Spaces:
Runtime error
Runtime error
File size: 11,119 Bytes
3434b8c d72c37e 3434b8c d72c37e 5a56341 d72c37e 5a56341 d72c37e 5a56341 d72c37e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import spaces
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
# from diffusers import StableDiffusionImageVariationPipeline
from inference import InferenceModel
from pytorch_lightning import seed_everything
import numpy as np
import os
import rembg
import sys
from loguru import logger
# Add imports for downloading weights
from huggingface_hub import hf_hub_download
import shutil
_SAMPLE_TAB_ID_ = 0
_HIGHRES_TAB_ID_ = 1
_FOREGROUND_TAB_ID_ = 2
def download_model_weights():
"""Download model weights from the original repository if they don't exist."""
# Original repository ID
repo_id = "LittleFrog/IntrinsicAnything"
# Define the paths and files to download
model_configs = [
{
"local_dir": "weights/albedo",
"files": [
"weights/albedo/checkpoints/last.ckpt",
"weights/albedo/configs/project.yaml"
]
},
{
"local_dir": "weights/specular",
"files": [
"weights/specular/checkpoints/last.ckpt",
"weights/specular/configs/project.yaml"
]
}
]
for config in model_configs:
local_dir = config["local_dir"]
# Create directories if they don't exist
os.makedirs(f"{local_dir}/checkpoints", exist_ok=True)
os.makedirs(f"{local_dir}/configs", exist_ok=True)
for file_path in config["files"]:
local_file_path = file_path
# Check if file exists and is not a LFS pointer (> 1KB)
if not os.path.exists(local_file_path) or os.path.getsize(local_file_path) < 1024:
logger.info(f"Downloading {file_path} from HuggingFace...")
try:
# Download the file
downloaded_file = hf_hub_download(
repo_id=repo_id,
filename=file_path,
repo_type="space",
cache_dir="./hf_cache"
)
# Copy to the expected location
shutil.copy2(downloaded_file, local_file_path)
logger.info(f"Successfully downloaded {file_path}")
except Exception as e:
logger.error(f"Failed to download {file_path}: {e}")
raise e
else:
logger.info(f"{local_file_path} already exists and appears to be valid")
def set_loggers(level):
logger.remove()
logger.add(sys.stderr, level=level)
def on_guide_select(evt: gr.SelectData):
logger.debug(f"You selected {evt.value} at {evt.index} from {evt.target}")
return [evt.value["image"]['path'], f"Sample {evt.index}"]
def on_input_select(evt: gr.SelectData):
logger.debug(f"You selected {evt.value} at {evt.index} from {evt.target}")
return evt.value["image"]['path']
@spaces.GPU(duration=120)
def sample_fine(
input_im,
domain="Albedo",
require_mask=False,
steps=25,
n_samples=4,
seed=0,
guid_img=None,
vert_split=2,
hor_split=2,
overlaps=2,
guidance_scale=2,
):
if require_mask:
input_im = remove_bg(input_im)
seed_everything(int(seed))
model = model_dict[domain]
inp = tform(input_im).to(device).permute(1,2,0)
guid_img = tform(guid_img).to(device).permute(1,2,0)
images = model.generation((vert_split, hor_split), overlaps, guid_img[..., :3], inp[..., :3], inp[..., 3:], dps_scale=guidance_scale, uc_score=1.0, ddim_steps=steps, batch_size=1, n_samples=1)
images["guid_iamges"] = [(guid_img.detach().cpu().numpy() * 255).astype(np.uint8)]
output = images["out_images"][0]
return [[(output, "High-res")], gr.Tabs(selected=_HIGHRES_TAB_ID_)]
def remove_bg(input_im):
output = rembg.remove(input_im, session=model_dict["remove_bg"])
return output
@spaces.GPU()
def sampling(input_im, domain="Albedo", require_mask=False,
steps=25, n_samples=4, seed=0):
seed_everything(int(seed))
model = model_dict[domain]
if require_mask:
input_im = remove_bg(input_im)
inp = tform(input_im).to(device).permute(1,2,0)
images = model.generation((1, 1), 1, None, inp[..., :3], inp[..., 3:], dps_scale=0, uc_score=1, ddim_steps=steps, batch_size=1, n_samples=n_samples)
output = [[(images["input_image"][0], "Foreground Object"), (images["input_maskes"][0], "Foreground Maks")],
[(img,f"Sample {idx}") for idx, img in enumerate(images["out_images"])],
gr.Tabs(selected=_SAMPLE_TAB_ID_),
]
return output
title = "IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination"
description = \
"""
#### Generate intrinsic images (Albedo, Specular Shading) from a single image.
##### Tips
- You can check the "Auto Mask" box if the input image requires a foreground mask. Or supply your mask with RGBA input.
- You can optionally generate a high-resolution sample if the input image is of high resolution. We split the original image into `Vertical Splits` by `Horizontal Splits` patches with some `Overlaps` in between. Due to computation constraints for the online demo, we recommend `Vertical Splits` x `Horizontal Splits` to be no more than 6 and to set 2 for `Overlaps`. The denoising steps should at least be set to 80 for high resolution samples.
"""
set_loggers("INFO")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Download model weights if needed
logger.info("Checking and downloading model weights if needed...")
download_model_weights()
logger.info(f"Loading Models...")
model_dict = {
"Albedo": InferenceModel(ckpt_path="weights/albedo",
use_ddim=True,
gpu_id=0),
"Specular": InferenceModel(ckpt_path="weights/specular",
use_ddim=True,
gpu_id=0),
"remove_bg": rembg.new_session(),
}
logger.info(f"All models Loaded!")
tform = transforms.Compose([
transforms.ToTensor()
])
examples_dir = "examples"
examples = [[os.path.join(examples_dir, img_name)] for img_name in os.listdir(examples_dir)]
# theme definition
theme = gr.Theme.from_hub("NoCrypt/miku")
theme.body_background_fill = "#FFFFFF "
theme.body_background_fill_dark = "#000000"
demo = gr.Blocks(title=title, theme=theme)
with demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + title)
gr.Markdown(description)
with gr.Column():
with gr.Row():
with gr.Column(scale=0.8):
image_input = [gr.Image(image_mode='RGBA', height=256)]
with gr.Column():
with gr.Tabs():
with gr.TabItem("Options"):
with gr.Column():
with gr.Row():
domain_box = gr.Radio([("Albedo", "Albedo"),("Specular", "Specular")],
value="Albedo",
label="Type")
with gr.Column():
gr.Markdown("### Automatic foreground segmentation")
mask_box = gr.Checkbox(False, label="Auto Mask")
options_tab = [
domain_box,
mask_box,
gr.Slider(5, 200, value=50, step=5, label="Denoising Steps (The larger the better results)"),
gr.Slider(1, 10, value=2, step=1, label="Number of Samples"),
gr.Number(75424, label="Seed", precision=0),
]
with gr.TabItem("Advanced (High-res)"):
with gr.Column():
guiding_img = gr.Image(image_mode='RGBA', label="Guiding Image", interactive=False, height=256, visible=False)
sample_idx = gr.Textbox(placeholder="Select one from the generate low-res samples", lines=1, interactive=False, label="Guiding Image")
options_advanced_tab = [
# high resolution options
guiding_img,
gr.Slider(1, 4, value=2, step=1, label="Vertical Splits"),
gr.Slider(1, 4, value=2, step=1, label="Horizontal Splits"),
gr.Slider(1, 5, value=2, step=1, label="Overlaps"),
gr.Slider(0, 5, value=3, step=1, label="Guidance Scale"),]
with gr.Column(scale=1.0):
with gr.Tabs() as res_tabs:
with gr.TabItem("Generated Samples", id=_SAMPLE_TAB_ID_):
image_output = gr.Gallery(label="Generated Samples", object_fit="contain", columns=[2], rows=[2],height=512, selected_index=0)
with gr.TabItem("High Resolution Sample", id=_HIGHRES_TAB_ID_):
image_output_high = gr.Gallery(label="High Resolution Sample", object_fit="contain", columns=[1], rows=[1],height=512, selected_index=0)
with gr.TabItem("Foreground Object", id=_FOREGROUND_TAB_ID_):
forground_output = gr.Gallery(label="Foreground Object", object_fit="contain", columns=[2], rows=[1],height=512, selected_index=0)
with gr.Row():
generate_button = gr.Button("Generate")
generate_button_fine = gr.Button("Generate High-Res")
examples_gr = gr.Examples(examples=examples, inputs=image_input,
cache_examples=False, examples_per_page=30,
label='Examples (Click one to start!)')
with gr.Row():
pass
# forground_output = gr.Gallery(label="Inputs", preview=False, columns=[2], rows=[1],height=512, selected_index=0)
# image_output = gr.Gallery(label="Generated Samples", object_fit="cover", columns=[1], rows=[6],height=512, selected_index=0)
# image_output_high = gr.Gallery(label="High Resolution Sample", object_fit="cover", columns=[1], rows=[1],height=512, selected_index=0)
generate_button.click(sampling, inputs=image_input+options_tab,
outputs=[forground_output, image_output, res_tabs])
generate_button_fine.click(sample_fine,
inputs=image_input+options_tab+options_advanced_tab,
outputs=[image_output_high, res_tabs])
image_output.select(on_guide_select, None, [guiding_img, sample_idx])
logger.info(f"Demo Initilized, Starting...")
demo.queue().launch()
|