File size: 15,260 Bytes
826b7c3 5051bfd 826b7c3 5051bfd 826b7c3 0db53a4 826b7c3 425647e 826b7c3 64861fa 826b7c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import math
import os
from io import BytesIO
import gradio as gr
import cv2
from PIL import Image
import requests
from transformers import pipeline
from pydub import AudioSegment
from faster_whisper import WhisperModel
import joblib
import mediapipe as mp
import numpy as np
import pandas as pd
# import moviepy.editor as mpe
from moviepy import VideoFileClip
import time
body_lang_model = joblib.load('body_language.pkl')
mp_holistic = mp.solutions.holistic
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(min_detection_confidence=0.5, min_tracking_confidence=0.5)
theme = gr.themes.Base(
primary_hue="cyan",
secondary_hue="blue",
neutral_hue="slate",
)
model = WhisperModel("small", device="cpu", compute_type="int8")
API_KEY = os.getenv('HF_API_KEY')
pipe1 = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
pipe2 = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions")
# pipe3 = pipeline("audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")
# FACE_API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection"
# TEXT_API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions"
AUDIO_API_URL = "https://api-inference.huggingface.co/models/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
headers = {"Authorization": "Bearer " + API_KEY + ""}
def extract_frames(video_path):
clip = VideoFileClip(video_path)
clip.write_videofile('mp4file.mp4', fps=60)
cap = cv2.VideoCapture('mp4file.mp4')
fps = int(cap.get(cv2.CAP_PROP_FPS))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# try:
# while True:
# ret, frame = cap.read()
# if not ret:
# break
# total_frames += 1
# except Exception as e:
# print("Done")
# cap.release()
# time.sleep(3)
# cap = cv2.VideoCapture(video_path)
interval = int(fps/2)
print(interval, total_frames)
images = []
result = []
distract_count = 0
total_count = 0
output_list = []
for i in range(0, total_frames, interval):
total_count += 1
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if ret:
image = cv2.cvtColor(cv2.flip(frame, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = face_mesh.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
img_h, img_w, img_c = image.shape
face_3d = []
face_2d = []
flag = False
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
for idx, lm in enumerate(face_landmarks.landmark):
if idx == 33 or idx == 263 or idx == 1 or idx == 61 or idx == 291 or idx == 199:
if idx == 1:
nose_2d = (lm.x * img_w, lm.y * img_h)
nose_3d = (lm.x * img_w, lm.y * img_h, lm.z * 3000)
x, y = int(lm.x * img_w), int(lm.y * img_h)
face_2d.append([x, y])
face_3d.append([x, y, lm.z])
face_2d = np.array(face_2d, dtype=np.float64)
face_3d = np.array(face_3d, dtype=np.float64)
focal_length = 1 * img_w
cam_matrix = np.array([ [focal_length, 0, img_h / 2],
[0, focal_length, img_w / 2],
[0, 0, 1]])
dist_matrix = np.zeros((4, 1), dtype=np.float64)
success, rot_vec, trans_vec = cv2.solvePnP(face_3d, face_2d, cam_matrix, dist_matrix)
rmat, jac = cv2.Rodrigues(rot_vec)
angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat)
x = angles[0] * 360
y = angles[1] * 360
z = angles[2] * 360
if y < -7 or y > 7 or x < -7 or x > 7:
flag = True
else:
flag = False
if flag == True:
distract_count += 1
image2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results2 = holistic.process(image2)
pose = results2.pose_landmarks.landmark
pose_row = list(np.array([[landmark.x, landmark.y, landmark.z, landmark.visibility] for landmark in pose]).flatten())
face = results2.face_landmarks.landmark
face_row = list(np.array([[landmark.x, landmark.y, landmark.z, landmark.visibility] for landmark in face]).flatten())
row = pose_row+face_row
X = pd.DataFrame([row])
body_language_class = body_lang_model.predict(X)[0]
body_language_prob = body_lang_model.predict_proba(X)[0]
output_dict = {}
for class_name, prob in zip(body_lang_model.classes_, body_language_prob):
output_dict[class_name] = prob
output_list.append(output_dict)
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
response = pipe1(pil_image)
temp = {}
for ele in response:
label, score = ele.values()
temp[label] = score
result.append(temp)
images.append((cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), f"Sentiments: {temp}, Distraction: {1 if flag == True else 0}"))
distraction_rate = distract_count/total_count
total_bad_prob = 0
total_good_prob = 0
for output_dict in output_list:
total_bad_prob += output_dict['Bad']
total_good_prob += output_dict['Good']
num_frames = len(output_list)
avg_bad_prob = total_bad_prob / num_frames
avg_good_prob = total_good_prob / num_frames
final_output = {'Bad': avg_bad_prob, 'Good': avg_good_prob}
print("Frame extraction completed.")
cap.release()
return images, result, final_output, distraction_rate
def analyze_sentiment(text):
response = pipe2(text)
sentiment_results = {}
for ele in response:
label, score = ele.values()
sentiment_results[label] = score
# sentiment_list = response.json()[0]
# sentiment_results = {results['label']: results['score'] for results in sentiment_list}
return sentiment_results
def video_to_audio(input_video):
frames_images, frames_sentiments, body_language, distraction_rate = extract_frames(input_video)
cap = cv2.VideoCapture(input_video)
fps = int(cap.get(cv2.CAP_PROP_FPS))
audio = AudioSegment.from_file(input_video)
audio_binary = audio.export(format="wav").read()
audio_bytesio = BytesIO(audio_binary)
audio_bytesio2 = BytesIO(audio_binary)
segments, info = model.transcribe(audio_bytesio, beam_size=5)
response = requests.post(AUDIO_API_URL, headers=headers, data=audio_bytesio2)
# response = pipe3(audio_bytesio)
# audio_list = list(response.json())
# formatted_response = {results['label'] : results['score'] for results in audio_list}
print(response.json())
formatted_response = {}
for ele in response.json():
score, label = ele.values()
formatted_response[label] = score
# print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
transcript = ''
audio_divide_sentiment = ''
video_sentiment_markdown = ''
video_sentiment_final = []
final_output = []
for segment in segments:
transcript = transcript + segment.text + " "
transcript_segment_sentiment = analyze_sentiment(segment.text)
audio_divide_sentiment += "[%.2fs -> %.2fs] %s : %s`\`" % (segment.start, segment.end, segment.text, transcript_segment_sentiment)
emotion_totals = {
'admiration': 0.0,
'amusement': 0.0,
'angry': 0.0,
'annoyance': 0.0,
'approval': 0.0,
'caring': 0.0,
'confusion': 0.0,
'curiosity': 0.0,
'desire': 0.0,
'disappointment': 0.0,
'disapproval': 0.0,
'disgust': 0.0,
'embarrassment': 0.0,
'excitement': 0.0,
'fear': 0.0,
'gratitude': 0.0,
'grief': 0.0,
'happy': 0.0,
'love': 0.0,
'nervousness': 0.0,
'optimism': 0.0,
'pride': 0.0,
'realization': 0.0,
'relief': 0.0,
'remorse': 0.0,
'sad': 0.0,
'surprise': 0.0,
'neutral': 0.0
}
counter = 0
for i in range(math.ceil(segment.start), math.floor(segment.end)):
for emotion in frames_sentiments[i].keys():
emotion_totals[emotion] += frames_sentiments[i].get(emotion)
counter += 1
for emotion in emotion_totals:
emotion_totals[emotion] /= counter
video_sentiment_final.append(emotion_totals)
video_segment_sentiment = {key: value for key, value in emotion_totals.items() if value != 0.0}
video_sentiment_markdown += f"Frame {fps*math.ceil(segment.start)} - Frame {fps*math.floor(segment.end)} : {video_segment_sentiment}`\`"
segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment, video_segment_sentiment)}
final_output.append(segment_finals)
total_transcript_sentiment = {key: value for key, value in analyze_sentiment(transcript).items() if value >= 0.01}
emotion_finals = {
'admiration': 0.0,
'amusement': 0.0,
'angry': 0.0,
'annoyance': 0.0,
'approval': 0.0,
'caring': 0.0,
'confusion': 0.0,
'curiosity': 0.0,
'desire': 0.0,
'disappointment': 0.0,
'disapproval': 0.0,
'disgust': 0.0,
'embarrassment': 0.0,
'excitement': 0.0,
'fear': 0.0,
'gratitude': 0.0,
'grief': 0.0,
'happy': 0.0,
'love': 0.0,
'nervousness': 0.0,
'optimism': 0.0,
'pride': 0.0,
'realization': 0.0,
'relief': 0.0,
'remorse': 0.0,
'sad': 0.0,
'surprise': 0.0,
'neutral': 0.0
}
for i in range(0, video_sentiment_final.__len__()-1):
for emotion in video_sentiment_final[i].keys():
emotion_finals[emotion] += video_sentiment_final[i].get(emotion)
for emotion in emotion_finals:
emotion_finals[emotion] /= video_sentiment_final.__len__()
emotion_finals = {key: value for key, value in emotion_finals.items() if value != 0.0}
print("Processing Completed!!")
payload = {
'from': 'gradio',
'emotions_final': emotion_finals,
'body_language': body_language,
'distraction_rate': distraction_rate,
'formatted_response': formatted_response,
'total_transcript_sentiment': total_transcript_sentiment
}
# response = requests.post('http://127.0.0.1:5000/interview', json=payload)
print(payload)
return str(final_output), frames_images, total_transcript_sentiment, audio_divide_sentiment, formatted_response, video_sentiment_markdown, emotion_finals, body_language, {'Distraction Rate': distraction_rate}
with gr.Blocks(theme=theme, css=".gradio-container { background: rgba(255, 255, 255, 0.2) !important; box-shadow: 0 8px 32px 0 rgba( 31, 38, 135, 0.37 ) !important; backdrop-filter: blur( 10px ) !important; -webkit-backdrop-filter: blur( 10px ) !important; border-radius: 10px !important; border: 1px solid rgba( 0, 0, 0, 0.5 ) !important;}") as Video:
with gr.Column():
gr.Markdown("""# Interview AI Video Processing Model""")
with gr.Row():
gr.Markdown("""
### 🤖 A cross-model ML model for Video processing in Interview AI Video Processing involves combining different machine learning models to analyze sentiments expressed in healthcare-related videos.
- Facial Expression Recognition Model [Google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) 😊😢😰
- Speech Recognition Model [OpenAI/Whisper](https://github.com/openai/whisper) 🗣️🎤
- Text Analysis Model [RoBERTa-base-go-emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) 📝📜
- Contextual Understanding Model (Sentiment Analysis) 🔄🌐
""")
gr.Markdown("""### By combining the outputs of these models, the cross-model approach aims to capture a more comprehensive view of the sentiments within the interview videos. This way, candidates can gain insights into thier interview experiences and emotions, facilitating better understanding and improvements in actual interviews. """)
with gr.Row():
with gr.Column():
input_video = gr.Video(sources=["upload", "webcam"], format='mp4')
button = gr.Button("Process", variant="primary")
# gr.Examples(inputs=input_video, examples=[os.path.join(os.path.dirname(__file__), "test_video_1.mp4")])
with gr.Column():
with gr.Row():
video_sentiment_final = gr.Label(label="Video Sentiment Score")
speech_emotions = gr.Label(label="Audio Emotion Score")
with gr.Row():
overall_transcript_score = gr.Label(label="Overall Transcript Score")
body_language = gr.Label(label="Body Language")
distraction_rate = gr.Label(label="Distraction Rate")
with gr.Column():
frames_gallery = gr.Gallery(label="Video Frames", show_label=True, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto")
with gr.Accordion(label="JSON detailed Responses", open=False):
json_output = gr.Textbox(label="JSON Output", info="Overall scores of the above video in segments.", show_label=True, lines=5, show_copy_button=True, interactive=False)
audio_sentiment = gr.Textbox(label="Audio Sentiments", info="Outputs of Audio Processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False)
video_sentiment_markdown = gr.Textbox(label="Video Sentiments", info="Outputs of Video Frames processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False)
button.click(
fn=video_to_audio,
inputs=input_video,
outputs=[json_output, frames_gallery, overall_transcript_score, audio_sentiment, speech_emotions, video_sentiment_markdown, video_sentiment_final, body_language, distraction_rate]
)
Video.launch() |