Spaces:
Running
Running
Commit
·
26f23ad
1
Parent(s):
532251c
Upload inference_ill.py
Browse files- inference_ill.py +134 -0
inference_ill.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from skimage.filters.rank import mean_bilateral
|
| 5 |
+
from skimage import morphology
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from PIL import ImageEnhance
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def padCropImg(img):
|
| 11 |
+
H = img.shape[0]
|
| 12 |
+
W = img.shape[1]
|
| 13 |
+
|
| 14 |
+
patchRes = 128
|
| 15 |
+
pH = patchRes
|
| 16 |
+
pW = patchRes
|
| 17 |
+
ovlp = int(patchRes * 0.125) # 32
|
| 18 |
+
|
| 19 |
+
padH = (int((H - patchRes) / (patchRes - ovlp) + 1) * (patchRes - ovlp) + patchRes) - H
|
| 20 |
+
padW = (int((W - patchRes) / (patchRes - ovlp) + 1) * (patchRes - ovlp) + patchRes) - W
|
| 21 |
+
|
| 22 |
+
padImg = cv2.copyMakeBorder(img, 0, padH, 0, padW, cv2.BORDER_REPLICATE)
|
| 23 |
+
|
| 24 |
+
ynum = int((padImg.shape[0] - pH) / (pH - ovlp)) + 1
|
| 25 |
+
xnum = int((padImg.shape[1] - pW) / (pW - ovlp)) + 1
|
| 26 |
+
|
| 27 |
+
totalPatch = np.zeros((ynum, xnum, patchRes, patchRes, 3), dtype=np.uint8)
|
| 28 |
+
|
| 29 |
+
for j in range(0, ynum):
|
| 30 |
+
for i in range(0, xnum):
|
| 31 |
+
x = int(i * (pW - ovlp))
|
| 32 |
+
y = int(j * (pH - ovlp))
|
| 33 |
+
|
| 34 |
+
if j == (ynum-1) and i == (xnum-1):
|
| 35 |
+
totalPatch[j, i] = img[-patchRes:, -patchRes:]
|
| 36 |
+
elif j == (ynum-1):
|
| 37 |
+
totalPatch[j, i] = img[-patchRes:, x:int(x + patchRes)]
|
| 38 |
+
elif i == (xnum-1):
|
| 39 |
+
totalPatch[j, i] = img[y:int(y + patchRes), -patchRes:]
|
| 40 |
+
else:
|
| 41 |
+
totalPatch[j, i] = padImg[y:int(y + patchRes), x:int(x + patchRes)]
|
| 42 |
+
|
| 43 |
+
return totalPatch, padH, padW
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def illCorrection(model, totalPatch):
|
| 47 |
+
totalPatch = totalPatch.astype(np.float32) / 255.0
|
| 48 |
+
|
| 49 |
+
ynum = totalPatch.shape[0]
|
| 50 |
+
xnum = totalPatch.shape[1]
|
| 51 |
+
|
| 52 |
+
totalResults = np.zeros((ynum, xnum, 128, 128, 3), dtype=np.float32)
|
| 53 |
+
|
| 54 |
+
for j in range(0, ynum):
|
| 55 |
+
for i in range(0, xnum):
|
| 56 |
+
patchImg = torch.from_numpy(totalPatch[j, i]).permute(2,0,1)
|
| 57 |
+
patchImg = patchImg.cuda().view(1, 3, 128, 128)
|
| 58 |
+
|
| 59 |
+
output = model(patchImg)
|
| 60 |
+
output = output.permute(0, 2, 3, 1).data.cpu().numpy()[0]
|
| 61 |
+
|
| 62 |
+
output = output * 255.0
|
| 63 |
+
output = output.astype(np.uint8)
|
| 64 |
+
|
| 65 |
+
totalResults[j, i] = output
|
| 66 |
+
|
| 67 |
+
return totalResults
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def composePatch(totalResults, padH, padW, img):
|
| 71 |
+
ynum = totalResults.shape[0]
|
| 72 |
+
xnum = totalResults.shape[1]
|
| 73 |
+
patchRes = totalResults.shape[2]
|
| 74 |
+
|
| 75 |
+
ovlp = int(patchRes * 0.125)
|
| 76 |
+
step = patchRes - ovlp
|
| 77 |
+
|
| 78 |
+
resImg = np.zeros((patchRes + (ynum - 1) * step, patchRes + (xnum - 1) * step, 3), np.uint8)
|
| 79 |
+
resImg = np.zeros_like(img).astype('uint8')
|
| 80 |
+
|
| 81 |
+
for j in range(0, ynum):
|
| 82 |
+
for i in range(0, xnum):
|
| 83 |
+
sy = int(j * step)
|
| 84 |
+
sx = int(i * step)
|
| 85 |
+
|
| 86 |
+
if j == 0 and i != (xnum-1):
|
| 87 |
+
resImg[sy:(sy + patchRes), sx:(sx + patchRes)] = totalResults[j, i]
|
| 88 |
+
elif i == 0 and j != (ynum-1):
|
| 89 |
+
resImg[sy+10:(sy + patchRes), sx:(sx + patchRes)] = totalResults[j, i,10:]
|
| 90 |
+
elif j == (ynum-1) and i == (xnum-1):
|
| 91 |
+
resImg[-patchRes+10:, -patchRes+10:] = totalResults[j, i,10:,10:]
|
| 92 |
+
elif j == (ynum-1) and i == 0:
|
| 93 |
+
resImg[-patchRes+10:, sx:(sx + patchRes)] = totalResults[j, i,10:]
|
| 94 |
+
elif j == (ynum-1) and i != 0:
|
| 95 |
+
resImg[-patchRes+10:, sx+10:(sx + patchRes)] = totalResults[j, i,10:,10:]
|
| 96 |
+
elif i == (xnum-1) and j == 0:
|
| 97 |
+
resImg[sy:(sy + patchRes), -patchRes+10:] = totalResults[j, i,:,10:]
|
| 98 |
+
elif i == (xnum-1) and j != 0:
|
| 99 |
+
resImg[sy+10:(sy + patchRes), -patchRes+10:] = totalResults[j, i,10:,10:]
|
| 100 |
+
else:
|
| 101 |
+
resImg[sy+10:(sy + patchRes), sx+10:(sx + patchRes)] = totalResults[j, i,10:,10:]
|
| 102 |
+
|
| 103 |
+
resImg[0,:,:] = 255
|
| 104 |
+
|
| 105 |
+
return resImg
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def preProcess(img):
|
| 109 |
+
img[:,:,0] = mean_bilateral(img[:,:,0], morphology.disk(20), s0=10, s1=10)
|
| 110 |
+
img[:,:,1] = mean_bilateral(img[:,:,1], morphology.disk(20), s0=10, s1=10)
|
| 111 |
+
img[:,:,2] = mean_bilateral(img[:,:,2], morphology.disk(20), s0=10, s1=10)
|
| 112 |
+
|
| 113 |
+
return img
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def postProcess(img):
|
| 117 |
+
img = Image.fromarray(img)
|
| 118 |
+
enhancer = ImageEnhance.Contrast(img)
|
| 119 |
+
factor = 2.0
|
| 120 |
+
img = enhancer.enhance(factor)
|
| 121 |
+
|
| 122 |
+
return img
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def rec_ill(net, img, saveRecPath):
|
| 126 |
+
|
| 127 |
+
totalPatch, padH, padW = padCropImg(img)
|
| 128 |
+
|
| 129 |
+
totalResults = illCorrection(net, totalPatch)
|
| 130 |
+
|
| 131 |
+
resImg = composePatch(totalResults, padH, padW, img)
|
| 132 |
+
#resImg = postProcess(resImg)
|
| 133 |
+
resImg = Image.fromarray(resImg)
|
| 134 |
+
resImg.save(saveRecPath)
|