeros((91, 256))
|
664 |
-
for k, v in id_map.items():
|
665 |
-
new_pos_map[v] = pos_map[k]
|
666 |
-
pos_map=new_pos_map
|
667 |
-
|
668 |
-
|
669 |
-
self.nms_iou_threshold=nms_iou_threshold
|
670 |
-
self.positive_map = pos_map
|
671 |
-
|
672 |
-
@torch.no_grad()
|
673 |
-
def forward(self, outputs, target_sizes, not_to_xyxy=False, test=False):
|
674 |
-
""" Perform the computation
|
675 |
-
Parameters:
|
676 |
-
outputs: raw outputs of the model
|
677 |
-
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
|
678 |
-
For evaluation, this must be the original image size (before any data augmentation)
|
679 |
-
For visualization, this should be the image size after data augment, but before padding
|
680 |
-
"""
|
681 |
-
num_select = self.num_select
|
682 |
-
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
|
683 |
-
|
684 |
-
|
685 |
-
prob_to_token = out_logits.sigmoid()
|
686 |
-
pos_maps = self.positive_map.to(prob_to_token.device)
|
687 |
-
for label_ind in range(len(pos_maps)):
|
688 |
-
if pos_maps[label_ind].sum() != 0:
|
689 |
-
pos_maps[label_ind]=pos_maps[label_ind]/pos_maps[label_ind].sum()
|
690 |
-
|
691 |
-
prob_to_label = prob_to_token @ pos_maps.T
|
692 |
-
|
693 |
-
assert len(out_logits) == len(target_sizes)
|
694 |
-
assert target_sizes.shape[1] == 2
|
695 |
-
|
696 |
-
prob = prob_to_label
|
697 |
-
topk_values, topk_indexes = torch.topk(prob.view(prob.shape[0], -1), num_select, dim=1)
|
698 |
-
scores = topk_values
|
699 |
-
topk_boxes = torch.div(topk_indexes, prob.shape[2], rounding_mode='trunc')
|
700 |
-
labels = topk_indexes % prob.shape[2]
|
701 |
-
if not_to_xyxy:
|
702 |
-
boxes = out_bbox
|
703 |
-
else:
|
704 |
-
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
|
705 |
-
|
706 |
-
# if test:
|
707 |
-
# assert not not_to_xyxy
|
708 |
-
# boxes[:,:,2:] = boxes[:,:,2:] - boxes[:,:,:2]
|
709 |
-
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1,1,4))
|
710 |
-
|
711 |
-
# and from relative [0, 1] to absolute [0, height] coordinates
|
712 |
-
img_h, img_w = target_sizes.unbind(1)
|
713 |
-
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
|
714 |
-
boxes = boxes * scale_fct[:, None, :]
|
715 |
-
|
716 |
-
if self.nms_iou_threshold > 0:
|
717 |
-
item_indices = [nms(b, s, iou_threshold=self.nms_iou_threshold) for b,s in zip(boxes, scores)]
|
718 |
-
|
719 |
-
results = [{'scores': s[i], 'labels': l[i], 'boxes': b[i]} for s, l, b, i in zip(scores, labels, boxes, item_indices)]
|
720 |
-
else:
|
721 |
-
results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)]
|
722 |
-
results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)]
|
723 |
-
return results
|
724 |
-
|
725 |
-
|
726 |
-
@MODULE_BUILD_FUNCS.registe_with_name(module_name="groundingdino")
|
727 |
-
def build_groundingdino(args):
|
728 |
-
device = torch.device(args.device)
|
729 |
-
backbone = build_backbone(args)
|
730 |
-
transformer = build_transformer(args)
|
731 |
-
|
732 |
-
dn_labelbook_size = args.dn_labelbook_size
|
733 |
-
dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share
|
734 |
-
sub_sentence_present = args.sub_sentence_present
|
735 |
-
|
736 |
-
model = GroundingDINO(
|
737 |
-
backbone,
|
738 |
-
transformer,
|
739 |
-
num_queries=args.num_queries,
|
740 |
-
aux_loss=args.aux_loss,
|
741 |
-
iter_update=True,
|
742 |
-
query_dim=4,
|
743 |
-
num_feature_levels=args.num_feature_levels,
|
744 |
-
nheads=args.nheads,
|
745 |
-
dec_pred_bbox_embed_share=dec_pred_bbox_embed_share,
|
746 |
-
two_stage_type=args.two_stage_type,
|
747 |
-
two_stage_bbox_embed_share=args.two_stage_bbox_embed_share,
|
748 |
-
two_stage_class_embed_share=args.two_stage_class_embed_share,
|
749 |
-
num_patterns=args.num_patterns,
|
750 |
-
dn_number=0,
|
751 |
-
dn_box_noise_scale=args.dn_box_noise_scale,
|
752 |
-
dn_label_noise_ratio=args.dn_label_noise_ratio,
|
753 |
-
dn_labelbook_size=dn_labelbook_size,
|
754 |
-
text_encoder_type=args.text_encoder_type,
|
755 |
-
sub_sentence_present=sub_sentence_present,
|
756 |
-
max_text_len=args.max_text_len,
|
757 |
-
)
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
matcher = build_matcher(args)
|
762 |
-
|
763 |
-
# prepare weight dict
|
764 |
-
weight_dict = {'loss_ce': args.cls_loss_coef, 'loss_bbox': args.bbox_loss_coef}
|
765 |
-
weight_dict['loss_giou'] = args.giou_loss_coef
|
766 |
-
clean_weight_dict_wo_dn = copy.deepcopy(weight_dict)
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
clean_weight_dict = copy.deepcopy(weight_dict)
|
771 |
-
|
772 |
-
# TODO this is a hack
|
773 |
-
if args.aux_loss:
|
774 |
-
aux_weight_dict = {}
|
775 |
-
for i in range(args.dec_layers - 1):
|
776 |
-
aux_weight_dict.update({k + f'_{i}': v for k, v in clean_weight_dict.items()})
|
777 |
-
weight_dict.update(aux_weight_dict)
|
778 |
-
|
779 |
-
if args.two_stage_type != 'no':
|
780 |
-
interm_weight_dict = {}
|
781 |
-
try:
|
782 |
-
no_interm_box_loss = args.no_interm_box_loss
|
783 |
-
except:
|
784 |
-
no_interm_box_loss = False
|
785 |
-
_coeff_weight_dict = {
|
786 |
-
'loss_ce': 1.0,
|
787 |
-
'loss_bbox': 1.0 if not no_interm_box_loss else 0.0,
|
788 |
-
'loss_giou': 1.0 if not no_interm_box_loss else 0.0,
|
789 |
-
}
|
790 |
-
try:
|
791 |
-
interm_loss_coef = args.interm_loss_coef
|
792 |
-
except:
|
793 |
-
interm_loss_coef = 1.0
|
794 |
-
interm_weight_dict.update({k + f'_interm': v * interm_loss_coef * _coeff_weight_dict[k] for k, v in clean_weight_dict_wo_dn.items()})
|
795 |
-
weight_dict.update(interm_weight_dict)
|
796 |
-
|
797 |
-
# losses = ['labels', 'boxes', 'cardinality']
|
798 |
-
losses = ['labels', 'boxes']
|
799 |
-
|
800 |
-
criterion = SetCriterion(matcher=matcher, weight_dict=weight_dict,
|
801 |
-
focal_alpha=args.focal_alpha, focal_gamma=args.focal_gamma,losses=losses
|
802 |
-
)
|
803 |
-
criterion.to(device)
|
804 |
-
postprocessors = {'bbox': PostProcess(num_select=args.num_select , text_encoder_type=args.text_encoder_type,nms_iou_threshold=args.nms_iou_threshold,args=args)}
|
805 |
-
|
806 |
-
return model, criterion, postprocessors
|
807 |
-
|
808 |
-
def create_positive_map(tokenized, tokens_positive,cat_list,caption):
|
809 |
-
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j"""
|
810 |
-
positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float)
|
811 |
-
|
812 |
-
for j,label in enumerate(tokens_positive):
|
813 |
-
|
814 |
-
start_ind = caption.find(cat_list[label])
|
815 |
-
end_ind = start_ind + len(cat_list[label]) - 1
|
816 |
-
beg_pos = tokenized.char_to_token(start_ind)
|
817 |
-
try:
|
818 |
-
end_pos = tokenized.char_to_token(end_ind)
|
819 |
-
except:
|
820 |
-
end_pos = None
|
821 |
-
if end_pos is None:
|
822 |
-
try:
|
823 |
-
end_pos = tokenized.char_to_token(end_ind - 1)
|
824 |
-
if end_pos is None:
|
825 |
-
end_pos = tokenized.char_to_token(end_ind - 2)
|
826 |
-
except:
|
827 |
-
end_pos = None
|
828 |
-
# except Exception as e:
|
829 |
-
# print("beg:", beg, "end:", end)
|
830 |
-
# print("token_positive:", tokens_positive)
|
831 |
-
# # print("beg_pos:", beg_pos, "end_pos:", end_pos)
|
832 |
-
# raise e
|
833 |
-
# if beg_pos is None:
|
834 |
-
# try:
|
835 |
-
# beg_pos = tokenized.char_to_token(beg + 1)
|
836 |
-
# if beg_pos is None:
|
837 |
-
# beg_pos = tokenized.char_to_token(beg + 2)
|
838 |
-
# except:
|
839 |
-
# beg_pos = None
|
840 |
-
# if end_pos is None:
|
841 |
-
# try:
|
842 |
-
# end_pos = tokenized.char_to_token(end - 2)
|
843 |
-
# if end_pos is None:
|
844 |
-
# end_pos = tokenized.char_to_token(end - 3)
|
845 |
-
# except:
|
846 |
-
# end_pos = None
|
847 |
-
if beg_pos is None or end_pos is None:
|
848 |
-
continue
|
849 |
-
if beg_pos < 0 or end_pos < 0:
|
850 |
-
continue
|
851 |
-
if beg_pos > end_pos:
|
852 |
-
continue
|
853 |
-
# assert beg_pos is not None and end_pos is not None
|
854 |
-
positive_map[j,beg_pos: end_pos + 1].fill_(1)
|
855 |
-
return positive_map
|
856 |
-
|
857 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/matcher-checkpoint.py
DELETED
@@ -1,218 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# DINO
|
3 |
-
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
4 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
-
# ------------------------------------------------------------------------
|
6 |
-
# Modules to compute the matching cost and solve the corresponding LSAP.
|
7 |
-
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
8 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
9 |
-
# ------------------------------------------------------------------------
|
10 |
-
# Modified from DETR (https://github.com/facebookresearch/detr)
|
11 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
12 |
-
# ------------------------------------------------------------------------
|
13 |
-
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
|
14 |
-
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
15 |
-
# ------------------------------------------------------------------------
|
16 |
-
|
17 |
-
|
18 |
-
import torch, os
|
19 |
-
from torch import nn
|
20 |
-
from scipy.optimize import linear_sum_assignment
|
21 |
-
|
22 |
-
from util.box_ops import box_cxcywh_to_xyxy, generalized_box_iou
|
23 |
-
|
24 |
-
|
25 |
-
class HungarianMatcher(nn.Module):
|
26 |
-
"""This class computes an assignment between the targets and the predictions of the network
|
27 |
-
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
|
28 |
-
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
|
29 |
-
while the others are un-matched (and thus treated as non-objects).
|
30 |
-
"""
|
31 |
-
|
32 |
-
def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, focal_alpha = 0.25):
|
33 |
-
"""Creates the matcher
|
34 |
-
Params:
|
35 |
-
cost_class: This is the relative weight of the classification error in the matching cost
|
36 |
-
cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
|
37 |
-
cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
|
38 |
-
"""
|
39 |
-
super().__init__()
|
40 |
-
self.cost_class = cost_class
|
41 |
-
self.cost_bbox = cost_bbox
|
42 |
-
self.cost_giou = cost_giou
|
43 |
-
assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0"
|
44 |
-
|
45 |
-
self.focal_alpha = focal_alpha
|
46 |
-
|
47 |
-
@torch.no_grad()
|
48 |
-
def forward(self, outputs, targets, label_map):
|
49 |
-
""" Performs the matching
|
50 |
-
Params:
|
51 |
-
outputs: This is a dict that contains at least these entries:
|
52 |
-
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
|
53 |
-
"pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
|
54 |
-
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
|
55 |
-
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
|
56 |
-
objects in the target) containing the class labels
|
57 |
-
"boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
|
58 |
-
Returns:
|
59 |
-
A list of size batch_size, containing tuples of (index_i, index_j) where:
|
60 |
-
- index_i is the indices of the selected predictions (in order)
|
61 |
-
- index_j is the indices of the corresponding selected targets (in order)
|
62 |
-
For each batch element, it holds:
|
63 |
-
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
|
64 |
-
"""
|
65 |
-
|
66 |
-
bs, num_queries = outputs["pred_logits"].shape[:2]
|
67 |
-
|
68 |
-
# We flatten to compute the cost matrices in a batch
|
69 |
-
out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes]
|
70 |
-
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
|
71 |
-
|
72 |
-
# Also concat the target labels and boxes
|
73 |
-
tgt_ids = torch.cat([v["labels"] for v in targets])
|
74 |
-
tgt_bbox = torch.cat([v["boxes"] for v in targets])
|
75 |
-
|
76 |
-
# Compute the classification cost.
|
77 |
-
alpha = self.focal_alpha
|
78 |
-
gamma = 2.0
|
79 |
-
|
80 |
-
new_label_map=label_map[tgt_ids.cpu()]
|
81 |
-
|
82 |
-
neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log())
|
83 |
-
pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
|
84 |
-
new_label_map=new_label_map.to(pos_cost_class.device)
|
85 |
-
|
86 |
-
cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1)
|
87 |
-
|
88 |
-
# cost_class=(pos_cost_class @ new_label_map.T - neg_cost_class@ new_label_map.T)
|
89 |
-
cost_class=[]
|
90 |
-
for idx_map in new_label_map:
|
91 |
-
idx_map = idx_map / idx_map.sum()
|
92 |
-
cost_class.append(pos_cost_class @ idx_map - neg_cost_class@ idx_map)
|
93 |
-
if cost_class:
|
94 |
-
cost_class=torch.stack(cost_class,dim=0).T
|
95 |
-
else:
|
96 |
-
cost_class=torch.zeros_like(cost_bbox)
|
97 |
-
# Compute the L1 cost between boxes
|
98 |
-
|
99 |
-
|
100 |
-
# Compute the giou cost betwen boxes
|
101 |
-
cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox))
|
102 |
-
# import pdb;pdb.set_trace()
|
103 |
-
# Final cost matrix
|
104 |
-
C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
|
105 |
-
C = C.view(bs, num_queries, -1).cpu()
|
106 |
-
C[torch.isnan(C)] = 0.0
|
107 |
-
C[torch.isinf(C)] = 0.0
|
108 |
-
|
109 |
-
sizes = [len(v["boxes"]) for v in targets]
|
110 |
-
try:
|
111 |
-
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
|
112 |
-
except:
|
113 |
-
print("warning: use SimpleMinsumMatcher")
|
114 |
-
indices = []
|
115 |
-
device = C.device
|
116 |
-
for i, (c, _size) in enumerate(zip(C.split(sizes, -1), sizes)):
|
117 |
-
weight_mat = c[i]
|
118 |
-
idx_i = weight_mat.min(0)[1]
|
119 |
-
idx_j = torch.arange(_size).to(device)
|
120 |
-
indices.append((idx_i, idx_j))
|
121 |
-
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
|
122 |
-
|
123 |
-
|
124 |
-
class SimpleMinsumMatcher(nn.Module):
|
125 |
-
"""This class computes an assignment between the targets and the predictions of the network
|
126 |
-
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
|
127 |
-
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
|
128 |
-
while the others are un-matched (and thus treated as non-objects).
|
129 |
-
"""
|
130 |
-
|
131 |
-
def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, focal_alpha = 0.25):
|
132 |
-
"""Creates the matcher
|
133 |
-
Params:
|
134 |
-
cost_class: This is the relative weight of the classification error in the matching cost
|
135 |
-
cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
|
136 |
-
cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
|
137 |
-
"""
|
138 |
-
super().__init__()
|
139 |
-
self.cost_class = cost_class
|
140 |
-
self.cost_bbox = cost_bbox
|
141 |
-
self.cost_giou = cost_giou
|
142 |
-
assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0"
|
143 |
-
|
144 |
-
self.focal_alpha = focal_alpha
|
145 |
-
|
146 |
-
@torch.no_grad()
|
147 |
-
def forward(self, outputs, targets):
|
148 |
-
""" Performs the matching
|
149 |
-
Params:
|
150 |
-
outputs: This is a dict that contains at least these entries:
|
151 |
-
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
|
152 |
-
"pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
|
153 |
-
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
|
154 |
-
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
|
155 |
-
objects in the target) containing the class labels
|
156 |
-
"boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
|
157 |
-
Returns:
|
158 |
-
A list of size batch_size, containing tuples of (index_i, index_j) where:
|
159 |
-
- index_i is the indices of the selected predictions (in order)
|
160 |
-
- index_j is the indices of the corresponding selected targets (in order)
|
161 |
-
For each batch element, it holds:
|
162 |
-
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
|
163 |
-
"""
|
164 |
-
|
165 |
-
bs, num_queries = outputs["pred_logits"].shape[:2]
|
166 |
-
|
167 |
-
# We flatten to compute the cost matrices in a batch
|
168 |
-
out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes]
|
169 |
-
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
|
170 |
-
|
171 |
-
# Also concat the target labels and boxes
|
172 |
-
tgt_ids = torch.cat([v["labels"] for v in targets])
|
173 |
-
tgt_bbox = torch.cat([v["boxes"] for v in targets])
|
174 |
-
|
175 |
-
# Compute the classification cost.
|
176 |
-
alpha = self.focal_alpha
|
177 |
-
gamma = 2.0
|
178 |
-
neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log())
|
179 |
-
pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
|
180 |
-
cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids]
|
181 |
-
|
182 |
-
# Compute the L1 cost between boxes
|
183 |
-
cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1)
|
184 |
-
|
185 |
-
# Compute the giou cost betwen boxes
|
186 |
-
cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox))
|
187 |
-
|
188 |
-
# Final cost matrix
|
189 |
-
|
190 |
-
C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
|
191 |
-
C = C.view(bs, num_queries, -1)
|
192 |
-
|
193 |
-
sizes = [len(v["boxes"]) for v in targets]
|
194 |
-
indices = []
|
195 |
-
device = C.device
|
196 |
-
for i, (c, _size) in enumerate(zip(C.split(sizes, -1), sizes)):
|
197 |
-
weight_mat = c[i]
|
198 |
-
idx_i = weight_mat.min(0)[1]
|
199 |
-
idx_j = torch.arange(_size).to(device)
|
200 |
-
indices.append((idx_i, idx_j))
|
201 |
-
|
202 |
-
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
|
203 |
-
|
204 |
-
|
205 |
-
def build_matcher(args):
|
206 |
-
assert args.matcher_type in ['HungarianMatcher', 'SimpleMinsumMatcher'], "Unknown args.matcher_type: {}".format(args.matcher_type)
|
207 |
-
if args.matcher_type == 'HungarianMatcher':
|
208 |
-
return HungarianMatcher(
|
209 |
-
cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox, cost_giou=args.set_cost_giou,
|
210 |
-
focal_alpha=args.focal_alpha
|
211 |
-
)
|
212 |
-
elif args.matcher_type == 'SimpleMinsumMatcher':
|
213 |
-
return SimpleMinsumMatcher(
|
214 |
-
cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox, cost_giou=args.set_cost_giou,
|
215 |
-
focal_alpha=args.focal_alpha
|
216 |
-
)
|
217 |
-
else:
|
218 |
-
raise NotImplementedError("Unknown args.matcher_type: {}".format(args.matcher_type))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/ms_deform_attn-checkpoint.py
DELETED
@@ -1,416 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# Grounding DINO
|
3 |
-
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
-
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
-
# ------------------------------------------------------------------------
|
7 |
-
# Deformable DETR
|
8 |
-
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
9 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
-
# ------------------------------------------------------------------------------------------------
|
11 |
-
# Modified from:
|
12 |
-
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py
|
13 |
-
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
14 |
-
# https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py
|
15 |
-
# ------------------------------------------------------------------------------------------------
|
16 |
-
|
17 |
-
import math
|
18 |
-
import warnings
|
19 |
-
from typing import Optional
|
20 |
-
|
21 |
-
import torch
|
22 |
-
import torch.nn as nn
|
23 |
-
import torch.nn.functional as F
|
24 |
-
from torch.autograd import Function
|
25 |
-
from torch.autograd.function import once_differentiable
|
26 |
-
from torch.nn.init import constant_, xavier_uniform_
|
27 |
-
import loralib as lora
|
28 |
-
|
29 |
-
try:
|
30 |
-
# from groundingdino import _C
|
31 |
-
import MultiScaleDeformableAttention as _C
|
32 |
-
except:
|
33 |
-
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!")
|
34 |
-
|
35 |
-
|
36 |
-
# helpers
|
37 |
-
def _is_power_of_2(n):
|
38 |
-
if (not isinstance(n, int)) or (n < 0):
|
39 |
-
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
|
40 |
-
return (n & (n - 1) == 0) and n != 0
|
41 |
-
|
42 |
-
|
43 |
-
class MultiScaleDeformableAttnFunction(Function):
|
44 |
-
@staticmethod
|
45 |
-
def forward(
|
46 |
-
ctx,
|
47 |
-
value,
|
48 |
-
value_spatial_shapes,
|
49 |
-
value_level_start_index,
|
50 |
-
sampling_locations,
|
51 |
-
attention_weights,
|
52 |
-
im2col_step,
|
53 |
-
):
|
54 |
-
ctx.im2col_step = im2col_step
|
55 |
-
output = _C.ms_deform_attn_forward(
|
56 |
-
value,
|
57 |
-
value_spatial_shapes,
|
58 |
-
value_level_start_index,
|
59 |
-
sampling_locations,
|
60 |
-
attention_weights,
|
61 |
-
ctx.im2col_step,
|
62 |
-
)
|
63 |
-
ctx.save_for_backward(
|
64 |
-
value,
|
65 |
-
value_spatial_shapes,
|
66 |
-
value_level_start_index,
|
67 |
-
sampling_locations,
|
68 |
-
attention_weights,
|
69 |
-
)
|
70 |
-
return output
|
71 |
-
|
72 |
-
@staticmethod
|
73 |
-
@once_differentiable
|
74 |
-
def backward(ctx, grad_output):
|
75 |
-
(
|
76 |
-
value,
|
77 |
-
value_spatial_shapes,
|
78 |
-
value_level_start_index,
|
79 |
-
sampling_locations,
|
80 |
-
attention_weights,
|
81 |
-
) = ctx.saved_tensors
|
82 |
-
grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward(
|
83 |
-
value,
|
84 |
-
value_spatial_shapes,
|
85 |
-
value_level_start_index,
|
86 |
-
sampling_locations,
|
87 |
-
attention_weights,
|
88 |
-
grad_output,
|
89 |
-
ctx.im2col_step,
|
90 |
-
)
|
91 |
-
|
92 |
-
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
93 |
-
|
94 |
-
|
95 |
-
def multi_scale_deformable_attn_pytorch(
|
96 |
-
value: torch.Tensor,
|
97 |
-
value_spatial_shapes: torch.Tensor,
|
98 |
-
sampling_locations: torch.Tensor,
|
99 |
-
attention_weights: torch.Tensor,
|
100 |
-
) -> torch.Tensor:
|
101 |
-
|
102 |
-
bs, _, num_heads, embed_dims = value.shape
|
103 |
-
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
104 |
-
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
105 |
-
sampling_grids = 2 * sampling_locations - 1
|
106 |
-
sampling_value_list = []
|
107 |
-
for level, (H_, W_) in enumerate(value_spatial_shapes):
|
108 |
-
# bs, H_*W_, num_heads, embed_dims ->
|
109 |
-
# bs, H_*W_, num_heads*embed_dims ->
|
110 |
-
# bs, num_heads*embed_dims, H_*W_ ->
|
111 |
-
# bs*num_heads, embed_dims, H_, W_
|
112 |
-
value_l_ = (
|
113 |
-
value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
|
114 |
-
)
|
115 |
-
# bs, num_queries, num_heads, num_points, 2 ->
|
116 |
-
# bs, num_heads, num_queries, num_points, 2 ->
|
117 |
-
# bs*num_heads, num_queries, num_points, 2
|
118 |
-
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
119 |
-
# bs*num_heads, embed_dims, num_queries, num_points
|
120 |
-
sampling_value_l_ = F.grid_sample(
|
121 |
-
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
|
122 |
-
)
|
123 |
-
sampling_value_list.append(sampling_value_l_)
|
124 |
-
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
125 |
-
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
126 |
-
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
127 |
-
attention_weights = attention_weights.transpose(1, 2).reshape(
|
128 |
-
bs * num_heads, 1, num_queries, num_levels * num_points
|
129 |
-
)
|
130 |
-
output = (
|
131 |
-
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
132 |
-
.sum(-1)
|
133 |
-
.view(bs, num_heads * embed_dims, num_queries)
|
134 |
-
)
|
135 |
-
return output.transpose(1, 2).contiguous()
|
136 |
-
|
137 |
-
|
138 |
-
class MultiScaleDeformableAttention(nn.Module):
|
139 |
-
"""Multi-Scale Deformable Attention Module used in Deformable-DETR
|
140 |
-
|
141 |
-
`Deformable DETR: Deformable Transformers for End-to-End Object Detection.
|
142 |
-
<https://arxiv.org/pdf/2010.04159.pdf>`_.
|
143 |
-
|
144 |
-
Args:
|
145 |
-
embed_dim (int): The embedding dimension of Attention. Default: 256.
|
146 |
-
num_heads (int): The number of attention heads. Default: 8.
|
147 |
-
num_levels (int): The number of feature map used in Attention. Default: 4.
|
148 |
-
num_points (int): The number of sampling points for each query
|
149 |
-
in each head. Default: 4.
|
150 |
-
img2col_steps (int): The step used in image_to_column. Defualt: 64.
|
151 |
-
dropout (float): Dropout layer used in output. Default: 0.1.
|
152 |
-
batch_first (bool): if ``True``, then the input and output tensor will be
|
153 |
-
provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)`
|
154 |
-
"""
|
155 |
-
|
156 |
-
def __init__(
|
157 |
-
self,
|
158 |
-
embed_dim: int = 256,
|
159 |
-
num_heads: int = 8,
|
160 |
-
num_levels: int = 4,
|
161 |
-
num_points: int = 4,
|
162 |
-
img2col_step: int = 64,
|
163 |
-
batch_first: bool = False,
|
164 |
-
):
|
165 |
-
super().__init__()
|
166 |
-
if embed_dim % num_heads != 0:
|
167 |
-
raise ValueError(
|
168 |
-
"embed_dim must be divisible by num_heads, but got {} and {}".format(
|
169 |
-
embed_dim, num_heads
|
170 |
-
)
|
171 |
-
)
|
172 |
-
head_dim = embed_dim // num_heads
|
173 |
-
|
174 |
-
self.batch_first = batch_first
|
175 |
-
|
176 |
-
if not _is_power_of_2(head_dim):
|
177 |
-
warnings.warn(
|
178 |
-
"""
|
179 |
-
You'd better set d_model in MSDeformAttn to make sure that
|
180 |
-
each dim of the attention head a power of 2, which is more efficient.
|
181 |
-
"""
|
182 |
-
)
|
183 |
-
|
184 |
-
self.im2col_step = img2col_step
|
185 |
-
self.embed_dim = embed_dim
|
186 |
-
self.num_heads = num_heads
|
187 |
-
self.num_levels = num_levels
|
188 |
-
self.num_points = num_points
|
189 |
-
r = 12
|
190 |
-
self.sampling_offsets = lora.Linear(embed_dim, num_heads * num_levels * num_points * 2 , r=r )
|
191 |
-
self.attention_weights = lora.Linear(embed_dim, num_heads * num_levels * num_points , r=r)
|
192 |
-
self.value_proj = lora.Linear(embed_dim, embed_dim , r=r)
|
193 |
-
self.output_proj = lora.Linear(embed_dim, embed_dim , r=r)
|
194 |
-
|
195 |
-
self.init_weights()
|
196 |
-
|
197 |
-
def _reset_parameters(self):
|
198 |
-
return self.init_weights()
|
199 |
-
|
200 |
-
def init_weights(self):
|
201 |
-
"""
|
202 |
-
Default initialization for Parameters of Module.
|
203 |
-
"""
|
204 |
-
constant_(self.sampling_offsets.weight.data, 0.0)
|
205 |
-
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
|
206 |
-
2.0 * math.pi / self.num_heads
|
207 |
-
)
|
208 |
-
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
209 |
-
grid_init = (
|
210 |
-
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
211 |
-
.view(self.num_heads, 1, 1, 2)
|
212 |
-
.repeat(1, self.num_levels, self.num_points, 1)
|
213 |
-
)
|
214 |
-
for i in range(self.num_points):
|
215 |
-
grid_init[:, :, i, :] *= i + 1
|
216 |
-
with torch.no_grad():
|
217 |
-
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
218 |
-
constant_(self.attention_weights.weight.data, 0.0)
|
219 |
-
constant_(self.attention_weights.bias.data, 0.0)
|
220 |
-
xavier_uniform_(self.value_proj.weight.data)
|
221 |
-
constant_(self.value_proj.bias.data, 0.0)
|
222 |
-
xavier_uniform_(self.output_proj.weight.data)
|
223 |
-
constant_(self.output_proj.bias.data, 0.0)
|
224 |
-
|
225 |
-
def freeze_sampling_offsets(self):
|
226 |
-
print("Freeze sampling offsets")
|
227 |
-
self.sampling_offsets.weight.requires_grad = False
|
228 |
-
self.sampling_offsets.bias.requires_grad = False
|
229 |
-
|
230 |
-
def freeze_attention_weights(self):
|
231 |
-
print("Freeze attention weights")
|
232 |
-
self.attention_weights.weight.requires_grad = False
|
233 |
-
self.attention_weights.bias.requires_grad = False
|
234 |
-
|
235 |
-
def forward(
|
236 |
-
self,
|
237 |
-
query: torch.Tensor,
|
238 |
-
key: Optional[torch.Tensor] = None,
|
239 |
-
value: Optional[torch.Tensor] = None,
|
240 |
-
query_pos: Optional[torch.Tensor] = None,
|
241 |
-
key_padding_mask: Optional[torch.Tensor] = None,
|
242 |
-
reference_points: Optional[torch.Tensor] = None,
|
243 |
-
spatial_shapes: Optional[torch.Tensor] = None,
|
244 |
-
level_start_index: Optional[torch.Tensor] = None,
|
245 |
-
**kwargs
|
246 |
-
) -> torch.Tensor:
|
247 |
-
|
248 |
-
"""Forward Function of MultiScaleDeformableAttention
|
249 |
-
|
250 |
-
Args:
|
251 |
-
query (torch.Tensor): Query embeddings with shape
|
252 |
-
`(num_query, bs, embed_dim)`
|
253 |
-
key (torch.Tensor): Key embeddings with shape
|
254 |
-
`(num_key, bs, embed_dim)`
|
255 |
-
value (torch.Tensor): Value embeddings with shape
|
256 |
-
`(num_key, bs, embed_dim)`
|
257 |
-
query_pos (torch.Tensor): The position embedding for `query`. Default: None.
|
258 |
-
key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`,
|
259 |
-
indicating which elements within `key` to be ignored in attention.
|
260 |
-
reference_points (torch.Tensor): The normalized reference points
|
261 |
-
with shape `(bs, num_query, num_levels, 2)`,
|
262 |
-
all elements is range in [0, 1], top-left (0, 0),
|
263 |
-
bottom-right (1, 1), including padding are.
|
264 |
-
or `(N, Length_{query}, num_levels, 4)`, add additional
|
265 |
-
two dimensions `(h, w)` to form reference boxes.
|
266 |
-
spatial_shapes (torch.Tensor): Spatial shape of features in different levels.
|
267 |
-
With shape `(num_levels, 2)`, last dimension represents `(h, w)`.
|
268 |
-
level_start_index (torch.Tensor): The start index of each level. A tensor with
|
269 |
-
shape `(num_levels, )` which can be represented as
|
270 |
-
`[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`.
|
271 |
-
|
272 |
-
Returns:
|
273 |
-
torch.Tensor: forward results with shape `(num_query, bs, embed_dim)`
|
274 |
-
"""
|
275 |
-
|
276 |
-
if value is None:
|
277 |
-
value = query
|
278 |
-
|
279 |
-
if query_pos is not None:
|
280 |
-
query = query + query_pos
|
281 |
-
|
282 |
-
if not self.batch_first:
|
283 |
-
# change to (bs, num_query ,embed_dims)
|
284 |
-
query = query.permute(1, 0, 2)
|
285 |
-
value = value.permute(1, 0, 2)
|
286 |
-
|
287 |
-
bs, num_query, _ = query.shape
|
288 |
-
bs, num_value, _ = value.shape
|
289 |
-
|
290 |
-
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
|
291 |
-
|
292 |
-
value = self.value_proj(value)
|
293 |
-
if key_padding_mask is not None:
|
294 |
-
value = value.masked_fill(key_padding_mask[..., None], float(0))
|
295 |
-
value = value.view(bs, num_value, self.num_heads, -1)
|
296 |
-
sampling_offsets = self.sampling_offsets(query).view(
|
297 |
-
bs, num_query, self.num_heads, self.num_levels, self.num_points, 2
|
298 |
-
)
|
299 |
-
attention_weights = self.attention_weights(query).view(
|
300 |
-
bs, num_query, self.num_heads, self.num_levels * self.num_points
|
301 |
-
)
|
302 |
-
attention_weights = attention_weights.softmax(-1)
|
303 |
-
attention_weights = attention_weights.view(
|
304 |
-
bs,
|
305 |
-
num_query,
|
306 |
-
self.num_heads,
|
307 |
-
self.num_levels,
|
308 |
-
self.num_points,
|
309 |
-
)
|
310 |
-
|
311 |
-
# bs, num_query, num_heads, num_levels, num_points, 2
|
312 |
-
if reference_points.shape[-1] == 2:
|
313 |
-
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
314 |
-
sampling_locations = (
|
315 |
-
reference_points[:, :, None, :, None, :]
|
316 |
-
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
317 |
-
)
|
318 |
-
elif reference_points.shape[-1] == 4:
|
319 |
-
sampling_locations = (
|
320 |
-
reference_points[:, :, None, :, None, :2]
|
321 |
-
+ sampling_offsets
|
322 |
-
/ self.num_points
|
323 |
-
* reference_points[:, :, None, :, None, 2:]
|
324 |
-
* 0.5
|
325 |
-
)
|
326 |
-
else:
|
327 |
-
raise ValueError(
|
328 |
-
"Last dim of reference_points must be 2 or 4, but get {} instead.".format(
|
329 |
-
reference_points.shape[-1]
|
330 |
-
)
|
331 |
-
)
|
332 |
-
|
333 |
-
if torch.cuda.is_available() and value.is_cuda:
|
334 |
-
halffloat = False
|
335 |
-
if value.dtype == torch.float16:
|
336 |
-
halffloat = True
|
337 |
-
value = value.float()
|
338 |
-
sampling_locations = sampling_locations.float()
|
339 |
-
attention_weights = attention_weights.float()
|
340 |
-
|
341 |
-
output = MultiScaleDeformableAttnFunction.apply(
|
342 |
-
value,
|
343 |
-
spatial_shapes,
|
344 |
-
level_start_index,
|
345 |
-
sampling_locations,
|
346 |
-
attention_weights,
|
347 |
-
self.im2col_step,
|
348 |
-
)
|
349 |
-
|
350 |
-
if halffloat:
|
351 |
-
output = output.half()
|
352 |
-
else:
|
353 |
-
output = multi_scale_deformable_attn_pytorch(
|
354 |
-
value, spatial_shapes, sampling_locations, attention_weights
|
355 |
-
)
|
356 |
-
|
357 |
-
output = self.output_proj(output)
|
358 |
-
|
359 |
-
if not self.batch_first:
|
360 |
-
output = output.permute(1, 0, 2)
|
361 |
-
|
362 |
-
return output
|
363 |
-
|
364 |
-
|
365 |
-
def create_dummy_class(klass, dependency, message=""):
|
366 |
-
"""
|
367 |
-
When a dependency of a class is not available, create a dummy class which throws ImportError
|
368 |
-
when used.
|
369 |
-
|
370 |
-
Args:
|
371 |
-
klass (str): name of the class.
|
372 |
-
dependency (str): name of the dependency.
|
373 |
-
message: extra message to print
|
374 |
-
Returns:
|
375 |
-
class: a class object
|
376 |
-
"""
|
377 |
-
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass)
|
378 |
-
if message:
|
379 |
-
err = err + " " + message
|
380 |
-
|
381 |
-
class _DummyMetaClass(type):
|
382 |
-
# throw error on class attribute access
|
383 |
-
def __getattr__(_, __): # noqa: B902
|
384 |
-
raise ImportError(err)
|
385 |
-
|
386 |
-
class _Dummy(object, metaclass=_DummyMetaClass):
|
387 |
-
# throw error on constructor
|
388 |
-
def __init__(self, *args, **kwargs):
|
389 |
-
raise ImportError(err)
|
390 |
-
|
391 |
-
return _Dummy
|
392 |
-
|
393 |
-
|
394 |
-
def create_dummy_func(func, dependency, message=""):
|
395 |
-
"""
|
396 |
-
When a dependency of a function is not available, create a dummy function which throws
|
397 |
-
ImportError when used.
|
398 |
-
|
399 |
-
Args:
|
400 |
-
func (str): name of the function.
|
401 |
-
dependency (str or list[str]): name(s) of the dependency.
|
402 |
-
message: extra message to print
|
403 |
-
Returns:
|
404 |
-
function: a function object
|
405 |
-
"""
|
406 |
-
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func)
|
407 |
-
if message:
|
408 |
-
err = err + " " + message
|
409 |
-
|
410 |
-
if isinstance(dependency, (list, tuple)):
|
411 |
-
dependency = ",".join(dependency)
|
412 |
-
|
413 |
-
def _dummy(*args, **kwargs):
|
414 |
-
raise ImportError(err)
|
415 |
-
|
416 |
-
return _dummy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/transformer-checkpoint.py
DELETED
@@ -1,969 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# Grounding DINO
|
3 |
-
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
-
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
-
# ------------------------------------------------------------------------
|
7 |
-
# DINO
|
8 |
-
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
9 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
-
# ------------------------------------------------------------------------
|
11 |
-
# Conditional DETR Transformer class.
|
12 |
-
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
13 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
14 |
-
# ------------------------------------------------------------------------
|
15 |
-
# Modified from DETR (https://github.com/facebookresearch/detr)
|
16 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
17 |
-
# ------------------------------------------------------------------------
|
18 |
-
|
19 |
-
from typing import Optional
|
20 |
-
|
21 |
-
import torch
|
22 |
-
import torch.utils.checkpoint as checkpoint
|
23 |
-
from torch import Tensor, nn
|
24 |
-
|
25 |
-
from groundingdino.util.misc import inverse_sigmoid
|
26 |
-
import loralib as lora
|
27 |
-
from .fuse_modules import BiAttentionBlock
|
28 |
-
from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn
|
29 |
-
from .transformer_vanilla import TransformerEncoderLayer
|
30 |
-
from .utils import (
|
31 |
-
MLP,
|
32 |
-
_get_activation_fn,
|
33 |
-
_get_clones,
|
34 |
-
gen_encoder_output_proposals,
|
35 |
-
gen_sineembed_for_position,
|
36 |
-
get_sine_pos_embed,
|
37 |
-
)
|
38 |
-
|
39 |
-
|
40 |
-
class Transformer(nn.Module):
|
41 |
-
def __init__(
|
42 |
-
self,
|
43 |
-
d_model=256,
|
44 |
-
nhead=8,
|
45 |
-
num_queries=300,
|
46 |
-
num_encoder_layers=6,
|
47 |
-
num_unicoder_layers=0,
|
48 |
-
num_decoder_layers=6,
|
49 |
-
dim_feedforward=2048,
|
50 |
-
dropout=0.0,
|
51 |
-
activation="relu",
|
52 |
-
normalize_before=False,
|
53 |
-
return_intermediate_dec=False,
|
54 |
-
query_dim=4,
|
55 |
-
num_patterns=0,
|
56 |
-
# for deformable encoder
|
57 |
-
num_feature_levels=1,
|
58 |
-
enc_n_points=4,
|
59 |
-
dec_n_points=4,
|
60 |
-
# init query
|
61 |
-
learnable_tgt_init=False,
|
62 |
-
# two stage
|
63 |
-
two_stage_type="no", # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']
|
64 |
-
embed_init_tgt=False,
|
65 |
-
# for text
|
66 |
-
use_text_enhancer=False,
|
67 |
-
use_fusion_layer=False,
|
68 |
-
use_checkpoint=False,
|
69 |
-
use_transformer_ckpt=False,
|
70 |
-
use_text_cross_attention=False,
|
71 |
-
text_dropout=0.1,
|
72 |
-
fusion_dropout=0.1,
|
73 |
-
fusion_droppath=0.0,
|
74 |
-
):
|
75 |
-
super().__init__()
|
76 |
-
self.num_feature_levels = num_feature_levels
|
77 |
-
self.num_encoder_layers = num_encoder_layers
|
78 |
-
self.num_unicoder_layers = num_unicoder_layers
|
79 |
-
self.num_decoder_layers = num_decoder_layers
|
80 |
-
self.num_queries = num_queries
|
81 |
-
assert query_dim == 4
|
82 |
-
|
83 |
-
# choose encoder layer type
|
84 |
-
encoder_layer = DeformableTransformerEncoderLayer(
|
85 |
-
d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points
|
86 |
-
)
|
87 |
-
|
88 |
-
if use_text_enhancer:
|
89 |
-
text_enhance_layer = TransformerEncoderLayer(
|
90 |
-
d_model=d_model,
|
91 |
-
nhead=nhead // 2,
|
92 |
-
dim_feedforward=dim_feedforward // 2,
|
93 |
-
dropout=text_dropout,
|
94 |
-
)
|
95 |
-
else:
|
96 |
-
text_enhance_layer = None
|
97 |
-
|
98 |
-
if use_fusion_layer:
|
99 |
-
feature_fusion_layer = BiAttentionBlock(
|
100 |
-
v_dim=d_model,
|
101 |
-
l_dim=d_model,
|
102 |
-
embed_dim=dim_feedforward // 2,
|
103 |
-
num_heads=nhead // 2,
|
104 |
-
dropout=fusion_dropout,
|
105 |
-
drop_path=fusion_droppath,
|
106 |
-
)
|
107 |
-
else:
|
108 |
-
feature_fusion_layer = None
|
109 |
-
|
110 |
-
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
111 |
-
assert encoder_norm is None
|
112 |
-
self.encoder = TransformerEncoder(
|
113 |
-
encoder_layer,
|
114 |
-
num_encoder_layers,
|
115 |
-
d_model=d_model,
|
116 |
-
num_queries=num_queries,
|
117 |
-
text_enhance_layer=text_enhance_layer,
|
118 |
-
feature_fusion_layer=feature_fusion_layer,
|
119 |
-
use_checkpoint=use_checkpoint,
|
120 |
-
use_transformer_ckpt=use_transformer_ckpt,
|
121 |
-
)
|
122 |
-
|
123 |
-
# choose decoder layer type
|
124 |
-
decoder_layer = DeformableTransformerDecoderLayer(
|
125 |
-
d_model,
|
126 |
-
dim_feedforward,
|
127 |
-
dropout,
|
128 |
-
activation,
|
129 |
-
num_feature_levels,
|
130 |
-
nhead,
|
131 |
-
dec_n_points,
|
132 |
-
use_text_cross_attention=use_text_cross_attention,
|
133 |
-
)
|
134 |
-
|
135 |
-
decoder_norm = nn.LayerNorm(d_model)
|
136 |
-
self.decoder = TransformerDecoder(
|
137 |
-
decoder_layer,
|
138 |
-
num_decoder_layers,
|
139 |
-
decoder_norm,
|
140 |
-
return_intermediate=return_intermediate_dec,
|
141 |
-
d_model=d_model,
|
142 |
-
query_dim=query_dim,
|
143 |
-
num_feature_levels=num_feature_levels,
|
144 |
-
)
|
145 |
-
|
146 |
-
self.d_model = d_model
|
147 |
-
self.nhead = nhead
|
148 |
-
self.dec_layers = num_decoder_layers
|
149 |
-
self.num_queries = num_queries # useful for single stage model only
|
150 |
-
self.num_patterns = num_patterns
|
151 |
-
if not isinstance(num_patterns, int):
|
152 |
-
Warning("num_patterns should be int but {}".format(type(num_patterns)))
|
153 |
-
self.num_patterns = 0
|
154 |
-
|
155 |
-
if num_feature_levels > 1:
|
156 |
-
if self.num_encoder_layers > 0:
|
157 |
-
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
|
158 |
-
else:
|
159 |
-
self.level_embed = None
|
160 |
-
|
161 |
-
self.learnable_tgt_init = learnable_tgt_init
|
162 |
-
assert learnable_tgt_init, "why not learnable_tgt_init"
|
163 |
-
self.embed_init_tgt = embed_init_tgt
|
164 |
-
if (two_stage_type != "no" and embed_init_tgt) or (two_stage_type == "no"):
|
165 |
-
self.tgt_embed = nn.Embedding(self.num_queries, d_model)
|
166 |
-
nn.init.normal_(self.tgt_embed.weight.data)
|
167 |
-
else:
|
168 |
-
self.tgt_embed = None
|
169 |
-
|
170 |
-
# for two stage
|
171 |
-
self.two_stage_type = two_stage_type
|
172 |
-
assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
|
173 |
-
two_stage_type
|
174 |
-
)
|
175 |
-
if two_stage_type == "standard":
|
176 |
-
# anchor selection at the output of encoder
|
177 |
-
r = 24
|
178 |
-
self.enc_output = lora.Linear(d_model, d_model , r=r)
|
179 |
-
self.enc_output_norm = nn.LayerNorm(d_model)
|
180 |
-
self.two_stage_wh_embedding = None
|
181 |
-
|
182 |
-
if two_stage_type == "no":
|
183 |
-
self.init_ref_points(num_queries) # init self.refpoint_embed
|
184 |
-
|
185 |
-
self.enc_out_class_embed = None
|
186 |
-
self.enc_out_bbox_embed = None
|
187 |
-
|
188 |
-
self._reset_parameters()
|
189 |
-
|
190 |
-
def _reset_parameters(self):
|
191 |
-
for p in self.parameters():
|
192 |
-
if p.dim() > 1:
|
193 |
-
nn.init.xavier_uniform_(p)
|
194 |
-
for m in self.modules():
|
195 |
-
if isinstance(m, MSDeformAttn):
|
196 |
-
m._reset_parameters()
|
197 |
-
if self.num_feature_levels > 1 and self.level_embed is not None:
|
198 |
-
nn.init.normal_(self.level_embed)
|
199 |
-
|
200 |
-
def get_valid_ratio(self, mask):
|
201 |
-
_, H, W = mask.shape
|
202 |
-
valid_H = torch.sum(~mask[:, :, 0], 1)
|
203 |
-
valid_W = torch.sum(~mask[:, 0, :], 1)
|
204 |
-
valid_ratio_h = valid_H.float() / H
|
205 |
-
valid_ratio_w = valid_W.float() / W
|
206 |
-
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
|
207 |
-
return valid_ratio
|
208 |
-
|
209 |
-
def init_ref_points(self, use_num_queries):
|
210 |
-
self.refpoint_embed = nn.Embedding(use_num_queries, 4)
|
211 |
-
|
212 |
-
def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None, text_dict=None):
|
213 |
-
"""
|
214 |
-
Input:
|
215 |
-
- srcs: List of multi features [bs, ci, hi, wi]
|
216 |
-
- masks: List of multi masks [bs, hi, wi]
|
217 |
-
- refpoint_embed: [bs, num_dn, 4]. None in infer
|
218 |
-
- pos_embeds: List of multi pos embeds [bs, ci, hi, wi]
|
219 |
-
- tgt: [bs, num_dn, d_model]. None in infer
|
220 |
-
|
221 |
-
"""
|
222 |
-
# prepare input for encoder
|
223 |
-
src_flatten = []
|
224 |
-
mask_flatten = []
|
225 |
-
lvl_pos_embed_flatten = []
|
226 |
-
spatial_shapes = []
|
227 |
-
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
|
228 |
-
bs, c, h, w = src.shape
|
229 |
-
spatial_shape = (h, w)
|
230 |
-
spatial_shapes.append(spatial_shape)
|
231 |
-
|
232 |
-
src = src.flatten(2).transpose(1, 2) # bs, hw, c
|
233 |
-
mask = mask.flatten(1) # bs, hw
|
234 |
-
pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c
|
235 |
-
if self.num_feature_levels > 1 and self.level_embed is not None:
|
236 |
-
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
|
237 |
-
else:
|
238 |
-
lvl_pos_embed = pos_embed
|
239 |
-
lvl_pos_embed_flatten.append(lvl_pos_embed)
|
240 |
-
src_flatten.append(src)
|
241 |
-
mask_flatten.append(mask)
|
242 |
-
src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c
|
243 |
-
mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw}
|
244 |
-
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c
|
245 |
-
spatial_shapes = torch.as_tensor(
|
246 |
-
spatial_shapes, dtype=torch.long, device=src_flatten.device
|
247 |
-
)
|
248 |
-
level_start_index = torch.cat(
|
249 |
-
(spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])
|
250 |
-
)
|
251 |
-
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
|
252 |
-
|
253 |
-
# two stage
|
254 |
-
enc_topk_proposals = enc_refpoint_embed = None
|
255 |
-
|
256 |
-
#########################################################
|
257 |
-
# Begin Encoder
|
258 |
-
#########################################################
|
259 |
-
memory, memory_text = self.encoder(
|
260 |
-
src_flatten,
|
261 |
-
pos=lvl_pos_embed_flatten,
|
262 |
-
level_start_index=level_start_index,
|
263 |
-
spatial_shapes=spatial_shapes,
|
264 |
-
valid_ratios=valid_ratios,
|
265 |
-
key_padding_mask=mask_flatten,
|
266 |
-
memory_text=text_dict["encoded_text"],
|
267 |
-
text_attention_mask=~text_dict["text_token_mask"],
|
268 |
-
# we ~ the mask . False means use the token; True means pad the token
|
269 |
-
position_ids=text_dict["position_ids"],
|
270 |
-
text_self_attention_masks=text_dict["text_self_attention_masks"],
|
271 |
-
)
|
272 |
-
#########################################################
|
273 |
-
# End Encoder
|
274 |
-
# - memory: bs, \sum{hw}, c
|
275 |
-
# - mask_flatten: bs, \sum{hw}
|
276 |
-
# - lvl_pos_embed_flatten: bs, \sum{hw}, c
|
277 |
-
# - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
|
278 |
-
# - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
|
279 |
-
#########################################################
|
280 |
-
text_dict["encoded_text"] = memory_text
|
281 |
-
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
282 |
-
# if memory.isnan().any() | memory.isinf().any():
|
283 |
-
# import ipdb; ipdb.set_trace()
|
284 |
-
|
285 |
-
if self.two_stage_type == "standard": #把encoder的输出作为proposal
|
286 |
-
output_memory, output_proposals = gen_encoder_output_proposals(
|
287 |
-
memory, mask_flatten, spatial_shapes
|
288 |
-
)
|
289 |
-
output_memory = self.enc_output_norm(self.enc_output(output_memory))
|
290 |
-
|
291 |
-
if text_dict is not None:
|
292 |
-
enc_outputs_class_unselected = self.enc_out_class_embed(output_memory, text_dict)
|
293 |
-
else:
|
294 |
-
enc_outputs_class_unselected = self.enc_out_class_embed(output_memory)
|
295 |
-
|
296 |
-
topk_logits = enc_outputs_class_unselected.max(-1)[0]
|
297 |
-
enc_outputs_coord_unselected = (
|
298 |
-
self.enc_out_bbox_embed(output_memory) + output_proposals
|
299 |
-
) # (bs, \sum{hw}, 4) unsigmoid
|
300 |
-
topk = self.num_queries
|
301 |
-
|
302 |
-
topk_proposals = torch.topk(topk_logits, topk, dim=1)[1] # bs, nq
|
303 |
-
|
304 |
-
# gather boxes
|
305 |
-
refpoint_embed_undetach = torch.gather(
|
306 |
-
enc_outputs_coord_unselected, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
|
307 |
-
) # unsigmoid
|
308 |
-
refpoint_embed_ = refpoint_embed_undetach.detach()
|
309 |
-
init_box_proposal = torch.gather(
|
310 |
-
output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
|
311 |
-
).sigmoid() # sigmoid
|
312 |
-
|
313 |
-
# gather tgt
|
314 |
-
tgt_undetach = torch.gather(
|
315 |
-
output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model)
|
316 |
-
)
|
317 |
-
if self.embed_init_tgt:
|
318 |
-
tgt_ = (
|
319 |
-
self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
320 |
-
) # nq, bs, d_model
|
321 |
-
else:
|
322 |
-
tgt_ = tgt_undetach.detach()
|
323 |
-
|
324 |
-
if refpoint_embed is not None:
|
325 |
-
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
|
326 |
-
tgt = torch.cat([tgt, tgt_], dim=1)
|
327 |
-
else:
|
328 |
-
refpoint_embed, tgt = refpoint_embed_, tgt_
|
329 |
-
|
330 |
-
elif self.two_stage_type == "no":
|
331 |
-
tgt_ = (
|
332 |
-
self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
333 |
-
) # nq, bs, d_model
|
334 |
-
refpoint_embed_ = (
|
335 |
-
self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
336 |
-
) # nq, bs, 4
|
337 |
-
|
338 |
-
if refpoint_embed is not None:
|
339 |
-
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
|
340 |
-
tgt = torch.cat([tgt, tgt_], dim=1)
|
341 |
-
else:
|
342 |
-
refpoint_embed, tgt = refpoint_embed_, tgt_
|
343 |
-
|
344 |
-
if self.num_patterns > 0:
|
345 |
-
tgt_embed = tgt.repeat(1, self.num_patterns, 1)
|
346 |
-
refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1)
|
347 |
-
tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(
|
348 |
-
self.num_queries, 1
|
349 |
-
) # 1, n_q*n_pat, d_model
|
350 |
-
tgt = tgt_embed + tgt_pat
|
351 |
-
|
352 |
-
init_box_proposal = refpoint_embed_.sigmoid()
|
353 |
-
|
354 |
-
else:
|
355 |
-
raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type))
|
356 |
-
#########################################################
|
357 |
-
# End preparing tgt
|
358 |
-
# - tgt: bs, NQ, d_model
|
359 |
-
# - refpoint_embed(unsigmoid): bs, NQ, d_model
|
360 |
-
#########################################################
|
361 |
-
|
362 |
-
#########################################################
|
363 |
-
# Begin Decoder
|
364 |
-
#########################################################
|
365 |
-
|
366 |
-
#memory torch.Size([2, 16320, 256])
|
367 |
-
|
368 |
-
# import pdb;pdb.set_trace()
|
369 |
-
hs, references = self.decoder(
|
370 |
-
tgt=tgt.transpose(0, 1),
|
371 |
-
memory=memory.transpose(0, 1),
|
372 |
-
memory_key_padding_mask=mask_flatten,
|
373 |
-
pos=lvl_pos_embed_flatten.transpose(0, 1),
|
374 |
-
refpoints_unsigmoid=refpoint_embed.transpose(0, 1),
|
375 |
-
level_start_index=level_start_index,
|
376 |
-
spatial_shapes=spatial_shapes,
|
377 |
-
valid_ratios=valid_ratios,
|
378 |
-
tgt_mask=attn_mask,
|
379 |
-
memory_text=text_dict["encoded_text"],
|
380 |
-
text_attention_mask=~text_dict["text_token_mask"],
|
381 |
-
# we ~ the mask . False means use the token; True means pad the token
|
382 |
-
)
|
383 |
-
#########################################################
|
384 |
-
# End Decoder
|
385 |
-
# hs: n_dec, bs, nq, d_model
|
386 |
-
# references: n_dec+1, bs, nq, query_dim
|
387 |
-
#########################################################
|
388 |
-
|
389 |
-
#########################################################
|
390 |
-
# Begin postprocess
|
391 |
-
#########################################################
|
392 |
-
if self.two_stage_type == "standard":
|
393 |
-
hs_enc = tgt_undetach.unsqueeze(0)
|
394 |
-
ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0)
|
395 |
-
else:
|
396 |
-
hs_enc = ref_enc = None
|
397 |
-
#########################################################
|
398 |
-
# End postprocess
|
399 |
-
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None
|
400 |
-
# ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None
|
401 |
-
#########################################################
|
402 |
-
|
403 |
-
return hs, references, hs_enc, ref_enc, init_box_proposal
|
404 |
-
# hs: (n_dec, bs, nq, d_model)
|
405 |
-
# references: sigmoid coordinates. (n_dec+1, bs, bq, 4)
|
406 |
-
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None
|
407 |
-
# ref_enc: sigmoid coordinates. \
|
408 |
-
# (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None
|
409 |
-
|
410 |
-
|
411 |
-
class TransformerEncoder(nn.Module):
|
412 |
-
def __init__(
|
413 |
-
self,
|
414 |
-
encoder_layer,
|
415 |
-
num_layers,
|
416 |
-
d_model=256,
|
417 |
-
num_queries=300,
|
418 |
-
enc_layer_share=False,
|
419 |
-
text_enhance_layer=None,
|
420 |
-
feature_fusion_layer=None,
|
421 |
-
use_checkpoint=False,
|
422 |
-
use_transformer_ckpt=False,
|
423 |
-
):
|
424 |
-
"""_summary_
|
425 |
-
|
426 |
-
Args:
|
427 |
-
encoder_layer (_type_): _description_
|
428 |
-
num_layers (_type_): _description_
|
429 |
-
norm (_type_, optional): _description_. Defaults to None.
|
430 |
-
d_model (int, optional): _description_. Defaults to 256.
|
431 |
-
num_queries (int, optional): _description_. Defaults to 300.
|
432 |
-
enc_layer_share (bool, optional): _description_. Defaults to False.
|
433 |
-
|
434 |
-
"""
|
435 |
-
super().__init__()
|
436 |
-
# prepare layers
|
437 |
-
self.layers = []
|
438 |
-
self.text_layers = []
|
439 |
-
self.fusion_layers = []
|
440 |
-
if num_layers > 0:
|
441 |
-
self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share)
|
442 |
-
|
443 |
-
if text_enhance_layer is not None:
|
444 |
-
self.text_layers = _get_clones(
|
445 |
-
text_enhance_layer, num_layers, layer_share=enc_layer_share
|
446 |
-
)
|
447 |
-
if feature_fusion_layer is not None:
|
448 |
-
self.fusion_layers = _get_clones(
|
449 |
-
feature_fusion_layer, num_layers, layer_share=enc_layer_share
|
450 |
-
)
|
451 |
-
else:
|
452 |
-
self.layers = []
|
453 |
-
del encoder_layer
|
454 |
-
|
455 |
-
if text_enhance_layer is not None:
|
456 |
-
self.text_layers = []
|
457 |
-
del text_enhance_layer
|
458 |
-
if feature_fusion_layer is not None:
|
459 |
-
self.fusion_layers = []
|
460 |
-
del feature_fusion_layer
|
461 |
-
|
462 |
-
self.query_scale = None
|
463 |
-
self.num_queries = num_queries
|
464 |
-
self.num_layers = num_layers
|
465 |
-
self.d_model = d_model
|
466 |
-
|
467 |
-
self.use_checkpoint = use_checkpoint
|
468 |
-
self.use_transformer_ckpt = use_transformer_ckpt
|
469 |
-
|
470 |
-
@staticmethod
|
471 |
-
def get_reference_points(spatial_shapes, valid_ratios, device):
|
472 |
-
reference_points_list = []
|
473 |
-
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
474 |
-
|
475 |
-
ref_y, ref_x = torch.meshgrid(
|
476 |
-
torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
|
477 |
-
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),
|
478 |
-
)
|
479 |
-
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
|
480 |
-
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
|
481 |
-
ref = torch.stack((ref_x, ref_y), -1)
|
482 |
-
reference_points_list.append(ref)
|
483 |
-
reference_points = torch.cat(reference_points_list, 1)
|
484 |
-
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
|
485 |
-
return reference_points
|
486 |
-
|
487 |
-
def forward(
|
488 |
-
self,
|
489 |
-
# for images
|
490 |
-
src: Tensor,
|
491 |
-
pos: Tensor,
|
492 |
-
spatial_shapes: Tensor,
|
493 |
-
level_start_index: Tensor,
|
494 |
-
valid_ratios: Tensor,
|
495 |
-
key_padding_mask: Tensor,
|
496 |
-
# for texts
|
497 |
-
memory_text: Tensor = None,
|
498 |
-
text_attention_mask: Tensor = None,
|
499 |
-
pos_text: Tensor = None,
|
500 |
-
text_self_attention_masks: Tensor = None,
|
501 |
-
position_ids: Tensor = None,
|
502 |
-
):
|
503 |
-
"""
|
504 |
-
Input:
|
505 |
-
- src: [bs, sum(hi*wi), 256]
|
506 |
-
- pos: pos embed for src. [bs, sum(hi*wi), 256]
|
507 |
-
- spatial_shapes: h,w of each level [num_level, 2]
|
508 |
-
- level_start_index: [num_level] start point of level in sum(hi*wi).
|
509 |
-
- valid_ratios: [bs, num_level, 2]
|
510 |
-
- key_padding_mask: [bs, sum(hi*wi)]
|
511 |
-
|
512 |
-
- memory_text: bs, n_text, 256
|
513 |
-
- text_attention_mask: bs, n_text
|
514 |
-
False for no padding; True for padding
|
515 |
-
- pos_text: bs, n_text, 256
|
516 |
-
|
517 |
-
- position_ids: bs, n_text
|
518 |
-
Intermedia:
|
519 |
-
- reference_points: [bs, sum(hi*wi), num_level, 2]
|
520 |
-
Outpus:
|
521 |
-
- output: [bs, sum(hi*wi), 256]
|
522 |
-
"""
|
523 |
-
|
524 |
-
output = src
|
525 |
-
|
526 |
-
# preparation and reshape
|
527 |
-
if self.num_layers > 0:
|
528 |
-
reference_points = self.get_reference_points(
|
529 |
-
spatial_shapes, valid_ratios, device=src.device
|
530 |
-
)
|
531 |
-
|
532 |
-
if self.text_layers:
|
533 |
-
# generate pos_text
|
534 |
-
bs, n_text, text_dim = memory_text.shape
|
535 |
-
if pos_text is None and position_ids is None:
|
536 |
-
pos_text = (
|
537 |
-
torch.arange(n_text, device=memory_text.device)
|
538 |
-
.float()
|
539 |
-
.unsqueeze(0)
|
540 |
-
.unsqueeze(-1)
|
541 |
-
.repeat(bs, 1, 1)
|
542 |
-
)
|
543 |
-
pos_text = get_sine_pos_embed(pos_text, num_pos_feats=256, exchange_xy=False)
|
544 |
-
if position_ids is not None:
|
545 |
-
pos_text = get_sine_pos_embed(
|
546 |
-
position_ids[..., None], num_pos_feats=256, exchange_xy=False
|
547 |
-
)
|
548 |
-
|
549 |
-
# main process
|
550 |
-
for layer_id, layer in enumerate(self.layers):
|
551 |
-
# if output.isnan().any() or memory_text.isnan().any():
|
552 |
-
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
553 |
-
# import ipdb; ipdb.set_trace()
|
554 |
-
if self.fusion_layers:
|
555 |
-
if self.use_checkpoint:
|
556 |
-
output, memory_text = checkpoint.checkpoint(
|
557 |
-
self.fusion_layers[layer_id],
|
558 |
-
output,
|
559 |
-
memory_text,
|
560 |
-
key_padding_mask,
|
561 |
-
text_attention_mask,
|
562 |
-
)
|
563 |
-
else:
|
564 |
-
output, memory_text = self.fusion_layers[layer_id](
|
565 |
-
v=output,
|
566 |
-
l=memory_text,
|
567 |
-
attention_mask_v=key_padding_mask,
|
568 |
-
attention_mask_l=text_attention_mask,
|
569 |
-
)
|
570 |
-
|
571 |
-
if self.text_layers:
|
572 |
-
memory_text = self.text_layers[layer_id](
|
573 |
-
src=memory_text.transpose(0, 1),
|
574 |
-
src_mask=~text_self_attention_masks, # note we use ~ for mask here
|
575 |
-
src_key_padding_mask=text_attention_mask,
|
576 |
-
pos=(pos_text.transpose(0, 1) if pos_text is not None else None),
|
577 |
-
).transpose(0, 1)
|
578 |
-
|
579 |
-
# main process
|
580 |
-
if self.use_transformer_ckpt:
|
581 |
-
output = checkpoint.checkpoint(
|
582 |
-
layer,
|
583 |
-
output,
|
584 |
-
pos,
|
585 |
-
reference_points,
|
586 |
-
spatial_shapes,
|
587 |
-
level_start_index,
|
588 |
-
key_padding_mask,
|
589 |
-
)
|
590 |
-
else:
|
591 |
-
output = layer(
|
592 |
-
src=output,
|
593 |
-
pos=pos,
|
594 |
-
reference_points=reference_points,
|
595 |
-
spatial_shapes=spatial_shapes,
|
596 |
-
level_start_index=level_start_index,
|
597 |
-
key_padding_mask=key_padding_mask,
|
598 |
-
)
|
599 |
-
|
600 |
-
return output, memory_text
|
601 |
-
|
602 |
-
|
603 |
-
class TransformerDecoder(nn.Module):
|
604 |
-
def __init__(
|
605 |
-
self,
|
606 |
-
decoder_layer,
|
607 |
-
num_layers,
|
608 |
-
norm=None,
|
609 |
-
return_intermediate=False,
|
610 |
-
d_model=256,
|
611 |
-
query_dim=4,
|
612 |
-
num_feature_levels=1,
|
613 |
-
):
|
614 |
-
super().__init__()
|
615 |
-
if num_layers > 0:
|
616 |
-
self.layers = _get_clones(decoder_layer, num_layers)
|
617 |
-
else:
|
618 |
-
self.layers = []
|
619 |
-
self.num_layers = num_layers
|
620 |
-
self.norm = norm
|
621 |
-
self.return_intermediate = return_intermediate
|
622 |
-
assert return_intermediate, "support return_intermediate only"
|
623 |
-
self.query_dim = query_dim
|
624 |
-
assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim)
|
625 |
-
self.num_feature_levels = num_feature_levels
|
626 |
-
|
627 |
-
self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2)
|
628 |
-
self.query_pos_sine_scale = None
|
629 |
-
|
630 |
-
self.query_scale = None
|
631 |
-
self.bbox_embed = None
|
632 |
-
self.class_embed = None
|
633 |
-
|
634 |
-
self.d_model = d_model
|
635 |
-
|
636 |
-
self.ref_anchor_head = None
|
637 |
-
|
638 |
-
def forward(
|
639 |
-
self,
|
640 |
-
tgt,
|
641 |
-
memory,
|
642 |
-
tgt_mask: Optional[Tensor] = None,
|
643 |
-
memory_mask: Optional[Tensor] = None,
|
644 |
-
tgt_key_padding_mask: Optional[Tensor] = None,
|
645 |
-
memory_key_padding_mask: Optional[Tensor] = None,
|
646 |
-
pos: Optional[Tensor] = None,
|
647 |
-
refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2
|
648 |
-
# for memory
|
649 |
-
level_start_index: Optional[Tensor] = None, # num_levels
|
650 |
-
spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
|
651 |
-
valid_ratios: Optional[Tensor] = None,
|
652 |
-
# for text
|
653 |
-
memory_text: Optional[Tensor] = None,
|
654 |
-
text_attention_mask: Optional[Tensor] = None,
|
655 |
-
):
|
656 |
-
"""
|
657 |
-
Input:
|
658 |
-
- tgt: nq, bs, d_model
|
659 |
-
- memory: hw, bs, d_model
|
660 |
-
- pos: hw, bs, d_model
|
661 |
-
- refpoints_unsigmoid: nq, bs, 2/4
|
662 |
-
- valid_ratios/spatial_shapes: bs, nlevel, 2
|
663 |
-
"""
|
664 |
-
output = tgt
|
665 |
-
|
666 |
-
intermediate = []
|
667 |
-
reference_points = refpoints_unsigmoid.sigmoid()
|
668 |
-
ref_points = [reference_points]
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
for layer_id, layer in enumerate(self.layers):
|
673 |
-
|
674 |
-
if reference_points.shape[-1] == 4:
|
675 |
-
reference_points_input = (
|
676 |
-
reference_points[:, :, None]
|
677 |
-
* torch.cat([valid_ratios, valid_ratios], -1)[None, :]
|
678 |
-
) # nq, bs, nlevel, 4
|
679 |
-
else:
|
680 |
-
assert reference_points.shape[-1] == 2
|
681 |
-
reference_points_input = reference_points[:, :, None] * valid_ratios[None, :]
|
682 |
-
query_sine_embed = gen_sineembed_for_position(
|
683 |
-
reference_points_input[:, :, 0, :]
|
684 |
-
) # nq, bs, 256*2
|
685 |
-
|
686 |
-
# conditional query
|
687 |
-
raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256
|
688 |
-
pos_scale = self.query_scale(output) if self.query_scale is not None else 1
|
689 |
-
query_pos = pos_scale * raw_query_pos
|
690 |
-
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
691 |
-
# if query_pos.isnan().any() | query_pos.isinf().any():
|
692 |
-
# import ipdb; ipdb.set_trace()
|
693 |
-
|
694 |
-
# main process
|
695 |
-
output = layer(
|
696 |
-
tgt=output,
|
697 |
-
tgt_query_pos=query_pos,
|
698 |
-
tgt_query_sine_embed=query_sine_embed,
|
699 |
-
tgt_key_padding_mask=tgt_key_padding_mask,
|
700 |
-
tgt_reference_points=reference_points_input,
|
701 |
-
memory_text=memory_text,
|
702 |
-
text_attention_mask=text_attention_mask,
|
703 |
-
memory=memory,
|
704 |
-
memory_key_padding_mask=memory_key_padding_mask,
|
705 |
-
memory_level_start_index=level_start_index,
|
706 |
-
memory_spatial_shapes=spatial_shapes,
|
707 |
-
memory_pos=pos,
|
708 |
-
self_attn_mask=tgt_mask,
|
709 |
-
cross_attn_mask=memory_mask,
|
710 |
-
)
|
711 |
-
if output.isnan().any() | output.isinf().any():
|
712 |
-
print(f"output layer_id {layer_id} is nan")
|
713 |
-
try:
|
714 |
-
num_nan = output.isnan().sum().item()
|
715 |
-
num_inf = output.isinf().sum().item()
|
716 |
-
print(f"num_nan {num_nan}, num_inf {num_inf}")
|
717 |
-
except Exception as e:
|
718 |
-
print(e)
|
719 |
-
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
720 |
-
# import ipdb; ipdb.set_trace()
|
721 |
-
|
722 |
-
# iter update
|
723 |
-
if self.bbox_embed is not None:
|
724 |
-
# box_holder = self.bbox_embed(output)
|
725 |
-
# box_holder[..., :self.query_dim] += inverse_sigmoid(reference_points)
|
726 |
-
# new_reference_points = box_holder[..., :self.query_dim].sigmoid()
|
727 |
-
|
728 |
-
reference_before_sigmoid = inverse_sigmoid(reference_points)
|
729 |
-
delta_unsig = self.bbox_embed[layer_id](output)
|
730 |
-
outputs_unsig = delta_unsig + reference_before_sigmoid
|
731 |
-
new_reference_points = outputs_unsig.sigmoid()
|
732 |
-
|
733 |
-
reference_points = new_reference_points.detach()
|
734 |
-
# if layer_id != self.num_layers - 1:
|
735 |
-
ref_points.append(new_reference_points)
|
736 |
-
|
737 |
-
intermediate.append(self.norm(output))
|
738 |
-
|
739 |
-
# import pdb;pdb.set_trace()
|
740 |
-
|
741 |
-
return [
|
742 |
-
[itm_out.transpose(0, 1) for itm_out in intermediate],
|
743 |
-
[itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points],
|
744 |
-
]
|
745 |
-
|
746 |
-
|
747 |
-
class DeformableTransformerEncoderLayer(nn.Module):
|
748 |
-
def __init__(
|
749 |
-
self,
|
750 |
-
d_model=256,
|
751 |
-
d_ffn=1024,
|
752 |
-
dropout=0.1,
|
753 |
-
activation="relu",
|
754 |
-
n_levels=4,
|
755 |
-
n_heads=8,
|
756 |
-
n_points=4,
|
757 |
-
):
|
758 |
-
super().__init__()
|
759 |
-
|
760 |
-
# self attention
|
761 |
-
self.self_attn = MSDeformAttn(
|
762 |
-
embed_dim=d_model,
|
763 |
-
num_levels=n_levels,
|
764 |
-
num_heads=n_heads,
|
765 |
-
num_points=n_points,
|
766 |
-
batch_first=True,
|
767 |
-
)
|
768 |
-
self.dropout1 = nn.Dropout(dropout)
|
769 |
-
self.norm1 = nn.LayerNorm(d_model)
|
770 |
-
r =12
|
771 |
-
# ffn
|
772 |
-
self.linear1 = lora.Linear(d_model, d_ffn , r=r )
|
773 |
-
self.activation = _get_activation_fn(activation, d_model=d_ffn)
|
774 |
-
self.dropout2 = nn.Dropout(dropout)
|
775 |
-
self.linear2 = lora.Linear(d_ffn, d_model , r=r)
|
776 |
-
self.dropout3 = nn.Dropout(dropout)
|
777 |
-
self.norm2 = nn.LayerNorm(d_model)
|
778 |
-
|
779 |
-
@staticmethod
|
780 |
-
def with_pos_embed(tensor, pos):
|
781 |
-
return tensor if pos is None else tensor + pos
|
782 |
-
|
783 |
-
def forward_ffn(self, src):
|
784 |
-
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
785 |
-
src = src + self.dropout3(src2)
|
786 |
-
src = self.norm2(src)
|
787 |
-
return src
|
788 |
-
|
789 |
-
def forward(
|
790 |
-
self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None
|
791 |
-
):
|
792 |
-
# self attention
|
793 |
-
# import ipdb; ipdb.set_trace()
|
794 |
-
src2 = self.self_attn(
|
795 |
-
query=self.with_pos_embed(src, pos),
|
796 |
-
reference_points=reference_points,
|
797 |
-
value=src,
|
798 |
-
spatial_shapes=spatial_shapes,
|
799 |
-
level_start_index=level_start_index,
|
800 |
-
key_padding_mask=key_padding_mask,
|
801 |
-
)
|
802 |
-
src = src + self.dropout1(src2)
|
803 |
-
src = self.norm1(src)
|
804 |
-
|
805 |
-
# ffn
|
806 |
-
src = self.forward_ffn(src)
|
807 |
-
|
808 |
-
return src
|
809 |
-
|
810 |
-
|
811 |
-
class DeformableTransformerDecoderLayer(nn.Module):
|
812 |
-
def __init__(
|
813 |
-
self,
|
814 |
-
d_model=256,
|
815 |
-
d_ffn=1024,
|
816 |
-
dropout=0.1,
|
817 |
-
activation="relu",
|
818 |
-
n_levels=4,
|
819 |
-
n_heads=8,
|
820 |
-
n_points=4,
|
821 |
-
use_text_feat_guide=False,
|
822 |
-
use_text_cross_attention=False,
|
823 |
-
):
|
824 |
-
super().__init__()
|
825 |
-
|
826 |
-
# cross attention
|
827 |
-
self.cross_attn = MSDeformAttn(
|
828 |
-
embed_dim=d_model,
|
829 |
-
num_levels=n_levels,
|
830 |
-
num_heads=n_heads,
|
831 |
-
num_points=n_points,
|
832 |
-
batch_first=True,
|
833 |
-
)
|
834 |
-
self.dropout1 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
835 |
-
self.norm1 = nn.LayerNorm(d_model)
|
836 |
-
|
837 |
-
# cross attention text
|
838 |
-
if use_text_cross_attention:
|
839 |
-
self.ca_text = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
840 |
-
self.catext_dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
841 |
-
self.catext_norm = nn.LayerNorm(d_model)
|
842 |
-
|
843 |
-
# self attention
|
844 |
-
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
845 |
-
self.dropout2 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
846 |
-
self.norm2 = nn.LayerNorm(d_model)
|
847 |
-
|
848 |
-
# ffn
|
849 |
-
r = 12
|
850 |
-
self.linear1 = lora.Linear(d_model, d_ffn , r=r)
|
851 |
-
self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1)
|
852 |
-
self.dropout3 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
853 |
-
self.linear2 = lora.Linear(d_ffn, d_model , r=r )
|
854 |
-
self.dropout4 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
855 |
-
self.norm3 = nn.LayerNorm(d_model)
|
856 |
-
|
857 |
-
self.key_aware_proj = None
|
858 |
-
self.use_text_feat_guide = use_text_feat_guide
|
859 |
-
assert not use_text_feat_guide
|
860 |
-
self.use_text_cross_attention = use_text_cross_attention
|
861 |
-
|
862 |
-
def rm_self_attn_modules(self):
|
863 |
-
self.self_attn = None
|
864 |
-
self.dropout2 = None
|
865 |
-
self.norm2 = None
|
866 |
-
|
867 |
-
@staticmethod
|
868 |
-
def with_pos_embed(tensor, pos):
|
869 |
-
return tensor if pos is None else tensor + pos
|
870 |
-
|
871 |
-
def forward_ffn(self, tgt):
|
872 |
-
with torch.cuda.amp.autocast(enabled=False):
|
873 |
-
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
|
874 |
-
tgt = tgt + self.dropout4(tgt2)
|
875 |
-
tgt = self.norm3(tgt)
|
876 |
-
return tgt
|
877 |
-
|
878 |
-
def forward(
|
879 |
-
self,
|
880 |
-
# for tgt
|
881 |
-
tgt: Optional[Tensor], # nq, bs, d_model
|
882 |
-
tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
|
883 |
-
tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
|
884 |
-
tgt_key_padding_mask: Optional[Tensor] = None,
|
885 |
-
tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
|
886 |
-
memory_text: Optional[Tensor] = None, # bs, num_token, d_model
|
887 |
-
text_attention_mask: Optional[Tensor] = None, # bs, num_token
|
888 |
-
# for memory
|
889 |
-
memory: Optional[Tensor] = None, # hw, bs, d_model
|
890 |
-
memory_key_padding_mask: Optional[Tensor] = None,
|
891 |
-
memory_level_start_index: Optional[Tensor] = None, # num_levels
|
892 |
-
memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
|
893 |
-
memory_pos: Optional[Tensor] = None, # pos for memory
|
894 |
-
# sa
|
895 |
-
self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
|
896 |
-
cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
|
897 |
-
):
|
898 |
-
"""
|
899 |
-
Input:
|
900 |
-
- tgt/tgt_query_pos: nq, bs, d_model
|
901 |
-
-
|
902 |
-
"""
|
903 |
-
assert cross_attn_mask is None
|
904 |
-
|
905 |
-
# self attention
|
906 |
-
if self.self_attn is not None:
|
907 |
-
# import ipdb; ipdb.set_trace()
|
908 |
-
q = k = self.with_pos_embed(tgt, tgt_query_pos)
|
909 |
-
tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
|
910 |
-
tgt = tgt + self.dropout2(tgt2)
|
911 |
-
tgt = self.norm2(tgt)
|
912 |
-
|
913 |
-
if self.use_text_cross_attention:
|
914 |
-
tgt2 = self.ca_text(
|
915 |
-
self.with_pos_embed(tgt, tgt_query_pos),
|
916 |
-
memory_text.transpose(0, 1),
|
917 |
-
memory_text.transpose(0, 1),
|
918 |
-
key_padding_mask=text_attention_mask,
|
919 |
-
)[0]
|
920 |
-
tgt = tgt + self.catext_dropout(tgt2)
|
921 |
-
tgt = self.catext_norm(tgt)
|
922 |
-
|
923 |
-
tgt2 = self.cross_attn(
|
924 |
-
query=self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
|
925 |
-
reference_points=tgt_reference_points.transpose(0, 1).contiguous(),
|
926 |
-
value=memory.transpose(0, 1),
|
927 |
-
spatial_shapes=memory_spatial_shapes,
|
928 |
-
level_start_index=memory_level_start_index,
|
929 |
-
key_padding_mask=memory_key_padding_mask,
|
930 |
-
).transpose(0, 1)
|
931 |
-
tgt = tgt + self.dropout1(tgt2)
|
932 |
-
tgt = self.norm1(tgt)
|
933 |
-
|
934 |
-
# ffn
|
935 |
-
tgt = self.forward_ffn(tgt)
|
936 |
-
|
937 |
-
return tgt
|
938 |
-
|
939 |
-
|
940 |
-
def build_transformer(args):
|
941 |
-
return Transformer(
|
942 |
-
d_model=args.hidden_dim,
|
943 |
-
dropout=args.dropout,
|
944 |
-
nhead=args.nheads,
|
945 |
-
num_queries=args.num_queries,
|
946 |
-
dim_feedforward=args.dim_feedforward,
|
947 |
-
num_encoder_layers=args.enc_layers,
|
948 |
-
num_decoder_layers=args.dec_layers,
|
949 |
-
normalize_before=args.pre_norm,
|
950 |
-
return_intermediate_dec=True,
|
951 |
-
query_dim=args.query_dim,
|
952 |
-
activation=args.transformer_activation,
|
953 |
-
num_patterns=args.num_patterns,
|
954 |
-
num_feature_levels=args.num_feature_levels,
|
955 |
-
enc_n_points=args.enc_n_points,
|
956 |
-
dec_n_points=args.dec_n_points,
|
957 |
-
learnable_tgt_init=True,
|
958 |
-
# two stage
|
959 |
-
two_stage_type=args.two_stage_type, # ['no', 'standard', 'early']
|
960 |
-
embed_init_tgt=args.embed_init_tgt,
|
961 |
-
use_text_enhancer=args.use_text_enhancer,
|
962 |
-
use_fusion_layer=args.use_fusion_layer,
|
963 |
-
use_checkpoint=args.use_checkpoint,
|
964 |
-
use_transformer_ckpt=args.use_transformer_ckpt,
|
965 |
-
use_text_cross_attention=args.use_text_cross_attention,
|
966 |
-
text_dropout=args.text_dropout,
|
967 |
-
fusion_dropout=args.fusion_dropout,
|
968 |
-
fusion_droppath=args.fusion_droppath,
|
969 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/transformer_vanilla-checkpoint.py
DELETED
@@ -1,125 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# Grounding DINO
|
3 |
-
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
-
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
-
# ------------------------------------------------------------------------
|
7 |
-
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
|
8 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
9 |
-
"""
|
10 |
-
DETR Transformer class.
|
11 |
-
|
12 |
-
Copy-paste from torch.nn.Transformer with modifications:
|
13 |
-
* positional encodings are passed in MHattention
|
14 |
-
* extra LN at the end of encoder is removed
|
15 |
-
* decoder returns a stack of activations from all decoding layers
|
16 |
-
"""
|
17 |
-
from typing import Optional
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn.functional as F
|
21 |
-
from torch import Tensor, nn
|
22 |
-
import loralib as lora
|
23 |
-
|
24 |
-
from .utils import (
|
25 |
-
MLP,
|
26 |
-
_get_activation_fn,
|
27 |
-
_get_clones,
|
28 |
-
gen_encoder_output_proposals,
|
29 |
-
gen_sineembed_for_position,
|
30 |
-
sigmoid_focal_loss,
|
31 |
-
)
|
32 |
-
|
33 |
-
|
34 |
-
class TextTransformer(nn.Module):
|
35 |
-
def __init__(self, num_layers, d_model=256, nheads=8, dim_feedforward=2048, dropout=0.1):
|
36 |
-
super().__init__()
|
37 |
-
self.num_layers = num_layers
|
38 |
-
self.d_model = d_model
|
39 |
-
self.nheads = nheads
|
40 |
-
self.dim_feedforward = dim_feedforward
|
41 |
-
self.norm = None
|
42 |
-
|
43 |
-
single_encoder_layer = TransformerEncoderLayer(
|
44 |
-
d_model=d_model, nhead=nheads, dim_feedforward=dim_feedforward, dropout=dropout
|
45 |
-
)
|
46 |
-
self.layers = _get_clones(single_encoder_layer, num_layers)
|
47 |
-
|
48 |
-
def forward(self, memory_text: torch.Tensor, text_attention_mask: torch.Tensor):
|
49 |
-
"""
|
50 |
-
|
51 |
-
Args:
|
52 |
-
text_attention_mask: bs, num_token
|
53 |
-
memory_text: bs, num_token, d_model
|
54 |
-
|
55 |
-
Raises:
|
56 |
-
RuntimeError: _description_
|
57 |
-
|
58 |
-
Returns:
|
59 |
-
output: bs, num_token, d_model
|
60 |
-
"""
|
61 |
-
|
62 |
-
output = memory_text.transpose(0, 1)
|
63 |
-
|
64 |
-
for layer in self.layers:
|
65 |
-
output = layer(output, src_key_padding_mask=text_attention_mask)
|
66 |
-
|
67 |
-
if self.norm is not None:
|
68 |
-
output = self.norm(output)
|
69 |
-
|
70 |
-
return output.transpose(0, 1)
|
71 |
-
|
72 |
-
|
73 |
-
class TransformerEncoderLayer(nn.Module):
|
74 |
-
def __init__(
|
75 |
-
self,
|
76 |
-
d_model,
|
77 |
-
nhead,
|
78 |
-
dim_feedforward=2048,
|
79 |
-
dropout=0.1,
|
80 |
-
activation="relu",
|
81 |
-
normalize_before=False,
|
82 |
-
):
|
83 |
-
super().__init__()
|
84 |
-
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
85 |
-
r = 12
|
86 |
-
# Implementation of Feedforward model
|
87 |
-
self.linear1 = lora.Linear(d_model, dim_feedforward , r=r)
|
88 |
-
self.dropout = nn.Dropout(dropout)
|
89 |
-
self.linear2 = lora.Linear(dim_feedforward, d_model , r=r)
|
90 |
-
|
91 |
-
self.norm1 = nn.LayerNorm(d_model)
|
92 |
-
self.norm2 = nn.LayerNorm(d_model)
|
93 |
-
self.dropout1 = nn.Dropout(dropout)
|
94 |
-
self.dropout2 = nn.Dropout(dropout)
|
95 |
-
|
96 |
-
self.activation = _get_activation_fn(activation)
|
97 |
-
self.normalize_before = normalize_before
|
98 |
-
self.nhead = nhead
|
99 |
-
|
100 |
-
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
101 |
-
return tensor if pos is None else tensor + pos
|
102 |
-
|
103 |
-
def forward(
|
104 |
-
self,
|
105 |
-
src,
|
106 |
-
src_mask: Optional[Tensor] = None,
|
107 |
-
src_key_padding_mask: Optional[Tensor] = None,
|
108 |
-
pos: Optional[Tensor] = None,
|
109 |
-
):
|
110 |
-
# repeat attn mask
|
111 |
-
if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]:
|
112 |
-
# bs, num_q, num_k
|
113 |
-
src_mask = src_mask.repeat(self.nhead, 1, 1)
|
114 |
-
|
115 |
-
q = k = self.with_pos_embed(src, pos)
|
116 |
-
|
117 |
-
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0]
|
118 |
-
|
119 |
-
# src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
120 |
-
src = src + self.dropout1(src2)
|
121 |
-
src = self.norm1(src)
|
122 |
-
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
123 |
-
src = src + self.dropout2(src2)
|
124 |
-
src = self.norm2(src)
|
125 |
-
return src
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/.ipynb_checkpoints/utils-checkpoint.py
DELETED
@@ -1,274 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# Grounding DINO
|
3 |
-
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
-
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
-
# ------------------------------------------------------------------------
|
7 |
-
|
8 |
-
import copy
|
9 |
-
import math
|
10 |
-
|
11 |
-
import torch
|
12 |
-
import torch.nn.functional as F
|
13 |
-
from torch import Tensor, nn
|
14 |
-
import loralib as lora
|
15 |
-
|
16 |
-
def _get_clones(module, N, layer_share=False):
|
17 |
-
# import ipdb; ipdb.set_trace()
|
18 |
-
if layer_share:
|
19 |
-
return nn.ModuleList([module for i in range(N)])
|
20 |
-
else:
|
21 |
-
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
22 |
-
|
23 |
-
|
24 |
-
def get_sine_pos_embed(
|
25 |
-
pos_tensor: torch.Tensor,
|
26 |
-
num_pos_feats: int = 128,
|
27 |
-
temperature: int = 10000,
|
28 |
-
exchange_xy: bool = True,
|
29 |
-
):
|
30 |
-
"""generate sine position embedding from a position tensor
|
31 |
-
Args:
|
32 |
-
pos_tensor (torch.Tensor): shape: [..., n].
|
33 |
-
num_pos_feats (int): projected shape for each float in the tensor.
|
34 |
-
temperature (int): temperature in the sine/cosine function.
|
35 |
-
exchange_xy (bool, optional): exchange pos x and pos y. \
|
36 |
-
For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True.
|
37 |
-
Returns:
|
38 |
-
pos_embed (torch.Tensor): shape: [..., n*num_pos_feats].
|
39 |
-
"""
|
40 |
-
scale = 2 * math.pi
|
41 |
-
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
|
42 |
-
dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
|
43 |
-
|
44 |
-
def sine_func(x: torch.Tensor):
|
45 |
-
sin_x = x * scale / dim_t
|
46 |
-
sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2)
|
47 |
-
return sin_x
|
48 |
-
|
49 |
-
pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)]
|
50 |
-
if exchange_xy:
|
51 |
-
pos_res[0], pos_res[1] = pos_res[1], pos_res[0]
|
52 |
-
pos_res = torch.cat(pos_res, dim=-1)
|
53 |
-
return pos_res
|
54 |
-
|
55 |
-
|
56 |
-
def gen_encoder_output_proposals(
|
57 |
-
memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None
|
58 |
-
):
|
59 |
-
"""
|
60 |
-
Input:
|
61 |
-
- memory: bs, \sum{hw}, d_model
|
62 |
-
- memory_padding_mask: bs, \sum{hw}
|
63 |
-
- spatial_shapes: nlevel, 2
|
64 |
-
- learnedwh: 2
|
65 |
-
Output:
|
66 |
-
- output_memory: bs, \sum{hw}, d_model
|
67 |
-
- output_proposals: bs, \sum{hw}, 4
|
68 |
-
"""
|
69 |
-
N_, S_, C_ = memory.shape
|
70 |
-
proposals = []
|
71 |
-
_cur = 0
|
72 |
-
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
73 |
-
mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view(N_, H_, W_, 1)
|
74 |
-
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
|
75 |
-
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
|
76 |
-
|
77 |
-
# import ipdb; ipdb.set_trace()
|
78 |
-
|
79 |
-
grid_y, grid_x = torch.meshgrid(
|
80 |
-
torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
|
81 |
-
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
|
82 |
-
)
|
83 |
-
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2
|
84 |
-
|
85 |
-
scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
|
86 |
-
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
|
87 |
-
|
88 |
-
if learnedwh is not None:
|
89 |
-
# import ipdb; ipdb.set_trace()
|
90 |
-
wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl)
|
91 |
-
else:
|
92 |
-
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
|
93 |
-
|
94 |
-
# scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1)
|
95 |
-
# grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
|
96 |
-
# wh = torch.ones_like(grid) / scale
|
97 |
-
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
|
98 |
-
proposals.append(proposal)
|
99 |
-
_cur += H_ * W_
|
100 |
-
# import ipdb; ipdb.set_trace()
|
101 |
-
output_proposals = torch.cat(proposals, 1)
|
102 |
-
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(
|
103 |
-
-1, keepdim=True
|
104 |
-
)
|
105 |
-
output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid
|
106 |
-
output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float("inf"))
|
107 |
-
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
|
108 |
-
|
109 |
-
output_memory = memory
|
110 |
-
output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
|
111 |
-
output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
|
112 |
-
|
113 |
-
# output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
|
114 |
-
# output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf'))
|
115 |
-
|
116 |
-
return output_memory, output_proposals
|
117 |
-
|
118 |
-
|
119 |
-
class RandomBoxPerturber:
|
120 |
-
def __init__(
|
121 |
-
self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2
|
122 |
-
) -> None:
|
123 |
-
self.noise_scale = torch.Tensor(
|
124 |
-
[x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale]
|
125 |
-
)
|
126 |
-
|
127 |
-
def __call__(self, refanchors: Tensor) -> Tensor:
|
128 |
-
nq, bs, query_dim = refanchors.shape
|
129 |
-
device = refanchors.device
|
130 |
-
|
131 |
-
noise_raw = torch.rand_like(refanchors)
|
132 |
-
noise_scale = self.noise_scale.to(device)[:query_dim]
|
133 |
-
|
134 |
-
new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale)
|
135 |
-
return new_refanchors.clamp_(0, 1)
|
136 |
-
|
137 |
-
|
138 |
-
def sigmoid_focal_loss(
|
139 |
-
inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, no_reduction=False
|
140 |
-
):
|
141 |
-
"""
|
142 |
-
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
|
143 |
-
Args:
|
144 |
-
inputs: A float tensor of arbitrary shape.
|
145 |
-
The predictions for each example.
|
146 |
-
targets: A float tensor with the same shape as inputs. Stores the binary
|
147 |
-
classification label for each element in inputs
|
148 |
-
(0 for the negative class and 1 for the positive class).
|
149 |
-
alpha: (optional) Weighting factor in range (0,1) to balance
|
150 |
-
positive vs negative examples. Default = -1 (no weighting).
|
151 |
-
gamma: Exponent of the modulating factor (1 - p_t) to
|
152 |
-
balance easy vs hard examples.
|
153 |
-
Returns:
|
154 |
-
Loss tensor
|
155 |
-
"""
|
156 |
-
prob = inputs.sigmoid()
|
157 |
-
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
158 |
-
p_t = prob * targets + (1 - prob) * (1 - targets)
|
159 |
-
loss = ce_loss * ((1 - p_t) ** gamma)
|
160 |
-
|
161 |
-
if alpha >= 0:
|
162 |
-
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
|
163 |
-
loss = alpha_t * loss
|
164 |
-
|
165 |
-
if no_reduction:
|
166 |
-
return loss
|
167 |
-
|
168 |
-
return loss.mean(1).sum() / num_boxes
|
169 |
-
|
170 |
-
|
171 |
-
class MLP(nn.Module):
|
172 |
-
"""Very simple multi-layer perceptron (also called FFN)"""
|
173 |
-
|
174 |
-
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
175 |
-
super().__init__()
|
176 |
-
r = 12
|
177 |
-
self.num_layers = num_layers
|
178 |
-
h = [hidden_dim] * (num_layers - 1)
|
179 |
-
self.layers = nn.ModuleList(
|
180 |
-
lora.Linear(n, k , r=r) for n, k in zip([input_dim] + h, h + [output_dim])
|
181 |
-
)
|
182 |
-
|
183 |
-
def forward(self, x):
|
184 |
-
for i, layer in enumerate(self.layers):
|
185 |
-
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
186 |
-
return x
|
187 |
-
|
188 |
-
|
189 |
-
def _get_activation_fn(activation, d_model=256, batch_dim=0):
|
190 |
-
"""Return an activation function given a string"""
|
191 |
-
if activation == "relu":
|
192 |
-
return F.relu
|
193 |
-
if activation == "gelu":
|
194 |
-
return F.gelu
|
195 |
-
if activation == "glu":
|
196 |
-
return F.glu
|
197 |
-
if activation == "prelu":
|
198 |
-
return nn.PReLU()
|
199 |
-
if activation == "selu":
|
200 |
-
return F.selu
|
201 |
-
|
202 |
-
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
203 |
-
|
204 |
-
|
205 |
-
def gen_sineembed_for_position(pos_tensor):
|
206 |
-
# n_query, bs, _ = pos_tensor.size()
|
207 |
-
# sineembed_tensor = torch.zeros(n_query, bs, 256)
|
208 |
-
scale = 2 * math.pi
|
209 |
-
dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device)
|
210 |
-
dim_t = 10000 ** (2 * (torch.div(dim_t, 2, rounding_mode='floor')) / 128)
|
211 |
-
x_embed = pos_tensor[:, :, 0] * scale
|
212 |
-
y_embed = pos_tensor[:, :, 1] * scale
|
213 |
-
pos_x = x_embed[:, :, None] / dim_t
|
214 |
-
pos_y = y_embed[:, :, None] / dim_t
|
215 |
-
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
|
216 |
-
pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2)
|
217 |
-
if pos_tensor.size(-1) == 2:
|
218 |
-
pos = torch.cat((pos_y, pos_x), dim=2)
|
219 |
-
elif pos_tensor.size(-1) == 4:
|
220 |
-
w_embed = pos_tensor[:, :, 2] * scale
|
221 |
-
pos_w = w_embed[:, :, None] / dim_t
|
222 |
-
pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2)
|
223 |
-
|
224 |
-
h_embed = pos_tensor[:, :, 3] * scale
|
225 |
-
pos_h = h_embed[:, :, None] / dim_t
|
226 |
-
pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2)
|
227 |
-
|
228 |
-
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
|
229 |
-
else:
|
230 |
-
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
|
231 |
-
return pos
|
232 |
-
|
233 |
-
|
234 |
-
class ContrastiveEmbed(nn.Module):
|
235 |
-
def __init__(self, max_text_len=256):
|
236 |
-
"""
|
237 |
-
Args:
|
238 |
-
max_text_len: max length of text.
|
239 |
-
"""
|
240 |
-
super().__init__()
|
241 |
-
self.max_text_len = max_text_len
|
242 |
-
|
243 |
-
def forward(self, x, text_dict):
|
244 |
-
"""_summary_
|
245 |
-
|
246 |
-
Args:
|
247 |
-
x (_type_): _description_
|
248 |
-
text_dict (_type_): _description_
|
249 |
-
{
|
250 |
-
'encoded_text': encoded_text, # bs, 195, d_model
|
251 |
-
'text_token_mask': text_token_mask, # bs, 195
|
252 |
-
# True for used tokens. False for padding tokens
|
253 |
-
}
|
254 |
-
Returns:
|
255 |
-
_type_: _description_
|
256 |
-
"""
|
257 |
-
assert isinstance(text_dict, dict)
|
258 |
-
# print(x) #torch.Size([2, 16320, 256])
|
259 |
-
# print(text_dict)
|
260 |
-
|
261 |
-
# import pdb;pdb.set_trace()
|
262 |
-
y = text_dict["encoded_text"] #torch.Size([2, 195, 256])
|
263 |
-
text_token_mask = text_dict["text_token_mask"]
|
264 |
-
|
265 |
-
res = x @ y.transpose(-1, -2)
|
266 |
-
res.masked_fill_(~text_token_mask[:, None, :], float("-inf"))
|
267 |
-
# 接着,对res进行掩码操作,将未使用的文本token(即padding的token)对应的得分置为负无穷float("-inf")。这是为了在计算相似度时,排除padding部分的影响。
|
268 |
-
|
269 |
-
|
270 |
-
# padding to max_text_len
|
271 |
-
new_res = torch.full((*res.shape[:-1], self.max_text_len), float("-inf"), device=res.device)
|
272 |
-
new_res[..., : res.shape[-1]] = res #torch.Size([2, 16320, 195])
|
273 |
-
|
274 |
-
return new_res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (243 Bytes)
|
|
groundingdino/models/GroundingDINO/__pycache__/bertwarper.cpython-310.pyc
DELETED
Binary file (7.21 kB)
|
|
groundingdino/models/GroundingDINO/__pycache__/fuse_modules.cpython-310.pyc
DELETED
Binary file (7.88 kB)
|
|
groundingdino/models/GroundingDINO/__pycache__/groundingdino.cpython-310.pyc
DELETED
Binary file (25.3 kB)
|
|
groundingdino/models/GroundingDINO/__pycache__/matcher.cpython-310.pyc
DELETED
Binary file (6.69 kB)
|
|
groundingdino/models/GroundingDINO/__pycache__/ms_deform_attn.cpython-310.pyc
DELETED
Binary file (11.8 kB)
|
|
groundingdino/models/GroundingDINO/__pycache__/transformer.cpython-310.pyc
DELETED
Binary file (19.5 kB)
|
|
groundingdino/models/GroundingDINO/__pycache__/transformer_vanilla.cpython-310.pyc
DELETED
Binary file (3.51 kB)
|
|
groundingdino/models/GroundingDINO/__pycache__/utils.cpython-310.pyc
DELETED
Binary file (9.62 kB)
|
|
groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/__init__-checkpoint.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .backbone import build_backbone
|
|
|
|
groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/backbone-checkpoint.py
DELETED
@@ -1,221 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# Grounding DINO
|
3 |
-
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
-
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
-
# ------------------------------------------------------------------------
|
7 |
-
# Conditional DETR
|
8 |
-
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
9 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
-
# ------------------------------------------------------------------------
|
11 |
-
# Copied from DETR (https://github.com/facebookresearch/detr)
|
12 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
13 |
-
# ------------------------------------------------------------------------
|
14 |
-
|
15 |
-
"""
|
16 |
-
Backbone modules.
|
17 |
-
"""
|
18 |
-
|
19 |
-
from typing import Dict, List
|
20 |
-
|
21 |
-
import torch
|
22 |
-
import torch.nn.functional as F
|
23 |
-
import torchvision
|
24 |
-
from torch import nn
|
25 |
-
from torchvision.models._utils import IntermediateLayerGetter
|
26 |
-
|
27 |
-
from groundingdino.util.misc import NestedTensor, clean_state_dict, is_main_process
|
28 |
-
|
29 |
-
from .position_encoding import build_position_encoding
|
30 |
-
from .swin_transformer import build_swin_transformer
|
31 |
-
|
32 |
-
|
33 |
-
class FrozenBatchNorm2d(torch.nn.Module):
|
34 |
-
"""
|
35 |
-
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
36 |
-
|
37 |
-
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
|
38 |
-
without which any other models than torchvision.models.resnet[18,34,50,101]
|
39 |
-
produce nans.
|
40 |
-
"""
|
41 |
-
|
42 |
-
def __init__(self, n):
|
43 |
-
super(FrozenBatchNorm2d, self).__init__()
|
44 |
-
self.register_buffer("weight", torch.ones(n))
|
45 |
-
self.register_buffer("bias", torch.zeros(n))
|
46 |
-
self.register_buffer("running_mean", torch.zeros(n))
|
47 |
-
self.register_buffer("running_var", torch.ones(n))
|
48 |
-
|
49 |
-
def _load_from_state_dict(
|
50 |
-
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
51 |
-
):
|
52 |
-
num_batches_tracked_key = prefix + "num_batches_tracked"
|
53 |
-
if num_batches_tracked_key in state_dict:
|
54 |
-
del state_dict[num_batches_tracked_key]
|
55 |
-
|
56 |
-
super(FrozenBatchNorm2d, self)._load_from_state_dict(
|
57 |
-
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
58 |
-
)
|
59 |
-
|
60 |
-
def forward(self, x):
|
61 |
-
# move reshapes to the beginning
|
62 |
-
# to make it fuser-friendly
|
63 |
-
w = self.weight.reshape(1, -1, 1, 1)
|
64 |
-
b = self.bias.reshape(1, -1, 1, 1)
|
65 |
-
rv = self.running_var.reshape(1, -1, 1, 1)
|
66 |
-
rm = self.running_mean.reshape(1, -1, 1, 1)
|
67 |
-
eps = 1e-5
|
68 |
-
scale = w * (rv + eps).rsqrt()
|
69 |
-
bias = b - rm * scale
|
70 |
-
return x * scale + bias
|
71 |
-
|
72 |
-
|
73 |
-
class BackboneBase(nn.Module):
|
74 |
-
def __init__(
|
75 |
-
self,
|
76 |
-
backbone: nn.Module,
|
77 |
-
train_backbone: bool,
|
78 |
-
num_channels: int,
|
79 |
-
return_interm_indices: list,
|
80 |
-
):
|
81 |
-
super().__init__()
|
82 |
-
for name, parameter in backbone.named_parameters():
|
83 |
-
if (
|
84 |
-
not train_backbone
|
85 |
-
or "layer2" not in name
|
86 |
-
and "layer3" not in name
|
87 |
-
and "layer4" not in name
|
88 |
-
):
|
89 |
-
parameter.requires_grad_(False)
|
90 |
-
|
91 |
-
return_layers = {}
|
92 |
-
for idx, layer_index in enumerate(return_interm_indices):
|
93 |
-
return_layers.update(
|
94 |
-
{"layer{}".format(5 - len(return_interm_indices) + idx): "{}".format(layer_index)}
|
95 |
-
)
|
96 |
-
|
97 |
-
# if len:
|
98 |
-
# if use_stage1_feature:
|
99 |
-
# return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
|
100 |
-
# else:
|
101 |
-
# return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"}
|
102 |
-
# else:
|
103 |
-
# return_layers = {'layer4': "0"}
|
104 |
-
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
|
105 |
-
self.num_channels = num_channels
|
106 |
-
|
107 |
-
def forward(self, tensor_list: NestedTensor):
|
108 |
-
xs = self.body(tensor_list.tensors)
|
109 |
-
out: Dict[str, NestedTensor] = {}
|
110 |
-
for name, x in xs.items():
|
111 |
-
m = tensor_list.mask
|
112 |
-
assert m is not None
|
113 |
-
mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
114 |
-
out[name] = NestedTensor(x, mask)
|
115 |
-
# import ipdb; ipdb.set_trace()
|
116 |
-
return out
|
117 |
-
|
118 |
-
|
119 |
-
class Backbone(BackboneBase):
|
120 |
-
"""ResNet backbone with frozen BatchNorm."""
|
121 |
-
|
122 |
-
def __init__(
|
123 |
-
self,
|
124 |
-
name: str,
|
125 |
-
train_backbone: bool,
|
126 |
-
dilation: bool,
|
127 |
-
return_interm_indices: list,
|
128 |
-
batch_norm=FrozenBatchNorm2d,
|
129 |
-
):
|
130 |
-
if name in ["resnet18", "resnet34", "resnet50", "resnet101"]:
|
131 |
-
backbone = getattr(torchvision.models, name)(
|
132 |
-
replace_stride_with_dilation=[False, False, dilation],
|
133 |
-
pretrained=is_main_process(),
|
134 |
-
norm_layer=batch_norm,
|
135 |
-
)
|
136 |
-
else:
|
137 |
-
raise NotImplementedError("Why you can get here with name {}".format(name))
|
138 |
-
# num_channels = 512 if name in ('resnet18', 'resnet34') else 2048
|
139 |
-
assert name not in ("resnet18", "resnet34"), "Only resnet50 and resnet101 are available."
|
140 |
-
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
|
141 |
-
num_channels_all = [256, 512, 1024, 2048]
|
142 |
-
num_channels = num_channels_all[4 - len(return_interm_indices) :]
|
143 |
-
super().__init__(backbone, train_backbone, num_channels, return_interm_indices)
|
144 |
-
|
145 |
-
|
146 |
-
class Joiner(nn.Sequential):
|
147 |
-
def __init__(self, backbone, position_embedding):
|
148 |
-
super().__init__(backbone, position_embedding)
|
149 |
-
|
150 |
-
def forward(self, tensor_list: NestedTensor):
|
151 |
-
xs = self[0](tensor_list)
|
152 |
-
out: List[NestedTensor] = []
|
153 |
-
pos = []
|
154 |
-
for name, x in xs.items():
|
155 |
-
out.append(x)
|
156 |
-
# position encoding
|
157 |
-
pos.append(self[1](x).to(x.tensors.dtype))
|
158 |
-
|
159 |
-
return out, pos
|
160 |
-
|
161 |
-
|
162 |
-
def build_backbone(args):
|
163 |
-
"""
|
164 |
-
Useful args:
|
165 |
-
- backbone: backbone name
|
166 |
-
- lr_backbone:
|
167 |
-
- dilation
|
168 |
-
- return_interm_indices: available: [0,1,2,3], [1,2,3], [3]
|
169 |
-
- backbone_freeze_keywords:
|
170 |
-
- use_checkpoint: for swin only for now
|
171 |
-
|
172 |
-
"""
|
173 |
-
position_embedding = build_position_encoding(args)
|
174 |
-
train_backbone = True
|
175 |
-
if not train_backbone:
|
176 |
-
raise ValueError("Please set lr_backbone > 0")
|
177 |
-
return_interm_indices = args.return_interm_indices
|
178 |
-
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
|
179 |
-
args.backbone_freeze_keywords
|
180 |
-
use_checkpoint = getattr(args, "use_checkpoint", False)
|
181 |
-
|
182 |
-
if args.backbone in ["resnet50", "resnet101"]:
|
183 |
-
backbone = Backbone(
|
184 |
-
args.backbone,
|
185 |
-
train_backbone,
|
186 |
-
args.dilation,
|
187 |
-
return_interm_indices,
|
188 |
-
batch_norm=FrozenBatchNorm2d,
|
189 |
-
)
|
190 |
-
bb_num_channels = backbone.num_channels
|
191 |
-
elif args.backbone in [
|
192 |
-
"swin_T_224_1k",
|
193 |
-
"swin_B_224_22k",
|
194 |
-
"swin_B_384_22k",
|
195 |
-
"swin_L_224_22k",
|
196 |
-
"swin_L_384_22k",
|
197 |
-
]:
|
198 |
-
pretrain_img_size = int(args.backbone.split("_")[-2])
|
199 |
-
backbone = build_swin_transformer(
|
200 |
-
args.backbone,
|
201 |
-
pretrain_img_size=pretrain_img_size,
|
202 |
-
out_indices=tuple(return_interm_indices),
|
203 |
-
dilation=False,
|
204 |
-
use_checkpoint=use_checkpoint,
|
205 |
-
)
|
206 |
-
|
207 |
-
bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :]
|
208 |
-
else:
|
209 |
-
raise NotImplementedError("Unknown backbone {}".format(args.backbone))
|
210 |
-
|
211 |
-
assert len(bb_num_channels) == len(
|
212 |
-
return_interm_indices
|
213 |
-
), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}"
|
214 |
-
|
215 |
-
model = Joiner(backbone, position_embedding)
|
216 |
-
model.num_channels = bb_num_channels
|
217 |
-
assert isinstance(
|
218 |
-
bb_num_channels, List
|
219 |
-
), "bb_num_channels is expected to be a List but {}".format(type(bb_num_channels))
|
220 |
-
# import ipdb; ipdb.set_trace()
|
221 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/position_encoding-checkpoint.py
DELETED
@@ -1,186 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# Grounding DINO
|
3 |
-
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
-
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
-
# ------------------------------------------------------------------------
|
7 |
-
# DINO
|
8 |
-
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
9 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
-
# ------------------------------------------------------------------------
|
11 |
-
# Conditional DETR
|
12 |
-
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
13 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
14 |
-
# ------------------------------------------------------------------------
|
15 |
-
# Copied from DETR (https://github.com/facebookresearch/detr)
|
16 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
17 |
-
# ------------------------------------------------------------------------
|
18 |
-
|
19 |
-
"""
|
20 |
-
Various positional encodings for the transformer.
|
21 |
-
"""
|
22 |
-
import math
|
23 |
-
|
24 |
-
import torch
|
25 |
-
from torch import nn
|
26 |
-
|
27 |
-
from groundingdino.util.misc import NestedTensor
|
28 |
-
|
29 |
-
|
30 |
-
class PositionEmbeddingSine(nn.Module):
|
31 |
-
"""
|
32 |
-
This is a more standard version of the position embedding, very similar to the one
|
33 |
-
used by the Attention is all you need paper, generalized to work on images.
|
34 |
-
"""
|
35 |
-
|
36 |
-
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
37 |
-
super().__init__()
|
38 |
-
self.num_pos_feats = num_pos_feats
|
39 |
-
self.temperature = temperature
|
40 |
-
self.normalize = normalize
|
41 |
-
if scale is not None and normalize is False:
|
42 |
-
raise ValueError("normalize should be True if scale is passed")
|
43 |
-
if scale is None:
|
44 |
-
scale = 2 * math.pi
|
45 |
-
self.scale = scale
|
46 |
-
|
47 |
-
def forward(self, tensor_list: NestedTensor):
|
48 |
-
x = tensor_list.tensors
|
49 |
-
mask = tensor_list.mask
|
50 |
-
assert mask is not None
|
51 |
-
not_mask = ~mask
|
52 |
-
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
53 |
-
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
54 |
-
if self.normalize:
|
55 |
-
eps = 1e-6
|
56 |
-
# if os.environ.get("SHILONG_AMP", None) == '1':
|
57 |
-
# eps = 1e-4
|
58 |
-
# else:
|
59 |
-
# eps = 1e-6
|
60 |
-
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
61 |
-
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
62 |
-
|
63 |
-
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
64 |
-
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
65 |
-
|
66 |
-
pos_x = x_embed[:, :, :, None] / dim_t
|
67 |
-
pos_y = y_embed[:, :, :, None] / dim_t
|
68 |
-
pos_x = torch.stack(
|
69 |
-
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
70 |
-
).flatten(3)
|
71 |
-
pos_y = torch.stack(
|
72 |
-
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
73 |
-
).flatten(3)
|
74 |
-
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
75 |
-
return pos
|
76 |
-
|
77 |
-
|
78 |
-
class PositionEmbeddingSineHW(nn.Module):
|
79 |
-
"""
|
80 |
-
This is a more standard version of the position embedding, very similar to the one
|
81 |
-
used by the Attention is all you need paper, generalized to work on images.
|
82 |
-
"""
|
83 |
-
|
84 |
-
def __init__(
|
85 |
-
self, num_pos_feats=64, temperatureH=10000, temperatureW=10000, normalize=False, scale=None
|
86 |
-
):
|
87 |
-
super().__init__()
|
88 |
-
self.num_pos_feats = num_pos_feats
|
89 |
-
self.temperatureH = temperatureH
|
90 |
-
self.temperatureW = temperatureW
|
91 |
-
self.normalize = normalize
|
92 |
-
if scale is not None and normalize is False:
|
93 |
-
raise ValueError("normalize should be True if scale is passed")
|
94 |
-
if scale is None:
|
95 |
-
scale = 2 * math.pi
|
96 |
-
self.scale = scale
|
97 |
-
|
98 |
-
def forward(self, tensor_list: NestedTensor):
|
99 |
-
x = tensor_list.tensors
|
100 |
-
mask = tensor_list.mask
|
101 |
-
assert mask is not None
|
102 |
-
not_mask = ~mask
|
103 |
-
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
104 |
-
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
105 |
-
|
106 |
-
# import ipdb; ipdb.set_trace()
|
107 |
-
|
108 |
-
if self.normalize:
|
109 |
-
eps = 1e-6
|
110 |
-
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
111 |
-
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
112 |
-
|
113 |
-
dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
114 |
-
dim_tx = self.temperatureW ** (2 * (torch.div(dim_tx, 2, rounding_mode='floor')) / self.num_pos_feats)
|
115 |
-
pos_x = x_embed[:, :, :, None] / dim_tx
|
116 |
-
|
117 |
-
dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
118 |
-
dim_ty = self.temperatureH ** (2 * (torch.div(dim_ty, 2, rounding_mode='floor')) / self.num_pos_feats)
|
119 |
-
pos_y = y_embed[:, :, :, None] / dim_ty
|
120 |
-
|
121 |
-
pos_x = torch.stack(
|
122 |
-
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
123 |
-
).flatten(3)
|
124 |
-
pos_y = torch.stack(
|
125 |
-
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
126 |
-
).flatten(3)
|
127 |
-
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
128 |
-
|
129 |
-
# import ipdb; ipdb.set_trace()
|
130 |
-
|
131 |
-
return pos
|
132 |
-
|
133 |
-
|
134 |
-
class PositionEmbeddingLearned(nn.Module):
|
135 |
-
"""
|
136 |
-
Absolute pos embedding, learned.
|
137 |
-
"""
|
138 |
-
|
139 |
-
def __init__(self, num_pos_feats=256):
|
140 |
-
super().__init__()
|
141 |
-
self.row_embed = nn.Embedding(50, num_pos_feats)
|
142 |
-
self.col_embed = nn.Embedding(50, num_pos_feats)
|
143 |
-
self.reset_parameters()
|
144 |
-
|
145 |
-
def reset_parameters(self):
|
146 |
-
nn.init.uniform_(self.row_embed.weight)
|
147 |
-
nn.init.uniform_(self.col_embed.weight)
|
148 |
-
|
149 |
-
def forward(self, tensor_list: NestedTensor):
|
150 |
-
x = tensor_list.tensors
|
151 |
-
h, w = x.shape[-2:]
|
152 |
-
i = torch.arange(w, device=x.device)
|
153 |
-
j = torch.arange(h, device=x.device)
|
154 |
-
x_emb = self.col_embed(i)
|
155 |
-
y_emb = self.row_embed(j)
|
156 |
-
pos = (
|
157 |
-
torch.cat(
|
158 |
-
[
|
159 |
-
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
160 |
-
y_emb.unsqueeze(1).repeat(1, w, 1),
|
161 |
-
],
|
162 |
-
dim=-1,
|
163 |
-
)
|
164 |
-
.permute(2, 0, 1)
|
165 |
-
.unsqueeze(0)
|
166 |
-
.repeat(x.shape[0], 1, 1, 1)
|
167 |
-
)
|
168 |
-
return pos
|
169 |
-
|
170 |
-
|
171 |
-
def build_position_encoding(args):
|
172 |
-
N_steps = args.hidden_dim // 2
|
173 |
-
if args.position_embedding in ("v2", "sine"):
|
174 |
-
# TODO find a better way of exposing other arguments
|
175 |
-
position_embedding = PositionEmbeddingSineHW(
|
176 |
-
N_steps,
|
177 |
-
temperatureH=args.pe_temperatureH,
|
178 |
-
temperatureW=args.pe_temperatureW,
|
179 |
-
normalize=True,
|
180 |
-
)
|
181 |
-
elif args.position_embedding in ("v3", "learned"):
|
182 |
-
position_embedding = PositionEmbeddingLearned(N_steps)
|
183 |
-
else:
|
184 |
-
raise ValueError(f"not supported {args.position_embedding}")
|
185 |
-
|
186 |
-
return position_embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/backbone/.ipynb_checkpoints/swin_transformer-checkpoint.py
DELETED
@@ -1,804 +0,0 @@
|
|
1 |
-
# ------------------------------------------------------------------------
|
2 |
-
# Grounding DINO
|
3 |
-
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
-
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
-
# ------------------------------------------------------------------------
|
7 |
-
# DINO
|
8 |
-
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
9 |
-
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
-
# --------------------------------------------------------
|
11 |
-
# modified from https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/master/mmdet/models/backbones/swin_transformer.py
|
12 |
-
# --------------------------------------------------------
|
13 |
-
|
14 |
-
import numpy as np
|
15 |
-
import torch
|
16 |
-
import torch.nn as nn
|
17 |
-
import torch.nn.functional as F
|
18 |
-
import torch.utils.checkpoint as checkpoint
|
19 |
-
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
20 |
-
import loralib as lora
|
21 |
-
from groundingdino.util.misc import NestedTensor
|
22 |
-
|
23 |
-
|
24 |
-
class Mlp(nn.Module):
|
25 |
-
"""Multilayer perceptron."""
|
26 |
-
|
27 |
-
def __init__(
|
28 |
-
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
|
29 |
-
):
|
30 |
-
super().__init__()
|
31 |
-
r = 12
|
32 |
-
out_features = out_features or in_features
|
33 |
-
hidden_features = hidden_features or in_features
|
34 |
-
self.fc1 = lora.Linear(in_features, hidden_features , r=r)
|
35 |
-
self.act = act_layer()
|
36 |
-
self.fc2 = lora.Linear(hidden_features, out_features , r=r)
|
37 |
-
self.drop = nn.Dropout(drop)
|
38 |
-
|
39 |
-
def forward(self, x):
|
40 |
-
x = self.fc1(x)
|
41 |
-
x = self.act(x)
|
42 |
-
x = self.drop(x)
|
43 |
-
x = self.fc2(x)
|
44 |
-
x = self.drop(x)
|
45 |
-
return x
|
46 |
-
|
47 |
-
|
48 |
-
def window_partition(x, window_size):
|
49 |
-
"""
|
50 |
-
Args:
|
51 |
-
x: (B, H, W, C)
|
52 |
-
window_size (int): window size
|
53 |
-
Returns:
|
54 |
-
windows: (num_windows*B, window_size, window_size, C)
|
55 |
-
"""
|
56 |
-
B, H, W, C = x.shape
|
57 |
-
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
58 |
-
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
59 |
-
return windows
|
60 |
-
|
61 |
-
|
62 |
-
def window_reverse(windows, window_size, H, W):
|
63 |
-
"""
|
64 |
-
Args:
|
65 |
-
windows: (num_windows*B, window_size, window_size, C)
|
66 |
-
window_size (int): Window size
|
67 |
-
H (int): Height of image
|
68 |
-
W (int): Width of image
|
69 |
-
Returns:
|
70 |
-
x: (B, H, W, C)
|
71 |
-
"""
|
72 |
-
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
73 |
-
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
74 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
75 |
-
return x
|
76 |
-
|
77 |
-
|
78 |
-
class WindowAttention(nn.Module):
|
79 |
-
"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
80 |
-
It supports both of shifted and non-shifted window.
|
81 |
-
Args:
|
82 |
-
dim (int): Number of input channels.
|
83 |
-
window_size (tuple[int]): The height and width of the window.
|
84 |
-
num_heads (int): Number of attention heads.
|
85 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
86 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
87 |
-
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
88 |
-
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
89 |
-
"""
|
90 |
-
|
91 |
-
def __init__(
|
92 |
-
self,
|
93 |
-
dim,
|
94 |
-
window_size,
|
95 |
-
num_heads,
|
96 |
-
qkv_bias=True,
|
97 |
-
qk_scale=None,
|
98 |
-
attn_drop=0.0,
|
99 |
-
proj_drop=0.0,
|
100 |
-
):
|
101 |
-
|
102 |
-
super().__init__()
|
103 |
-
self.dim = dim
|
104 |
-
self.window_size = window_size # Wh, Ww
|
105 |
-
self.num_heads = num_heads
|
106 |
-
head_dim = dim // num_heads
|
107 |
-
self.scale = qk_scale or head_dim**-0.5
|
108 |
-
|
109 |
-
# define a parameter table of relative position bias
|
110 |
-
self.relative_position_bias_table = nn.Parameter(
|
111 |
-
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
112 |
-
) # 2*Wh-1 * 2*Ww-1, nH
|
113 |
-
|
114 |
-
# get pair-wise relative position index for each token inside the window
|
115 |
-
coords_h = torch.arange(self.window_size[0])
|
116 |
-
coords_w = torch.arange(self.window_size[1])
|
117 |
-
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
118 |
-
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
119 |
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
120 |
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
121 |
-
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
122 |
-
relative_coords[:, :, 1] += self.window_size[1] - 1
|
123 |
-
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
124 |
-
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
125 |
-
self.register_buffer("relative_position_index", relative_position_index)
|
126 |
-
r = 12
|
127 |
-
self.qkv = lora.Linear(dim, dim * 3, r=r , bias=qkv_bias)
|
128 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
129 |
-
self.proj = lora.Linear(dim, dim , r=r)
|
130 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
131 |
-
|
132 |
-
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
133 |
-
self.softmax = nn.Softmax(dim=-1)
|
134 |
-
|
135 |
-
def forward(self, x, mask=None):
|
136 |
-
"""Forward function.
|
137 |
-
Args:
|
138 |
-
x: input features with shape of (num_windows*B, N, C)
|
139 |
-
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
140 |
-
"""
|
141 |
-
B_, N, C = x.shape
|
142 |
-
qkv = (
|
143 |
-
self.qkv(x)
|
144 |
-
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
|
145 |
-
.permute(2, 0, 3, 1, 4)
|
146 |
-
)
|
147 |
-
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
148 |
-
|
149 |
-
q = q * self.scale
|
150 |
-
attn = q @ k.transpose(-2, -1)
|
151 |
-
|
152 |
-
relative_position_bias = self.relative_position_bias_table[
|
153 |
-
self.relative_position_index.view(-1)
|
154 |
-
].view(
|
155 |
-
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
156 |
-
) # Wh*Ww,Wh*Ww,nH
|
157 |
-
relative_position_bias = relative_position_bias.permute(
|
158 |
-
2, 0, 1
|
159 |
-
).contiguous() # nH, Wh*Ww, Wh*Ww
|
160 |
-
attn = attn + relative_position_bias.unsqueeze(0)
|
161 |
-
|
162 |
-
if mask is not None:
|
163 |
-
nW = mask.shape[0]
|
164 |
-
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
165 |
-
attn = attn.view(-1, self.num_heads, N, N)
|
166 |
-
attn = self.softmax(attn)
|
167 |
-
else:
|
168 |
-
attn = self.softmax(attn)
|
169 |
-
|
170 |
-
attn = self.attn_drop(attn)
|
171 |
-
|
172 |
-
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
173 |
-
x = self.proj(x)
|
174 |
-
x = self.proj_drop(x)
|
175 |
-
return x
|
176 |
-
|
177 |
-
|
178 |
-
class SwinTransformerBlock(nn.Module):
|
179 |
-
"""Swin Transformer Block.
|
180 |
-
Args:
|
181 |
-
dim (int): Number of input channels.
|
182 |
-
num_heads (int): Number of attention heads.
|
183 |
-
window_size (int): Window size.
|
184 |
-
shift_size (int): Shift size for SW-MSA.
|
185 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
186 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
187 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
188 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
189 |
-
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
190 |
-
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
191 |
-
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
192 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
193 |
-
"""
|
194 |
-
|
195 |
-
def __init__(
|
196 |
-
self,
|
197 |
-
dim,
|
198 |
-
num_heads,
|
199 |
-
window_size=7,
|
200 |
-
shift_size=0,
|
201 |
-
mlp_ratio=4.0,
|
202 |
-
qkv_bias=True,
|
203 |
-
qk_scale=None,
|
204 |
-
drop=0.0,
|
205 |
-
attn_drop=0.0,
|
206 |
-
drop_path=0.0,
|
207 |
-
act_layer=nn.GELU,
|
208 |
-
norm_layer=nn.LayerNorm,
|
209 |
-
):
|
210 |
-
super().__init__()
|
211 |
-
self.dim = dim
|
212 |
-
self.num_heads = num_heads
|
213 |
-
self.window_size = window_size
|
214 |
-
self.shift_size = shift_size
|
215 |
-
self.mlp_ratio = mlp_ratio
|
216 |
-
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
217 |
-
|
218 |
-
self.norm1 = norm_layer(dim)
|
219 |
-
self.attn = WindowAttention(
|
220 |
-
dim,
|
221 |
-
window_size=to_2tuple(self.window_size),
|
222 |
-
num_heads=num_heads,
|
223 |
-
qkv_bias=qkv_bias,
|
224 |
-
qk_scale=qk_scale,
|
225 |
-
attn_drop=attn_drop,
|
226 |
-
proj_drop=drop,
|
227 |
-
)
|
228 |
-
|
229 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
230 |
-
self.norm2 = norm_layer(dim)
|
231 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
232 |
-
self.mlp = Mlp(
|
233 |
-
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
|
234 |
-
)
|
235 |
-
|
236 |
-
self.H = None
|
237 |
-
self.W = None
|
238 |
-
|
239 |
-
def forward(self, x, mask_matrix):
|
240 |
-
"""Forward function.
|
241 |
-
Args:
|
242 |
-
x: Input feature, tensor size (B, H*W, C).
|
243 |
-
H, W: Spatial resolution of the input feature.
|
244 |
-
mask_matrix: Attention mask for cyclic shift.
|
245 |
-
"""
|
246 |
-
B, L, C = x.shape
|
247 |
-
H, W = self.H, self.W
|
248 |
-
assert L == H * W, "input feature has wrong size"
|
249 |
-
|
250 |
-
shortcut = x
|
251 |
-
x = self.norm1(x)
|
252 |
-
x = x.view(B, H, W, C)
|
253 |
-
|
254 |
-
# pad feature maps to multiples of window size
|
255 |
-
pad_l = pad_t = 0
|
256 |
-
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
257 |
-
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
258 |
-
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
259 |
-
_, Hp, Wp, _ = x.shape
|
260 |
-
|
261 |
-
# cyclic shift
|
262 |
-
if self.shift_size > 0:
|
263 |
-
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
264 |
-
attn_mask = mask_matrix
|
265 |
-
else:
|
266 |
-
shifted_x = x
|
267 |
-
attn_mask = None
|
268 |
-
|
269 |
-
# partition windows
|
270 |
-
x_windows = window_partition(
|
271 |
-
shifted_x, self.window_size
|
272 |
-
) # nW*B, window_size, window_size, C
|
273 |
-
x_windows = x_windows.view(
|
274 |
-
-1, self.window_size * self.window_size, C
|
275 |
-
) # nW*B, window_size*window_size, C
|
276 |
-
|
277 |
-
# W-MSA/SW-MSA
|
278 |
-
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
279 |
-
|
280 |
-
# merge windows
|
281 |
-
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
282 |
-
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
283 |
-
|
284 |
-
# reverse cyclic shift
|
285 |
-
if self.shift_size > 0:
|
286 |
-
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
287 |
-
else:
|
288 |
-
x = shifted_x
|
289 |
-
|
290 |
-
if pad_r > 0 or pad_b > 0:
|
291 |
-
x = x[:, :H, :W, :].contiguous()
|
292 |
-
|
293 |
-
x = x.view(B, H * W, C)
|
294 |
-
|
295 |
-
# FFN
|
296 |
-
x = shortcut + self.drop_path(x)
|
297 |
-
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
298 |
-
|
299 |
-
return x
|
300 |
-
|
301 |
-
|
302 |
-
class PatchMerging(nn.Module):
|
303 |
-
"""Patch Merging Layer
|
304 |
-
Args:
|
305 |
-
dim (int): Number of input channels.
|
306 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
307 |
-
"""
|
308 |
-
|
309 |
-
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
310 |
-
super().__init__()
|
311 |
-
r = 24
|
312 |
-
self.dim = dim
|
313 |
-
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
314 |
-
self.norm = norm_layer(4 * dim)
|
315 |
-
|
316 |
-
def forward(self, x, H, W):
|
317 |
-
"""Forward function.
|
318 |
-
Args:
|
319 |
-
x: Input feature, tensor size (B, H*W, C).
|
320 |
-
H, W: Spatial resolution of the input feature.
|
321 |
-
"""
|
322 |
-
B, L, C = x.shape
|
323 |
-
assert L == H * W, "input feature has wrong size"
|
324 |
-
|
325 |
-
x = x.view(B, H, W, C)
|
326 |
-
|
327 |
-
# padding
|
328 |
-
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
329 |
-
if pad_input:
|
330 |
-
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
331 |
-
|
332 |
-
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
333 |
-
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
334 |
-
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
335 |
-
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
336 |
-
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
337 |
-
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
338 |
-
|
339 |
-
x = self.norm(x)
|
340 |
-
x = self.reduction(x)
|
341 |
-
|
342 |
-
return x
|
343 |
-
|
344 |
-
|
345 |
-
class BasicLayer(nn.Module):
|
346 |
-
"""A basic Swin Transformer layer for one stage.
|
347 |
-
Args:
|
348 |
-
dim (int): Number of feature channels
|
349 |
-
depth (int): Depths of this stage.
|
350 |
-
num_heads (int): Number of attention head.
|
351 |
-
window_size (int): Local window size. Default: 7.
|
352 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
353 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
354 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
355 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
356 |
-
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
357 |
-
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
358 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
359 |
-
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
360 |
-
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
361 |
-
"""
|
362 |
-
|
363 |
-
def __init__(
|
364 |
-
self,
|
365 |
-
dim,
|
366 |
-
depth,
|
367 |
-
num_heads,
|
368 |
-
window_size=7,
|
369 |
-
mlp_ratio=4.0,
|
370 |
-
qkv_bias=True,
|
371 |
-
qk_scale=None,
|
372 |
-
drop=0.0,
|
373 |
-
attn_drop=0.0,
|
374 |
-
drop_path=0.0,
|
375 |
-
norm_layer=nn.LayerNorm,
|
376 |
-
downsample=None,
|
377 |
-
use_checkpoint=False,
|
378 |
-
):
|
379 |
-
super().__init__()
|
380 |
-
self.window_size = window_size
|
381 |
-
self.shift_size = window_size // 2
|
382 |
-
self.depth = depth
|
383 |
-
self.use_checkpoint = use_checkpoint
|
384 |
-
|
385 |
-
# build blocks
|
386 |
-
self.blocks = nn.ModuleList(
|
387 |
-
[
|
388 |
-
SwinTransformerBlock(
|
389 |
-
dim=dim,
|
390 |
-
num_heads=num_heads,
|
391 |
-
window_size=window_size,
|
392 |
-
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
393 |
-
mlp_ratio=mlp_ratio,
|
394 |
-
qkv_bias=qkv_bias,
|
395 |
-
qk_scale=qk_scale,
|
396 |
-
drop=drop,
|
397 |
-
attn_drop=attn_drop,
|
398 |
-
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
399 |
-
norm_layer=norm_layer,
|
400 |
-
)
|
401 |
-
for i in range(depth)
|
402 |
-
]
|
403 |
-
)
|
404 |
-
|
405 |
-
# patch merging layer
|
406 |
-
if downsample is not None:
|
407 |
-
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
408 |
-
else:
|
409 |
-
self.downsample = None
|
410 |
-
|
411 |
-
def forward(self, x, H, W):
|
412 |
-
"""Forward function.
|
413 |
-
Args:
|
414 |
-
x: Input feature, tensor size (B, H*W, C).
|
415 |
-
H, W: Spatial resolution of the input feature.
|
416 |
-
"""
|
417 |
-
|
418 |
-
# calculate attention mask for SW-MSA
|
419 |
-
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
420 |
-
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
421 |
-
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
422 |
-
h_slices = (
|
423 |
-
slice(0, -self.window_size),
|
424 |
-
slice(-self.window_size, -self.shift_size),
|
425 |
-
slice(-self.shift_size, None),
|
426 |
-
)
|
427 |
-
w_slices = (
|
428 |
-
slice(0, -self.window_size),
|
429 |
-
slice(-self.window_size, -self.shift_size),
|
430 |
-
slice(-self.shift_size, None),
|
431 |
-
)
|
432 |
-
cnt = 0
|
433 |
-
for h in h_slices:
|
434 |
-
for w in w_slices:
|
435 |
-
img_mask[:, h, w, :] = cnt
|
436 |
-
cnt += 1
|
437 |
-
|
438 |
-
mask_windows = window_partition(
|
439 |
-
img_mask, self.window_size
|
440 |
-
) # nW, window_size, window_size, 1
|
441 |
-
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
442 |
-
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
443 |
-
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
|
444 |
-
attn_mask == 0, float(0.0)
|
445 |
-
)
|
446 |
-
|
447 |
-
for blk in self.blocks:
|
448 |
-
blk.H, blk.W = H, W
|
449 |
-
if self.use_checkpoint:
|
450 |
-
x = checkpoint.checkpoint(blk, x, attn_mask)
|
451 |
-
else:
|
452 |
-
x = blk(x, attn_mask)
|
453 |
-
if self.downsample is not None:
|
454 |
-
x_down = self.downsample(x, H, W)
|
455 |
-
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
456 |
-
return x, H, W, x_down, Wh, Ww
|
457 |
-
else:
|
458 |
-
return x, H, W, x, H, W
|
459 |
-
|
460 |
-
|
461 |
-
class PatchEmbed(nn.Module):
|
462 |
-
"""Image to Patch Embedding
|
463 |
-
Args:
|
464 |
-
patch_size (int): Patch token size. Default: 4.
|
465 |
-
in_chans (int): Number of input image channels. Default: 3.
|
466 |
-
embed_dim (int): Number of linear projection output channels. Default: 96.
|
467 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
468 |
-
"""
|
469 |
-
|
470 |
-
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
471 |
-
super().__init__()
|
472 |
-
patch_size = to_2tuple(patch_size)
|
473 |
-
self.patch_size = patch_size
|
474 |
-
|
475 |
-
self.in_chans = in_chans
|
476 |
-
self.embed_dim = embed_dim
|
477 |
-
|
478 |
-
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
479 |
-
if norm_layer is not None:
|
480 |
-
self.norm = norm_layer(embed_dim)
|
481 |
-
else:
|
482 |
-
self.norm = None
|
483 |
-
|
484 |
-
def forward(self, x):
|
485 |
-
"""Forward function."""
|
486 |
-
# padding
|
487 |
-
_, _, H, W = x.size()
|
488 |
-
if W % self.patch_size[1] != 0:
|
489 |
-
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
490 |
-
if H % self.patch_size[0] != 0:
|
491 |
-
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
492 |
-
|
493 |
-
x = self.proj(x) # B C Wh Ww
|
494 |
-
if self.norm is not None:
|
495 |
-
Wh, Ww = x.size(2), x.size(3)
|
496 |
-
x = x.flatten(2).transpose(1, 2)
|
497 |
-
x = self.norm(x)
|
498 |
-
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
499 |
-
|
500 |
-
return x
|
501 |
-
|
502 |
-
|
503 |
-
class SwinTransformer(nn.Module):
|
504 |
-
"""Swin Transformer backbone.
|
505 |
-
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
506 |
-
https://arxiv.org/pdf/2103.14030
|
507 |
-
Args:
|
508 |
-
pretrain_img_size (int): Input image size for training the pretrained model,
|
509 |
-
used in absolute postion embedding. Default 224.
|
510 |
-
patch_size (int | tuple(int)): Patch size. Default: 4.
|
511 |
-
in_chans (int): Number of input image channels. Default: 3.
|
512 |
-
embed_dim (int): Number of linear projection output channels. Default: 96.
|
513 |
-
depths (tuple[int]): Depths of each Swin Transformer stage.
|
514 |
-
num_heads (tuple[int]): Number of attention head of each stage.
|
515 |
-
window_size (int): Window size. Default: 7.
|
516 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
517 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
518 |
-
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
519 |
-
drop_rate (float): Dropout rate.
|
520 |
-
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
521 |
-
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
522 |
-
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
523 |
-
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
524 |
-
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
525 |
-
out_indices (Sequence[int]): Output from which stages.
|
526 |
-
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
527 |
-
-1 means not freezing any parameters.
|
528 |
-
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
529 |
-
dilation (bool): if True, the output size if 16x downsample, ow 32x downsample.
|
530 |
-
"""
|
531 |
-
|
532 |
-
def __init__(
|
533 |
-
self,
|
534 |
-
pretrain_img_size=224,
|
535 |
-
patch_size=4,
|
536 |
-
in_chans=3,
|
537 |
-
embed_dim=96,
|
538 |
-
depths=[2, 2, 6, 2],
|
539 |
-
num_heads=[3, 6, 12, 24],
|
540 |
-
window_size=7,
|
541 |
-
mlp_ratio=4.0,
|
542 |
-
qkv_bias=True,
|
543 |
-
qk_scale=None,
|
544 |
-
drop_rate=0.0,
|
545 |
-
attn_drop_rate=0.0,
|
546 |
-
drop_path_rate=0.2,
|
547 |
-
norm_layer=nn.LayerNorm,
|
548 |
-
ape=False,
|
549 |
-
patch_norm=True,
|
550 |
-
out_indices=(0, 1, 2, 3),
|
551 |
-
frozen_stages=-1,
|
552 |
-
dilation=False,
|
553 |
-
use_checkpoint=False,
|
554 |
-
):
|
555 |
-
super().__init__()
|
556 |
-
|
557 |
-
self.pretrain_img_size = pretrain_img_size
|
558 |
-
self.num_layers = len(depths)
|
559 |
-
self.embed_dim = embed_dim
|
560 |
-
self.ape = ape
|
561 |
-
self.patch_norm = patch_norm
|
562 |
-
self.out_indices = out_indices
|
563 |
-
self.frozen_stages = frozen_stages
|
564 |
-
self.dilation = dilation
|
565 |
-
|
566 |
-
# if use_checkpoint:
|
567 |
-
# print("use_checkpoint!!!!!!!!!!!!!!!!!!!!!!!!")
|
568 |
-
|
569 |
-
# split image into non-overlapping patches
|
570 |
-
self.patch_embed = PatchEmbed(
|
571 |
-
patch_size=patch_size,
|
572 |
-
in_chans=in_chans,
|
573 |
-
embed_dim=embed_dim,
|
574 |
-
norm_layer=norm_layer if self.patch_norm else None,
|
575 |
-
)
|
576 |
-
|
577 |
-
# absolute position embedding
|
578 |
-
if self.ape:
|
579 |
-
pretrain_img_size = to_2tuple(pretrain_img_size)
|
580 |
-
patch_size = to_2tuple(patch_size)
|
581 |
-
patches_resolution = [
|
582 |
-
pretrain_img_size[0] // patch_size[0],
|
583 |
-
pretrain_img_size[1] // patch_size[1],
|
584 |
-
]
|
585 |
-
|
586 |
-
self.absolute_pos_embed = nn.Parameter(
|
587 |
-
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
|
588 |
-
)
|
589 |
-
trunc_normal_(self.absolute_pos_embed, std=0.02)
|
590 |
-
|
591 |
-
self.pos_drop = nn.Dropout(p=drop_rate)
|
592 |
-
|
593 |
-
# stochastic depth
|
594 |
-
dpr = [
|
595 |
-
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
596 |
-
] # stochastic depth decay rule
|
597 |
-
|
598 |
-
# build layers
|
599 |
-
self.layers = nn.ModuleList()
|
600 |
-
# prepare downsample list
|
601 |
-
downsamplelist = [PatchMerging for i in range(self.num_layers)]
|
602 |
-
downsamplelist[-1] = None
|
603 |
-
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
|
604 |
-
if self.dilation:
|
605 |
-
downsamplelist[-2] = None
|
606 |
-
num_features[-1] = int(embed_dim * 2 ** (self.num_layers - 1)) // 2
|
607 |
-
for i_layer in range(self.num_layers):
|
608 |
-
layer = BasicLayer(
|
609 |
-
# dim=int(embed_dim * 2 ** i_layer),
|
610 |
-
dim=num_features[i_layer],
|
611 |
-
depth=depths[i_layer],
|
612 |
-
num_heads=num_heads[i_layer],
|
613 |
-
window_size=window_size,
|
614 |
-
mlp_ratio=mlp_ratio,
|
615 |
-
qkv_bias=qkv_bias,
|
616 |
-
qk_scale=qk_scale,
|
617 |
-
drop=drop_rate,
|
618 |
-
attn_drop=attn_drop_rate,
|
619 |
-
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
|
620 |
-
norm_layer=norm_layer,
|
621 |
-
# downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
622 |
-
downsample=downsamplelist[i_layer],
|
623 |
-
use_checkpoint=use_checkpoint,
|
624 |
-
)
|
625 |
-
self.layers.append(layer)
|
626 |
-
|
627 |
-
# num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
628 |
-
self.num_features = num_features
|
629 |
-
|
630 |
-
# add a norm layer for each output
|
631 |
-
for i_layer in out_indices:
|
632 |
-
layer = norm_layer(num_features[i_layer])
|
633 |
-
layer_name = f"norm{i_layer}"
|
634 |
-
self.add_module(layer_name, layer)
|
635 |
-
|
636 |
-
self._freeze_stages()
|
637 |
-
|
638 |
-
def _freeze_stages(self):
|
639 |
-
if self.frozen_stages >= 0:
|
640 |
-
self.patch_embed.eval()
|
641 |
-
for param in self.patch_embed.parameters():
|
642 |
-
param.requires_grad = False
|
643 |
-
|
644 |
-
if self.frozen_stages >= 1 and self.ape:
|
645 |
-
self.absolute_pos_embed.requires_grad = False
|
646 |
-
|
647 |
-
if self.frozen_stages >= 2:
|
648 |
-
self.pos_drop.eval()
|
649 |
-
for i in range(0, self.frozen_stages - 1):
|
650 |
-
m = self.layers[i]
|
651 |
-
m.eval()
|
652 |
-
for param in m.parameters():
|
653 |
-
param.requires_grad = False
|
654 |
-
|
655 |
-
# def init_weights(self, pretrained=None):
|
656 |
-
# """Initialize the weights in backbone.
|
657 |
-
# Args:
|
658 |
-
# pretrained (str, optional): Path to pre-trained weights.
|
659 |
-
# Defaults to None.
|
660 |
-
# """
|
661 |
-
|
662 |
-
# def _init_weights(m):
|
663 |
-
# if isinstance(m, nn.Linear):
|
664 |
-
# trunc_normal_(m.weight, std=.02)
|
665 |
-
# if isinstance(m, nn.Linear) and m.bias is not None:
|
666 |
-
# nn.init.constant_(m.bias, 0)
|
667 |
-
# elif isinstance(m, nn.LayerNorm):
|
668 |
-
# nn.init.constant_(m.bias, 0)
|
669 |
-
# nn.init.constant_(m.weight, 1.0)
|
670 |
-
|
671 |
-
# if isinstance(pretrained, str):
|
672 |
-
# self.apply(_init_weights)
|
673 |
-
# logger = get_root_logger()
|
674 |
-
# load_checkpoint(self, pretrained, strict=False, logger=logger)
|
675 |
-
# elif pretrained is None:
|
676 |
-
# self.apply(_init_weights)
|
677 |
-
# else:
|
678 |
-
# raise TypeError('pretrained must be a str or None')
|
679 |
-
|
680 |
-
def forward_raw(self, x):
|
681 |
-
"""Forward function."""
|
682 |
-
x = self.patch_embed(x)
|
683 |
-
|
684 |
-
Wh, Ww = x.size(2), x.size(3)
|
685 |
-
if self.ape:
|
686 |
-
# interpolate the position embedding to the corresponding size
|
687 |
-
absolute_pos_embed = F.interpolate(
|
688 |
-
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
689 |
-
)
|
690 |
-
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
691 |
-
else:
|
692 |
-
x = x.flatten(2).transpose(1, 2)
|
693 |
-
x = self.pos_drop(x)
|
694 |
-
|
695 |
-
outs = []
|
696 |
-
for i in range(self.num_layers):
|
697 |
-
layer = self.layers[i]
|
698 |
-
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
699 |
-
# import ipdb; ipdb.set_trace()
|
700 |
-
|
701 |
-
if i in self.out_indices:
|
702 |
-
norm_layer = getattr(self, f"norm{i}")
|
703 |
-
x_out = norm_layer(x_out)
|
704 |
-
|
705 |
-
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
706 |
-
outs.append(out)
|
707 |
-
# in:
|
708 |
-
# torch.Size([2, 3, 1024, 1024])
|
709 |
-
# outs:
|
710 |
-
# [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
|
711 |
-
# torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
|
712 |
-
return tuple(outs)
|
713 |
-
|
714 |
-
def forward(self, tensor_list: NestedTensor):
|
715 |
-
x = tensor_list.tensors
|
716 |
-
|
717 |
-
"""Forward function."""
|
718 |
-
x = self.patch_embed(x)
|
719 |
-
|
720 |
-
Wh, Ww = x.size(2), x.size(3)
|
721 |
-
if self.ape:
|
722 |
-
# interpolate the position embedding to the corresponding size
|
723 |
-
absolute_pos_embed = F.interpolate(
|
724 |
-
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
725 |
-
)
|
726 |
-
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
727 |
-
else:
|
728 |
-
x = x.flatten(2).transpose(1, 2)
|
729 |
-
x = self.pos_drop(x)
|
730 |
-
|
731 |
-
outs = []
|
732 |
-
for i in range(self.num_layers):
|
733 |
-
layer = self.layers[i]
|
734 |
-
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
735 |
-
|
736 |
-
if i in self.out_indices:
|
737 |
-
norm_layer = getattr(self, f"norm{i}")
|
738 |
-
x_out = norm_layer(x_out)
|
739 |
-
|
740 |
-
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
741 |
-
outs.append(out)
|
742 |
-
# in:
|
743 |
-
# torch.Size([2, 3, 1024, 1024])
|
744 |
-
# out:
|
745 |
-
# [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
|
746 |
-
# torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
|
747 |
-
|
748 |
-
# collect for nesttensors
|
749 |
-
outs_dict = {}
|
750 |
-
for idx, out_i in enumerate(outs):
|
751 |
-
m = tensor_list.mask
|
752 |
-
assert m is not None
|
753 |
-
mask = F.interpolate(m[None].float(), size=out_i.shape[-2:]).to(torch.bool)[0]
|
754 |
-
outs_dict[idx] = NestedTensor(out_i, mask)
|
755 |
-
|
756 |
-
return outs_dict
|
757 |
-
|
758 |
-
def train(self, mode=True):
|
759 |
-
"""Convert the model into training mode while keep layers freezed."""
|
760 |
-
super(SwinTransformer, self).train(mode)
|
761 |
-
self._freeze_stages()
|
762 |
-
|
763 |
-
|
764 |
-
def build_swin_transformer(modelname, pretrain_img_size, **kw):
|
765 |
-
assert modelname in [
|
766 |
-
"swin_T_224_1k",
|
767 |
-
"swin_B_224_22k",
|
768 |
-
"swin_B_384_22k",
|
769 |
-
"swin_L_224_22k",
|
770 |
-
"swin_L_384_22k",
|
771 |
-
]
|
772 |
-
|
773 |
-
model_para_dict = {
|
774 |
-
"swin_T_224_1k": dict(
|
775 |
-
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7
|
776 |
-
),
|
777 |
-
"swin_B_224_22k": dict(
|
778 |
-
embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7
|
779 |
-
),
|
780 |
-
"swin_B_384_22k": dict(
|
781 |
-
embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12
|
782 |
-
),
|
783 |
-
"swin_L_224_22k": dict(
|
784 |
-
embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7
|
785 |
-
),
|
786 |
-
"swin_L_384_22k": dict(
|
787 |
-
embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12
|
788 |
-
),
|
789 |
-
}
|
790 |
-
kw_cgf = model_para_dict[modelname]
|
791 |
-
kw_cgf.update(kw)
|
792 |
-
model = SwinTransformer(pretrain_img_size=pretrain_img_size, **kw_cgf)
|
793 |
-
return model
|
794 |
-
|
795 |
-
|
796 |
-
if __name__ == "__main__":
|
797 |
-
model = build_swin_transformer("swin_L_384_22k", 384, dilation=True)
|
798 |
-
x = torch.rand(2, 3, 1024, 1024)
|
799 |
-
y = model.forward_raw(x)
|
800 |
-
import ipdb
|
801 |
-
|
802 |
-
ipdb.set_trace()
|
803 |
-
x = torch.rand(2, 3, 384, 384)
|
804 |
-
y = model.forward_raw(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groundingdino/models/GroundingDINO/backbone/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (242 Bytes)
|
|
groundingdino/models/GroundingDINO/backbone/__pycache__/backbone.cpython-310.pyc
DELETED
Binary file (6.24 kB)
|
|