Hasanmog's picture
update
81b5911
raw
history blame
12.8 kB
import argparse
from functools import partial
import cv2
import requests
import os
from io import BytesIO
from PIL import Image
import numpy as np
from pathlib import Path
import warnings
import torch
# prepare the environment
os.system("python setup.py build develop --user")
os.system("pip install packaging==21.3")
os.system("pip install gradio")
warnings.filterwarnings("ignore")
import gradio as gr
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T
from huggingface_hub import hf_hub_download
# Use this command for evaluate the Grounding DINO model
config_file = "cfg_odvg.py"
ckpt_repo_id = "Hasanmog/Peft-GroundingDINO"
ckpt_filenmae = "Best.pth"
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location='cpu')
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def image_transform_grounding(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
def image_transform_grounding_for_vis(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
])
image, _ = transform(init_image, None) # 3, h, w
return image
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
init_image = input_image.convert("RGB")
original_size = init_image.size
_, image_tensor = image_transform_grounding(init_image)
image_pil: Image = image_transform_grounding_for_vis(init_image)
# run grounidng
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cpu')
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
return image_with_box
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
args = parser.parse_args()
block = gr.Blocks().queue()
with block:
gr.Markdown("# [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO)")
gr.Markdown("### Open-World Detection with Grounding DINO")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil")
grounding_caption = gr.Textbox(label="Detection Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
with gr.Column():
gallery = gr.outputs.Image(
type="pil",
# label="grounding results"
).style(full_width=True, full_height=True)
# gallery = gr.Gallery(label="Generated images", show_label=False).style(
# grid=[1], height="auto", container=True, full_width=True, full_height=True)
run_button.click(fn=run_grounding, inputs=[
input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery])
block.launch(server_name='0.0.0.0', server_port=7579, debug=args.debug, share=args.share)
import os
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
# please make sure https://github.com/IDEA-Research/GroundingDINO is installed correctly.
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util import box_ops
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
from groundingdino.util.vl_utils import create_positive_map_from_span
def plot_boxes_to_image(image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
# draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
draw.text((x0, y0), str(label), fill="white")
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, cpu_only=False):
args = SLConfig.fromfile(model_config_path)
args.device = "cuda" if not cpu_only else "cpu"
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold=None, with_logits=True, cpu_only=False, token_spans=None):
assert text_threshold is not None or token_spans is not None, "text_threshould and token_spans should not be None at the same time!"
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
device = "cuda" if not cpu_only else "cpu"
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"][0] # (nq, 4)
# filter output
if token_spans is None:
logits_filt = logits.cpu().clone()
boxes_filt = boxes.cpu().clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
else:
# given-phrase mode
positive_maps = create_positive_map_from_span(
model.tokenizer(text_prompt),
token_span=token_spans
).to(image.device) # n_phrase, 256
logits_for_phrases = positive_maps @ logits.T # n_phrase, nq
all_logits = []
all_phrases = []
all_boxes = []
for (token_span, logit_phr) in zip(token_spans, logits_for_phrases):
# get phrase
phrase = ' '.join([caption[_s:_e] for (_s, _e) in token_span])
# get mask
filt_mask = logit_phr > box_threshold
# filt box
all_boxes.append(boxes[filt_mask])
# filt logits
all_logits.append(logit_phr[filt_mask])
if with_logits:
logit_phr_num = logit_phr[filt_mask]
all_phrases.extend([phrase + f"({str(logit.item())[:4]})" for logit in logit_phr_num])
else:
all_phrases.extend([phrase for _ in range(len(filt_mask))])
boxes_filt = torch.cat(all_boxes, dim=0).cpu()
pred_phrases = all_phrases
return boxes_filt, pred_phrases
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounding DINO example", add_help=True)
parser.add_argument("--config_file", "-c", type=str, required=True, help="path to config file")
parser.add_argument(
"--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument("--image_path", "-i", type=str, required=True, help="path to image file")
parser.add_argument("--text_prompt", "-t", type=str, required=True, help="text prompt")
parser.add_argument(
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
)
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
parser.add_argument("--token_spans", type=str, default=None, help=
"The positions of start and end positions of phrases of interest. \
For example, a caption is 'a cat and a dog', \
if you would like to detect 'cat', the token_spans should be '[[[2, 5]], ]', since 'a cat and a dog'[2:5] is 'cat'. \
if you would like to detect 'a cat', the token_spans should be '[[[0, 1], [2, 5]], ]', since 'a cat and a dog'[0:1] is 'a', and 'a cat and a dog'[2:5] is 'cat'. \
")
parser.add_argument("--cpu-only", action="store_true", help="running on cpu only!, default=False")
args = parser.parse_args()
# cfg
config_file = args.config_file # change the path of the model config file
checkpoint_path = args.checkpoint_path # change the path of the model
image_path = args.image_path
text_prompt = args.text_prompt
output_dir = args.output_dir
box_threshold = args.box_threshold
text_threshold = args.text_threshold
token_spans = args.token_spans
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image
image_pil, image = load_image(image_path)
# load model
model = load_model(config_file, checkpoint_path, cpu_only=args.cpu_only)
# visualize raw image
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
# set the text_threshold to None if token_spans is set.
if token_spans is not None:
text_threshold = None
print("Using token_spans. Set the text_threshold to None.")
# run model
boxes_filt, pred_phrases = get_grounding_output(
model, image, text_prompt, box_threshold, text_threshold, cpu_only=args.cpu_only, token_spans=token_spans
)
# visualize pred
size = image_pil.size
pred_dict = {
"boxes": boxes_filt,
"size": [size[1], size[0]], # H,W
"labels": pred_phrases,
}
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
save_path = os.path.join(output_dir, "pred.jpg")
image_with_box.save(save_path)
print(f"\n======================\n{save_path} saved.\nThe program runs successfully!")