Hamda commited on
Commit
ea90e06
·
1 Parent(s): 9cab755

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
4
+
5
+ tokenizer = AutoTokenizer.from_pretrained("moussaKam/AraBART", padding= True, truncation=True, max_length=128)
6
+ @st.cache
7
+ def load_model(model_name):
8
+ model = AutoModelForMaskedLM.from_pretrained(model_name)
9
+ return model
10
+ model = load_model("moussaKam/AraBART")
11
+
12
+
13
+ @st.cache
14
+ def next_word(text, pipe):
15
+ res_dict= {
16
+ 'token_str':[],
17
+ 'score':[],
18
+ }
19
+ res=pipe(text)
20
+ for e in res:
21
+ res_dict['token_str'].extend(e['token_str'])
22
+ res_dict['score'].extend(e['score'])
23
+ return res_dict
24
+
25
+ st.title("Predict Next Word")
26
+ st.write("Use our model to expand your query based on the DB content")
27
+ default_value = "التاريخ هو تحليل و"
28
+ # sent is the the variable holding the user's input
29
+ sent = st.text_area("Text", default_value, height = 60)
30
+ sent += ' <mask>'
31
+
32
+ pipe = pipeline("fill-mask", tokenizer = tokenizer, model = model, device=0)
33
+ dict_next_words = next_word(sent, pipe)
34
+
35
+ st.write(dict_next_words)