Update app.py
Browse files
app.py
CHANGED
|
@@ -1,47 +1,42 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image
|
| 3 |
-
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 4 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 5 |
import soundfile as sf
|
| 6 |
import torch
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Load pre-trained model and processor for Wav2Vec2
|
| 13 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
| 14 |
-
|
| 15 |
|
| 16 |
# Function to handle text input
|
| 17 |
def handle_text(text):
|
| 18 |
-
|
| 19 |
-
new_user_input_ids = gpt2_tokenizer.encode(text + gpt2_tokenizer.eos_token, return_tensors='pt')
|
| 20 |
-
|
| 21 |
-
# append the new user input tokens to the chat history
|
| 22 |
bot_input_ids = new_user_input_ids
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
chat_history_ids = gpt2_model.generate(bot_input_ids, max_length=1000, pad_token_id=gpt2_tokenizer.eos_token_id)
|
| 26 |
-
|
| 27 |
-
# Print the generated chat
|
| 28 |
-
chat_output = gpt2_tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
| 29 |
return chat_output
|
| 30 |
|
| 31 |
# Function to handle image input
|
| 32 |
def handle_image(img):
|
| 33 |
-
# This is a placeholder function, replace with your own image processing function
|
| 34 |
return "This image seems nice!"
|
| 35 |
|
| 36 |
# Function to handle audio input
|
| 37 |
def handle_audio(audio):
|
| 38 |
-
# load audio
|
| 39 |
speech, _ = sf.read(audio)
|
| 40 |
-
# transcribe speech to text
|
| 41 |
input_values = processor(speech, return_tensors="pt").input_values
|
| 42 |
-
|
| 43 |
-
logits = model(input_values).logits
|
| 44 |
-
# take argmax and decode
|
| 45 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 46 |
transcriptions = processor.decode(predicted_ids[0])
|
| 47 |
return handle_text(transcriptions)
|
|
@@ -54,7 +49,6 @@ def chatbot(text, img, audio):
|
|
| 54 |
outputs = [o for o in [text_output, img_output, audio_output] if o]
|
| 55 |
return "\n".join(outputs)
|
| 56 |
|
| 57 |
-
# Define the Gradio interface
|
| 58 |
iface = gr.Interface(
|
| 59 |
fn=chatbot,
|
| 60 |
inputs=[
|
|
@@ -67,5 +61,4 @@ iface = gr.Interface(
|
|
| 67 |
description="This chatbot can handle text, image, and audio inputs. Try it out!",
|
| 68 |
)
|
| 69 |
|
| 70 |
-
# Launch the Gradio interface
|
| 71 |
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image
|
| 3 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 4 |
import soundfile as sf
|
| 5 |
import torch
|
| 6 |
|
| 7 |
+
model_name_or_path = "bofenghuang/vigogne-falcon-7b-chat"
|
| 8 |
+
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False)
|
| 10 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 11 |
+
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
model_name_or_path,
|
| 14 |
+
torch_dtype=torch.float16,
|
| 15 |
+
device_map="auto",
|
| 16 |
+
trust_remote_code=True,
|
| 17 |
+
)
|
| 18 |
|
| 19 |
# Load pre-trained model and processor for Wav2Vec2
|
| 20 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
| 21 |
+
wav2vec2_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
| 22 |
|
| 23 |
# Function to handle text input
|
| 24 |
def handle_text(text):
|
| 25 |
+
new_user_input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors='pt')
|
|
|
|
|
|
|
|
|
|
| 26 |
bot_input_ids = new_user_input_ids
|
| 27 |
+
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
| 28 |
+
chat_output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
return chat_output
|
| 30 |
|
| 31 |
# Function to handle image input
|
| 32 |
def handle_image(img):
|
|
|
|
| 33 |
return "This image seems nice!"
|
| 34 |
|
| 35 |
# Function to handle audio input
|
| 36 |
def handle_audio(audio):
|
|
|
|
| 37 |
speech, _ = sf.read(audio)
|
|
|
|
| 38 |
input_values = processor(speech, return_tensors="pt").input_values
|
| 39 |
+
logits = wav2vec2_model(input_values).logits
|
|
|
|
|
|
|
| 40 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 41 |
transcriptions = processor.decode(predicted_ids[0])
|
| 42 |
return handle_text(transcriptions)
|
|
|
|
| 49 |
outputs = [o for o in [text_output, img_output, audio_output] if o]
|
| 50 |
return "\n".join(outputs)
|
| 51 |
|
|
|
|
| 52 |
iface = gr.Interface(
|
| 53 |
fn=chatbot,
|
| 54 |
inputs=[
|
|
|
|
| 61 |
description="This chatbot can handle text, image, and audio inputs. Try it out!",
|
| 62 |
)
|
| 63 |
|
|
|
|
| 64 |
iface.launch()
|