Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
4 |
import soundfile as sf
|
5 |
import torch
|
6 |
-
|
7 |
|
8 |
model_name_or_path = "microsoft/DialoGPT-large"
|
9 |
|
@@ -17,7 +17,9 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
17 |
trust_remote_code=True,
|
18 |
)
|
19 |
|
20 |
-
|
|
|
|
|
21 |
|
22 |
# Function to handle text input
|
23 |
def handle_text(text):
|
@@ -32,36 +34,24 @@ def handle_image(img):
|
|
32 |
return "This image seems nice!"
|
33 |
|
34 |
# Function to handle audio input
|
35 |
-
def
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
# Create a Recognizer object
|
46 |
-
r = Recognizer()
|
47 |
-
# Open the audio file
|
48 |
-
with AudioFile(audio) as source:
|
49 |
-
# Listen for the data (load audio to memory)
|
50 |
-
audio_data = r.record(source)
|
51 |
-
# Transcribe the audio using Google's speech-to-text API
|
52 |
-
text = r.recognize_google(audio_data, language=language)
|
53 |
-
return text
|
54 |
|
55 |
def chatbot(text, img, audio):
|
56 |
text_output = handle_text(text) if text is not None else ''
|
57 |
img_output = handle_image(img) if img is not None else ''
|
58 |
-
audio_output =
|
59 |
|
60 |
outputs = [o for o in [text_output, img_output, audio_output] if o]
|
61 |
return "\n".join(outputs)
|
62 |
|
63 |
-
|
64 |
-
|
65 |
iface = gr.Interface(
|
66 |
fn=chatbot,
|
67 |
inputs=[
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, Wav2Vec2Processor, Wav2Vec2ForCTC
|
4 |
import soundfile as sf
|
5 |
import torch
|
6 |
+
import numpy as np
|
7 |
|
8 |
model_name_or_path = "microsoft/DialoGPT-large"
|
9 |
|
|
|
17 |
trust_remote_code=True,
|
18 |
)
|
19 |
|
20 |
+
# Initialize the Wav2Vec2 model and processor
|
21 |
+
wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
22 |
+
wav2vec2_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
23 |
|
24 |
# Function to handle text input
|
25 |
def handle_text(text):
|
|
|
34 |
return "This image seems nice!"
|
35 |
|
36 |
# Function to handle audio input
|
37 |
+
def handle_audio(audio):
|
38 |
+
# gradio Audio returns a tuple (sample_rate, audio_np_array)
|
39 |
+
# we only need the audio data, hence accessing the second element
|
40 |
+
audio = audio[1]
|
41 |
+
input_values = wav2vec2_processor(audio, sampling_rate=16_000, return_tensors="pt").input_values
|
42 |
+
logits = wav2vec2_model(input_values).logits
|
43 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
44 |
+
transcriptions = wav2vec2_processor.decode(predicted_ids[0])
|
45 |
+
return handle_text(transcriptions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def chatbot(text, img, audio):
|
48 |
text_output = handle_text(text) if text is not None else ''
|
49 |
img_output = handle_image(img) if img is not None else ''
|
50 |
+
audio_output = handle_audio(audio) if audio is not None else ''
|
51 |
|
52 |
outputs = [o for o in [text_output, img_output, audio_output] if o]
|
53 |
return "\n".join(outputs)
|
54 |
|
|
|
|
|
55 |
iface = gr.Interface(
|
56 |
fn=chatbot,
|
57 |
inputs=[
|