import streamlit as st from PIL import Image import torch pip install torch torchvision torchaudio from transformers import AutoFeatureExtractor, AutoModelForImageClassification # Load model and extractor model = AutoModelForImageClassification.from_pretrained("best.pt") extractor = AutoFeatureExtractor.from_pretrained("best.pt") st.title('Smoke Detection App') uploaded_image = st.file_uploader("Choose an image...", type="jpg") if uploaded_image is not None: image = Image.open(uploaded_image) st.image(image, caption='Uploaded Image.', use_column_width=True) st.write("") st.write("Classifying...") inputs = extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predictions = torch.argmax(outputs.logits, dim=1) if predictions.item() == 1: st.write("Smoke detected!") else: st.write("No smoke detected.")