Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,327 +1,294 @@
|
|
1 |
-
import
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
-
import
|
5 |
-
import base64
|
6 |
-
from io import BytesIO
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
page_icon="🧪",
|
12 |
-
layout="wide",
|
13 |
-
initial_sidebar_state="collapsed"
|
14 |
-
)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
/* Main background gradient */
|
20 |
-
.stApp {
|
21 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
22 |
-
color: white;
|
23 |
-
}
|
24 |
-
|
25 |
-
/* Header styling */
|
26 |
-
.main-header {
|
27 |
-
text-align: center;
|
28 |
-
padding: 2rem 0;
|
29 |
-
background: rgba(255, 255, 255, 0.1);
|
30 |
-
border-radius: 20px;
|
31 |
-
margin-bottom: 2rem;
|
32 |
-
backdrop-filter: blur(10px);
|
33 |
-
border: 1px solid rgba(255, 255, 255, 0.2);
|
34 |
-
}
|
35 |
-
|
36 |
-
/* Input area styling */
|
37 |
-
.stTextArea textarea {
|
38 |
-
background: rgba(255, 255, 255, 0.15);
|
39 |
-
border: 1px solid rgba(255, 255, 255, 0.3);
|
40 |
-
border-radius: 15px;
|
41 |
-
color: white;
|
42 |
-
font-size: 16px;
|
43 |
-
backdrop-filter: blur(5px);
|
44 |
-
}
|
45 |
-
|
46 |
-
/* Button styling */
|
47 |
-
.stButton button {
|
48 |
-
background: linear-gradient(45deg, #FF6B6B, #4ECDC4);
|
49 |
-
border: none;
|
50 |
-
border-radius: 25px;
|
51 |
-
color: white;
|
52 |
-
font-weight: bold;
|
53 |
-
padding: 0.75rem 2rem;
|
54 |
-
font-size: 16px;
|
55 |
-
transition: all 0.3s ease;
|
56 |
-
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
|
57 |
-
}
|
58 |
-
|
59 |
-
.stButton button:hover {
|
60 |
-
transform: translateY(-2px);
|
61 |
-
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.3);
|
62 |
-
}
|
63 |
-
|
64 |
-
/* Response area styling */
|
65 |
-
.response-container {
|
66 |
-
background: rgba(255, 255, 255, 0.1);
|
67 |
-
border-radius: 15px;
|
68 |
-
padding: 1.5rem;
|
69 |
-
margin: 1rem 0;
|
70 |
-
backdrop-filter: blur(10px);
|
71 |
-
border: 1px solid rgba(255, 255, 255, 0.2);
|
72 |
-
}
|
73 |
-
|
74 |
-
/* Advanced options styling */
|
75 |
-
.advanced-options {
|
76 |
-
background: rgba(255, 255, 255, 0.08);
|
77 |
-
border-radius: 15px;
|
78 |
-
padding: 1rem;
|
79 |
-
margin: 1rem 0;
|
80 |
-
border: 1px solid rgba(255, 255, 255, 0.1);
|
81 |
-
}
|
82 |
-
|
83 |
-
/* Loading animation */
|
84 |
-
.loading-animation {
|
85 |
-
text-align: center;
|
86 |
-
font-size: 18px;
|
87 |
-
color: #4ECDC4;
|
88 |
-
animation: pulse 2s infinite;
|
89 |
-
}
|
90 |
-
|
91 |
-
@keyframes pulse {
|
92 |
-
0% { opacity: 1; }
|
93 |
-
50% { opacity: 0.5; }
|
94 |
-
100% { opacity: 1; }
|
95 |
-
}
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
#MainMenu {visibility: hidden;}
|
105 |
-
footer {visibility: hidden;}
|
106 |
-
header {visibility: hidden;}
|
107 |
-
</style>
|
108 |
-
""", unsafe_allow_html=True)
|
109 |
-
|
110 |
-
# Initialize session state
|
111 |
-
if 'model' not in st.session_state:
|
112 |
-
st.session_state.model = None
|
113 |
-
st.session_state.tokenizer = None
|
114 |
-
st.session_state.model_loaded = False
|
115 |
-
|
116 |
-
@st.cache_resource
|
117 |
-
def load_model():
|
118 |
-
"""Load the model and tokenizer from Hugging Face"""
|
119 |
-
try:
|
120 |
-
model_name = "Harshu0117/Materials_IISC_MRC"
|
121 |
-
|
122 |
-
# Load tokenizer
|
123 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
124 |
-
|
125 |
-
# Load model
|
126 |
-
model = AutoModelForCausalLM.from_pretrained(
|
127 |
-
model_name,
|
128 |
-
torch_dtype=torch.float16,
|
129 |
-
device_map="auto",
|
130 |
-
trust_remote_code=True
|
131 |
-
)
|
132 |
-
|
133 |
-
# Set pad token if not set
|
134 |
-
if tokenizer.pad_token is None:
|
135 |
-
tokenizer.pad_token = tokenizer.eos_token
|
136 |
-
|
137 |
-
return model, tokenizer
|
138 |
-
except Exception as e:
|
139 |
-
st.error(f"Error loading model: {str(e)}")
|
140 |
-
return None, None
|
141 |
|
142 |
def generate_response(prompt, max_tokens, temperature, top_p, repetition_penalty):
|
143 |
-
"""Generate response using the loaded model"""
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
try:
|
148 |
-
# Tokenize input
|
149 |
-
inputs =
|
150 |
-
prompt,
|
151 |
return_tensors="pt",
|
152 |
truncation=True,
|
153 |
-
max_length=1024
|
|
|
154 |
)
|
155 |
|
156 |
-
#
|
157 |
-
|
158 |
-
inputs = inputs.to("cuda")
|
159 |
|
160 |
-
# Generate response
|
161 |
with torch.no_grad():
|
162 |
-
outputs =
|
163 |
**inputs,
|
164 |
-
max_new_tokens=max_tokens,
|
165 |
-
temperature=temperature,
|
166 |
-
top_p=top_p,
|
167 |
-
repetition_penalty=repetition_penalty,
|
168 |
do_sample=True,
|
169 |
-
pad_token_id=
|
170 |
-
eos_token_id=
|
171 |
-
use_cache=True
|
|
|
|
|
172 |
)
|
173 |
|
174 |
# Decode response
|
175 |
-
response =
|
176 |
outputs[0],
|
177 |
skip_special_tokens=True
|
178 |
)
|
179 |
|
180 |
# Remove the original prompt from response
|
181 |
-
response = response.replace(prompt, "").strip()
|
|
|
|
|
|
|
|
|
182 |
|
183 |
return response
|
184 |
|
185 |
except Exception as e:
|
186 |
return f"❌ Error generating response: {str(e)}"
|
187 |
|
188 |
-
#
|
189 |
-
def
|
190 |
-
#
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
-
#
|
223 |
-
with
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
repetition_penalty = st.slider(
|
258 |
-
"Repetition Penalty",
|
259 |
-
min_value=1.0,
|
260 |
-
max_value=2.0,
|
261 |
-
value=1.2,
|
262 |
-
step=0.1,
|
263 |
-
help="Penalty for repeating words/phrases"
|
264 |
-
)
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
<
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
# Footer
|
302 |
-
st.markdown("---")
|
303 |
-
st.markdown("""
|
304 |
-
<div style="text-align: center; padding: 1rem; color: rgba(255, 255, 255, 0.7);">
|
305 |
-
<p>🔬 Specialized in Materials Science | 🧪 MAX Phases & MXenes Expert</p>
|
306 |
-
<p>Built with ❤️ using Streamlit & Hugging Face</p>
|
307 |
-
</div>
|
308 |
-
""", unsafe_allow_html=True)
|
309 |
-
|
310 |
-
# Example prompts sidebar
|
311 |
-
def show_examples():
|
312 |
-
st.sidebar.markdown("### 💡 Example Prompts")
|
313 |
-
examples = [
|
314 |
-
"Crystalline MAX Phases and their 2D derivative MXenes",
|
315 |
-
"Properties of titanium carbide MXenes",
|
316 |
-
"Synthesis methods for MAX phases",
|
317 |
-
"Applications of MXenes in energy storage",
|
318 |
-
"Mechanical properties of ceramic materials"
|
319 |
-
]
|
320 |
|
321 |
-
|
322 |
-
if st.sidebar.button(f"📝 {example[:30]}...", key=f"example_{i}"):
|
323 |
-
st.session_state.prompt_input = example
|
324 |
|
|
|
325 |
if __name__ == "__main__":
|
326 |
-
|
327 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import gc
|
|
|
|
|
5 |
|
6 |
+
# Global variables for model and tokenizer
|
7 |
+
model = None
|
8 |
+
tokenizer = None
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def load_model():
|
11 |
+
"""Load the model and tokenizer from Hugging Face with CPU optimizations"""
|
12 |
+
global model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
if model is None or tokenizer is None:
|
15 |
+
try:
|
16 |
+
model_name = "Harshu0117/Materials_IISC_MRC"
|
17 |
+
|
18 |
+
# Load tokenizer
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
+
|
21 |
+
# Load model with CPU optimizations
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
model_name,
|
24 |
+
torch_dtype=torch.float16, # Use float16 for faster CPU inference
|
25 |
+
device_map="cpu",
|
26 |
+
trust_remote_code=True,
|
27 |
+
low_cpu_mem_usage=True, # Reduce memory usage
|
28 |
+
offload_folder="offload" # Enable model offloading
|
29 |
+
)
|
30 |
+
|
31 |
+
# Convert to float16 for faster inference
|
32 |
+
model = model.half()
|
33 |
+
|
34 |
+
# Enable CPU optimizations
|
35 |
+
model.eval()
|
36 |
+
|
37 |
+
# Set pad token if not set
|
38 |
+
if tokenizer.pad_token is None:
|
39 |
+
tokenizer.pad_token = tokenizer.eos_token
|
40 |
+
|
41 |
+
# Clear GPU cache if any
|
42 |
+
if torch.cuda.is_available():
|
43 |
+
torch.cuda.empty_cache()
|
44 |
+
|
45 |
+
# Force garbage collection
|
46 |
+
gc.collect()
|
47 |
+
|
48 |
+
return "✅ Model loaded successfully with CPU optimizations!"
|
49 |
+
except Exception as e:
|
50 |
+
return f"❌ Error loading model: {str(e)}"
|
51 |
|
52 |
+
return "✅ Model already loaded!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def generate_response(prompt, max_tokens, temperature, top_p, repetition_penalty):
|
55 |
+
"""Generate response using the loaded model with CPU optimizations"""
|
56 |
+
global model, tokenizer
|
57 |
+
|
58 |
+
# Load model if not already loaded
|
59 |
+
if model is None or tokenizer is None:
|
60 |
+
load_result = load_model()
|
61 |
+
if "Error" in load_result:
|
62 |
+
return load_result
|
63 |
+
|
64 |
+
if not prompt.strip():
|
65 |
+
return "⚠️ Please enter a question or topic first!"
|
66 |
|
67 |
try:
|
68 |
+
# Tokenize input with truncation for faster processing
|
69 |
+
inputs = tokenizer(
|
70 |
+
prompt.strip(),
|
71 |
return_tensors="pt",
|
72 |
truncation=True,
|
73 |
+
max_length=512, # Reduced from 1024 for faster processing
|
74 |
+
padding=True
|
75 |
)
|
76 |
|
77 |
+
# Keep on CPU
|
78 |
+
inputs = inputs.to("cpu")
|
|
|
79 |
|
80 |
+
# Generate response with optimized settings
|
81 |
with torch.no_grad():
|
82 |
+
outputs = model.generate(
|
83 |
**inputs,
|
84 |
+
max_new_tokens=int(max_tokens),
|
85 |
+
temperature=float(temperature),
|
86 |
+
top_p=float(top_p),
|
87 |
+
repetition_penalty=float(repetition_penalty),
|
88 |
do_sample=True,
|
89 |
+
pad_token_id=tokenizer.pad_token_id,
|
90 |
+
eos_token_id=tokenizer.eos_token_id,
|
91 |
+
use_cache=True,
|
92 |
+
num_beams=1, # Use greedy decoding for speed
|
93 |
+
early_stopping=True
|
94 |
)
|
95 |
|
96 |
# Decode response
|
97 |
+
response = tokenizer.decode(
|
98 |
outputs[0],
|
99 |
skip_special_tokens=True
|
100 |
)
|
101 |
|
102 |
# Remove the original prompt from response
|
103 |
+
response = response.replace(prompt.strip(), "").strip()
|
104 |
+
|
105 |
+
# Clear memory
|
106 |
+
del outputs
|
107 |
+
gc.collect()
|
108 |
|
109 |
return response
|
110 |
|
111 |
except Exception as e:
|
112 |
return f"❌ Error generating response: {str(e)}"
|
113 |
|
114 |
+
# Create Gradio interface
|
115 |
+
def create_interface():
|
116 |
+
# Custom CSS for styling
|
117 |
+
css = """
|
118 |
+
.gradio-container {
|
119 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
120 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
121 |
+
}
|
122 |
+
.gr-button-primary {
|
123 |
+
background: linear-gradient(45deg, #FF6B6B, #4ECDC4) !important;
|
124 |
+
border: none !important;
|
125 |
+
border-radius: 25px !important;
|
126 |
+
color: white !important;
|
127 |
+
font-weight: bold !important;
|
128 |
+
padding: 12px 24px !important;
|
129 |
+
font-size: 16px !important;
|
130 |
+
transition: all 0.3s ease !important;
|
131 |
+
}
|
132 |
+
.gr-button-primary:hover {
|
133 |
+
transform: translateY(-2px) !important;
|
134 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2) !important;
|
135 |
+
}
|
136 |
+
.gr-textbox {
|
137 |
+
border-radius: 15px !important;
|
138 |
+
border: 2px solid #e0e0e0 !important;
|
139 |
+
background: rgba(255, 255, 255, 0.95) !important;
|
140 |
+
}
|
141 |
+
.gr-textbox:focus {
|
142 |
+
border-color: #4ECDC4 !important;
|
143 |
+
box-shadow: 0 0 10px rgba(78, 205, 196, 0.3) !important;
|
144 |
+
}
|
145 |
+
.output-text {
|
146 |
+
background: rgba(255, 255, 255, 0.95) !important;
|
147 |
+
border-radius: 15px !important;
|
148 |
+
padding: 20px !important;
|
149 |
+
margin: 10px 0 !important;
|
150 |
+
border-left: 4px solid #4ECDC4 !important;
|
151 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important;
|
152 |
+
}
|
153 |
+
.gr-accordion {
|
154 |
+
background: rgba(255, 255, 255, 0.1) !important;
|
155 |
+
border-radius: 15px !important;
|
156 |
+
border: 1px solid rgba(255, 255, 255, 0.3) !important;
|
157 |
+
}
|
158 |
+
"""
|
159 |
|
160 |
+
# Create interface
|
161 |
+
with gr.Blocks(
|
162 |
+
css=css,
|
163 |
+
title="🧪 Materials Science AI Assistant",
|
164 |
+
theme=gr.themes.Soft(
|
165 |
+
primary_hue="blue",
|
166 |
+
secondary_hue="cyan",
|
167 |
+
neutral_hue="slate"
|
168 |
+
)
|
169 |
+
) as demo:
|
170 |
|
171 |
+
# Header
|
172 |
+
gr.HTML("""
|
173 |
+
<div style="text-align: center; padding: 30px; background: rgba(255, 255, 255, 0.95); border-radius: 20px; margin-bottom: 20px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);">
|
174 |
+
<h1 style="color: #2c3e50; font-size: 2.5em; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.1);">
|
175 |
+
🧪 Materials Science AI Assistant
|
176 |
+
</h1>
|
177 |
+
<p style="color: #7f8c8d; font-size: 1.2em; margin: 10px 0 0 0; font-weight: 500;">
|
178 |
+
Powered by Fine-tuned LLaMA 3 8B | Specialized in Materials Research
|
179 |
+
</p>
|
180 |
+
</div>
|
181 |
+
""")
|
182 |
|
183 |
+
# Main interface
|
184 |
+
with gr.Row():
|
185 |
+
with gr.Column(scale=2):
|
186 |
+
# Input area
|
187 |
+
gr.Markdown("### 💬 Ask me anything about Materials Science!")
|
188 |
+
|
189 |
+
prompt = gr.Textbox(
|
190 |
+
label="Enter your question or topic:",
|
191 |
+
placeholder="e.g., Crystalline MAX Phases and their 2D derivative MXenes",
|
192 |
+
lines=4,
|
193 |
+
max_lines=8
|
194 |
+
)
|
195 |
+
|
196 |
+
# Advanced options
|
197 |
+
with gr.Accordion("⚙️ Advanced Options", open=False):
|
198 |
+
with gr.Row():
|
199 |
+
max_tokens = gr.Slider(
|
200 |
+
label="Max Tokens (Response Length)",
|
201 |
+
minimum=50,
|
202 |
+
maximum=500,
|
203 |
+
value=200,
|
204 |
+
step=10,
|
205 |
+
info="Maximum number of tokens in the response"
|
206 |
+
)
|
207 |
+
|
208 |
+
temperature = gr.Slider(
|
209 |
+
label="Temperature (Creativity)",
|
210 |
+
minimum=0.1,
|
211 |
+
maximum=1.0,
|
212 |
+
value=0.7,
|
213 |
+
step=0.1,
|
214 |
+
info="Higher values make responses more creative"
|
215 |
+
)
|
216 |
+
|
217 |
+
with gr.Row():
|
218 |
+
top_p = gr.Slider(
|
219 |
+
label="Top-p (Diversity)",
|
220 |
+
minimum=0.1,
|
221 |
+
maximum=1.0,
|
222 |
+
value=0.9,
|
223 |
+
step=0.1,
|
224 |
+
info="Controls diversity of word choices"
|
225 |
+
)
|
226 |
+
|
227 |
+
repetition_penalty = gr.Slider(
|
228 |
+
label="Repetition Penalty",
|
229 |
+
minimum=1.0,
|
230 |
+
maximum=2.0,
|
231 |
+
value=1.2,
|
232 |
+
step=0.1,
|
233 |
+
info="Penalty for repeating words/phrases"
|
234 |
+
)
|
235 |
+
|
236 |
+
# Generate button
|
237 |
+
generate_btn = gr.Button(
|
238 |
+
"🚀 Generate Response",
|
239 |
+
variant="primary",
|
240 |
+
size="lg"
|
241 |
+
)
|
242 |
|
243 |
+
# Output area
|
244 |
+
gr.Markdown("### 🤖 AI Response:")
|
245 |
+
output = gr.Textbox(
|
246 |
+
label="Generated Response",
|
247 |
+
lines=10,
|
248 |
+
max_lines=20,
|
249 |
+
interactive=False,
|
250 |
+
elem_classes=["output-text"]
|
251 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
+
# Example prompts
|
254 |
+
gr.Markdown("### 💡 Example Prompts (Click to use):")
|
255 |
+
examples = [
|
256 |
+
"Crystalline MAX Phases and their 2D derivative MXenes",
|
257 |
+
"Properties of titanium carbide MXenes",
|
258 |
+
"Synthesis methods for MAX phases",
|
259 |
+
"Applications of MXenes in energy storage",
|
260 |
+
"Mechanical properties of ceramic materials"
|
261 |
+
]
|
262 |
+
|
263 |
+
gr.Examples(
|
264 |
+
examples=examples,
|
265 |
+
inputs=prompt,
|
266 |
+
label="Click any example to try:"
|
267 |
+
)
|
268 |
+
|
269 |
+
# Footer
|
270 |
+
gr.HTML("""
|
271 |
+
<div style="text-align: center; padding: 20px; margin-top: 30px; background: rgba(255, 255, 255, 0.1); border-radius: 15px; border: 1px solid rgba(255, 255, 255, 0.3);">
|
272 |
+
<p style="color: white; font-size: 16px; margin: 0;">
|
273 |
+
🔬 <strong>Specialized in Materials Science</strong> | 🧪 <strong>MAX Phases & MXenes Expert</strong>
|
274 |
+
</p>
|
275 |
+
<p style="color: rgba(255, 255, 255, 0.8); font-size: 14px; margin: 5px 0 0 0;">
|
276 |
+
Built with ❤️ using Gradio & Hugging Face Spaces
|
277 |
+
</p>
|
278 |
+
</div>
|
279 |
+
""")
|
280 |
+
|
281 |
+
# Connect the generate button to the function
|
282 |
+
generate_btn.click(
|
283 |
+
fn=generate_response,
|
284 |
+
inputs=[prompt, max_tokens, temperature, top_p, repetition_penalty],
|
285 |
+
outputs=output,
|
286 |
+
show_progress=True
|
287 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
+
return demo
|
|
|
|
|
290 |
|
291 |
+
# Launch the app
|
292 |
if __name__ == "__main__":
|
293 |
+
demo = create_interface()
|
294 |
+
demo.launch()
|