Spaces:
Runtime error
Runtime error
add sfast
Browse files- app.py +1 -0
- app_init.py +4 -2
- frontend/src/lib/components/VideoInput.svelte +2 -2
- pipelines/controlnet.py +1 -1
- pipelines/controlnetLoraSD15.py +16 -12
- pipelines/controlnetLoraSDXL.py +45 -17
- pipelines/{controlnelSD21Turbo.py → controlnetSDTurbo.py} +0 -0
- pipelines/controlnetSegmindVegaRT.py +13 -3
- pipelines/img2img.py +24 -10
- pipelines/{img2imgSD21Turbo.py → img2imgSDTurbo.py} +0 -0
- pipelines/img2imgSDXLTurbo.py +47 -23
- pipelines/img2imgSegmindVegaRT.py +13 -5
- pipelines/txt2img.py +25 -10
- pipelines/txt2imgLora.py +27 -11
- pipelines/txt2imgLoraSDXL.py +36 -10
app.py
CHANGED
|
@@ -12,6 +12,7 @@ print("TORCH_DTYPE:", torch_dtype)
|
|
| 12 |
print("PIPELINE:", args.pipeline)
|
| 13 |
print("SAFETY_CHECKER:", args.safety_checker)
|
| 14 |
print("TORCH_COMPILE:", args.torch_compile)
|
|
|
|
| 15 |
print("USE_TAESD:", args.taesd)
|
| 16 |
print("COMPEL:", args.compel)
|
| 17 |
print("DEBUG:", args.debug)
|
|
|
|
| 12 |
print("PIPELINE:", args.pipeline)
|
| 13 |
print("SAFETY_CHECKER:", args.safety_checker)
|
| 14 |
print("TORCH_COMPILE:", args.torch_compile)
|
| 15 |
+
print("SFast:", args.sfast)
|
| 16 |
print("USE_TAESD:", args.taesd)
|
| 17 |
print("COMPEL:", args.compel)
|
| 18 |
print("DEBUG:", args.debug)
|
app_init.py
CHANGED
|
@@ -17,6 +17,8 @@ import asyncio
|
|
| 17 |
import os
|
| 18 |
import time
|
| 19 |
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def init_app(app: FastAPI, user_data: UserData, args: Args, pipeline):
|
| 22 |
app.add_middleware(
|
|
@@ -61,7 +63,7 @@ def init_app(app: FastAPI, user_data: UserData, args: Args, pipeline):
|
|
| 61 |
while True:
|
| 62 |
data = await websocket.receive_json()
|
| 63 |
if data["status"] != "next_frame":
|
| 64 |
-
asyncio.sleep(
|
| 65 |
continue
|
| 66 |
|
| 67 |
params = await websocket.receive_json()
|
|
@@ -86,7 +88,7 @@ def init_app(app: FastAPI, user_data: UserData, args: Args, pipeline):
|
|
| 86 |
)
|
| 87 |
await websocket.close()
|
| 88 |
return
|
| 89 |
-
await asyncio.sleep(
|
| 90 |
|
| 91 |
except Exception as e:
|
| 92 |
logging.error(f"Error: {e}")
|
|
|
|
| 17 |
import os
|
| 18 |
import time
|
| 19 |
|
| 20 |
+
THROTTLE = 1.0 / 120
|
| 21 |
+
|
| 22 |
|
| 23 |
def init_app(app: FastAPI, user_data: UserData, args: Args, pipeline):
|
| 24 |
app.add_middleware(
|
|
|
|
| 63 |
while True:
|
| 64 |
data = await websocket.receive_json()
|
| 65 |
if data["status"] != "next_frame":
|
| 66 |
+
asyncio.sleep(THROTTLE)
|
| 67 |
continue
|
| 68 |
|
| 69 |
params = await websocket.receive_json()
|
|
|
|
| 88 |
)
|
| 89 |
await websocket.close()
|
| 90 |
return
|
| 91 |
+
await asyncio.sleep(THROTTLE)
|
| 92 |
|
| 93 |
except Exception as e:
|
| 94 |
logging.error(f"Error: {e}")
|
frontend/src/lib/components/VideoInput.svelte
CHANGED
|
@@ -20,7 +20,7 @@
|
|
| 20 |
let videoFrameCallbackId: number;
|
| 21 |
|
| 22 |
// ajust the throttle time to your needs
|
| 23 |
-
const
|
| 24 |
let selectedDevice: string = '';
|
| 25 |
let videoIsReady = false;
|
| 26 |
|
|
@@ -41,7 +41,7 @@
|
|
| 41 |
}
|
| 42 |
let lastMillis = 0;
|
| 43 |
async function onFrameChange(now: DOMHighResTimeStamp, metadata: VideoFrameCallbackMetadata) {
|
| 44 |
-
if (now - lastMillis <
|
| 45 |
videoFrameCallbackId = videoEl.requestVideoFrameCallback(onFrameChange);
|
| 46 |
return;
|
| 47 |
}
|
|
|
|
| 20 |
let videoFrameCallbackId: number;
|
| 21 |
|
| 22 |
// ajust the throttle time to your needs
|
| 23 |
+
const THROTTLE = 1000 / 120;
|
| 24 |
let selectedDevice: string = '';
|
| 25 |
let videoIsReady = false;
|
| 26 |
|
|
|
|
| 41 |
}
|
| 42 |
let lastMillis = 0;
|
| 43 |
async function onFrameChange(now: DOMHighResTimeStamp, metadata: VideoFrameCallbackMetadata) {
|
| 44 |
+
if (now - lastMillis < THROTTLE) {
|
| 45 |
videoFrameCallbackId = videoEl.requestVideoFrameCallback(onFrameChange);
|
| 46 |
return;
|
| 47 |
}
|
pipelines/controlnet.py
CHANGED
|
@@ -185,6 +185,7 @@ class Pipeline:
|
|
| 185 |
config.enable_triton = True
|
| 186 |
config.enable_cuda_graph = True
|
| 187 |
self.pipe = compile(self.pipe, config=config)
|
|
|
|
| 188 |
self.canny_torch = SobelOperator(device=device)
|
| 189 |
self.pipe.set_progress_bar_config(disable=True)
|
| 190 |
self.pipe.to(device=device, dtype=torch_dtype)
|
|
@@ -214,7 +215,6 @@ class Pipeline:
|
|
| 214 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 215 |
generator = torch.manual_seed(params.seed)
|
| 216 |
prompt_embeds = None
|
| 217 |
-
control_image = None
|
| 218 |
prompt = params.prompt
|
| 219 |
if hasattr(self, "compel_proc"):
|
| 220 |
prompt_embeds = self.compel_proc(params.prompt)
|
|
|
|
| 185 |
config.enable_triton = True
|
| 186 |
config.enable_cuda_graph = True
|
| 187 |
self.pipe = compile(self.pipe, config=config)
|
| 188 |
+
|
| 189 |
self.canny_torch = SobelOperator(device=device)
|
| 190 |
self.pipe.set_progress_bar_config(disable=True)
|
| 191 |
self.pipe.to(device=device, dtype=torch_dtype)
|
|
|
|
| 215 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 216 |
generator = torch.manual_seed(params.seed)
|
| 217 |
prompt_embeds = None
|
|
|
|
| 218 |
prompt = params.prompt
|
| 219 |
if hasattr(self, "compel_proc"):
|
| 220 |
prompt_embeds = self.compel_proc(params.prompt)
|
pipelines/controlnetLoraSD15.py
CHANGED
|
@@ -81,7 +81,7 @@ class Pipeline:
|
|
| 81 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 82 |
)
|
| 83 |
steps: int = Field(
|
| 84 |
-
|
| 85 |
)
|
| 86 |
width: int = Field(
|
| 87 |
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
@@ -90,7 +90,7 @@ class Pipeline:
|
|
| 90 |
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
| 91 |
)
|
| 92 |
guidance_scale: float = Field(
|
| 93 |
-
0
|
| 94 |
min=0,
|
| 95 |
max=2,
|
| 96 |
step=0.001,
|
|
@@ -195,13 +195,9 @@ class Pipeline:
|
|
| 195 |
for pipe in self.pipes.values():
|
| 196 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 197 |
pipe.set_progress_bar_config(disable=True)
|
| 198 |
-
pipe.to(device=device, dtype=torch_dtype).to(device)
|
| 199 |
if device.type != "mps":
|
| 200 |
pipe.unet.to(memory_format=torch.channels_last)
|
| 201 |
|
| 202 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 203 |
-
pipe.enable_attention_slicing()
|
| 204 |
-
|
| 205 |
if args.taesd:
|
| 206 |
pipe.vae = AutoencoderTiny.from_pretrained(
|
| 207 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
@@ -209,11 +205,13 @@ class Pipeline:
|
|
| 209 |
|
| 210 |
# Load LCM LoRA
|
| 211 |
pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
| 212 |
-
pipe.
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
| 217 |
if args.torch_compile:
|
| 218 |
pipe.unet = torch.compile(
|
| 219 |
pipe.unet, mode="reduce-overhead", fullgraph=True
|
|
@@ -233,7 +231,12 @@ class Pipeline:
|
|
| 233 |
|
| 234 |
activation_token = base_models[params.base_model_id]
|
| 235 |
prompt = f"{activation_token} {params.prompt}"
|
| 236 |
-
prompt_embeds =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
control_image = self.canny_torch(
|
| 238 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
| 239 |
)
|
|
@@ -245,6 +248,7 @@ class Pipeline:
|
|
| 245 |
results = pipe(
|
| 246 |
image=params.image,
|
| 247 |
control_image=control_image,
|
|
|
|
| 248 |
prompt_embeds=prompt_embeds,
|
| 249 |
generator=generator,
|
| 250 |
strength=strength,
|
|
|
|
| 81 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 82 |
)
|
| 83 |
steps: int = Field(
|
| 84 |
+
1, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
| 85 |
)
|
| 86 |
width: int = Field(
|
| 87 |
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
|
|
| 90 |
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
| 91 |
)
|
| 92 |
guidance_scale: float = Field(
|
| 93 |
+
1.0,
|
| 94 |
min=0,
|
| 95 |
max=2,
|
| 96 |
step=0.001,
|
|
|
|
| 195 |
for pipe in self.pipes.values():
|
| 196 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 197 |
pipe.set_progress_bar_config(disable=True)
|
|
|
|
| 198 |
if device.type != "mps":
|
| 199 |
pipe.unet.to(memory_format=torch.channels_last)
|
| 200 |
|
|
|
|
|
|
|
|
|
|
| 201 |
if args.taesd:
|
| 202 |
pipe.vae = AutoencoderTiny.from_pretrained(
|
| 203 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
|
| 205 |
|
| 206 |
# Load LCM LoRA
|
| 207 |
pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
| 208 |
+
pipe.to(device=device, dtype=torch_dtype).to(device)
|
| 209 |
+
if args.compel:
|
| 210 |
+
self.compel_proc = Compel(
|
| 211 |
+
tokenizer=pipe.tokenizer,
|
| 212 |
+
text_encoder=pipe.text_encoder,
|
| 213 |
+
truncate_long_prompts=False,
|
| 214 |
+
)
|
| 215 |
if args.torch_compile:
|
| 216 |
pipe.unet = torch.compile(
|
| 217 |
pipe.unet, mode="reduce-overhead", fullgraph=True
|
|
|
|
| 231 |
|
| 232 |
activation_token = base_models[params.base_model_id]
|
| 233 |
prompt = f"{activation_token} {params.prompt}"
|
| 234 |
+
prompt_embeds = None
|
| 235 |
+
prompt = params.prompt
|
| 236 |
+
if hasattr(self, "compel_proc"):
|
| 237 |
+
prompt_embeds = self.compel_proc(prompt)
|
| 238 |
+
prompt = None
|
| 239 |
+
|
| 240 |
control_image = self.canny_torch(
|
| 241 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
| 242 |
)
|
|
|
|
| 248 |
results = pipe(
|
| 249 |
image=params.image,
|
| 250 |
control_image=control_image,
|
| 251 |
+
prompt=prompt,
|
| 252 |
prompt_embeds=prompt_embeds,
|
| 253 |
generator=generator,
|
| 254 |
strength=strength,
|
pipelines/controlnetLoraSDXL.py
CHANGED
|
@@ -80,7 +80,7 @@ class Pipeline:
|
|
| 80 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 81 |
)
|
| 82 |
steps: int = Field(
|
| 83 |
-
|
| 84 |
)
|
| 85 |
width: int = Field(
|
| 86 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
@@ -91,7 +91,7 @@ class Pipeline:
|
|
| 91 |
guidance_scale: float = Field(
|
| 92 |
1.0,
|
| 93 |
min=0,
|
| 94 |
-
max=
|
| 95 |
step=0.001,
|
| 96 |
title="Guidance Scale",
|
| 97 |
field="range",
|
|
@@ -199,18 +199,30 @@ class Pipeline:
|
|
| 199 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
| 200 |
self.pipe.set_progress_bar_config(disable=True)
|
| 201 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
if device.type != "mps":
|
| 203 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 204 |
|
| 205 |
-
if
|
| 206 |
-
self.pipe.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
-
self.pipe.compel_proc = Compel(
|
| 209 |
-
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
| 210 |
-
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
| 211 |
-
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 212 |
-
requires_pooled=[False, True],
|
| 213 |
-
)
|
| 214 |
if args.taesd:
|
| 215 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 216 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
@@ -232,9 +244,23 @@ class Pipeline:
|
|
| 232 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 233 |
generator = torch.manual_seed(params.seed)
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
control_image = self.canny_torch(
|
| 239 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
| 240 |
)
|
|
@@ -246,10 +272,12 @@ class Pipeline:
|
|
| 246 |
results = self.pipe(
|
| 247 |
image=params.image,
|
| 248 |
control_image=control_image,
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
| 253 |
generator=generator,
|
| 254 |
strength=strength,
|
| 255 |
num_inference_steps=steps,
|
|
|
|
| 80 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 81 |
)
|
| 82 |
steps: int = Field(
|
| 83 |
+
1, min=1, max=10, title="Steps", field="range", hide=True, id="steps"
|
| 84 |
)
|
| 85 |
width: int = Field(
|
| 86 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
|
|
| 91 |
guidance_scale: float = Field(
|
| 92 |
1.0,
|
| 93 |
min=0,
|
| 94 |
+
max=2.0,
|
| 95 |
step=0.001,
|
| 96 |
title="Guidance Scale",
|
| 97 |
field="range",
|
|
|
|
| 199 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
| 200 |
self.pipe.set_progress_bar_config(disable=True)
|
| 201 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
| 202 |
+
|
| 203 |
+
if args.sfast:
|
| 204 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
| 205 |
+
compile,
|
| 206 |
+
CompilationConfig,
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
config = CompilationConfig.Default()
|
| 210 |
+
config.enable_xformers = True
|
| 211 |
+
config.enable_triton = True
|
| 212 |
+
config.enable_cuda_graph = True
|
| 213 |
+
self.pipe = compile(self.pipe, config=config)
|
| 214 |
+
|
| 215 |
if device.type != "mps":
|
| 216 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 217 |
|
| 218 |
+
if args.compel:
|
| 219 |
+
self.pipe.compel_proc = Compel(
|
| 220 |
+
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
| 221 |
+
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
| 222 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 223 |
+
requires_pooled=[False, True],
|
| 224 |
+
)
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
if args.taesd:
|
| 227 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 228 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
|
| 244 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 245 |
generator = torch.manual_seed(params.seed)
|
| 246 |
|
| 247 |
+
prompt = params.prompt
|
| 248 |
+
negative_prompt = params.negative_prompt
|
| 249 |
+
prompt_embeds = None
|
| 250 |
+
pooled_prompt_embeds = None
|
| 251 |
+
negative_prompt_embeds = None
|
| 252 |
+
negative_pooled_prompt_embeds = None
|
| 253 |
+
if hasattr(self.pipe, "compel_proc"):
|
| 254 |
+
_prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
|
| 255 |
+
[params.prompt, params.negative_prompt]
|
| 256 |
+
)
|
| 257 |
+
prompt = None
|
| 258 |
+
negative_prompt = None
|
| 259 |
+
prompt_embeds = _prompt_embeds[0:1]
|
| 260 |
+
pooled_prompt_embeds = pooled_prompt_embeds[0:1]
|
| 261 |
+
negative_prompt_embeds = _prompt_embeds[1:2]
|
| 262 |
+
negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]
|
| 263 |
+
|
| 264 |
control_image = self.canny_torch(
|
| 265 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
| 266 |
)
|
|
|
|
| 272 |
results = self.pipe(
|
| 273 |
image=params.image,
|
| 274 |
control_image=control_image,
|
| 275 |
+
prompt=prompt,
|
| 276 |
+
negative_prompt=negative_prompt,
|
| 277 |
+
prompt_embeds=prompt_embeds,
|
| 278 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 279 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 280 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 281 |
generator=generator,
|
| 282 |
strength=strength,
|
| 283 |
num_inference_steps=steps,
|
pipelines/{controlnelSD21Turbo.py → controlnetSDTurbo.py}
RENAMED
|
File without changes
|
pipelines/controlnetSegmindVegaRT.py
CHANGED
|
@@ -193,14 +193,24 @@ class Pipeline:
|
|
| 193 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
| 194 |
base_model, subfolder="scheduler"
|
| 195 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
self.pipe.set_progress_bar_config(disable=True)
|
| 197 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
| 198 |
if device.type != "mps":
|
| 199 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 200 |
|
| 201 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 202 |
-
self.pipe.enable_attention_slicing()
|
| 203 |
-
|
| 204 |
if args.compel:
|
| 205 |
self.pipe.compel_proc = Compel(
|
| 206 |
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
|
|
|
| 193 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
| 194 |
base_model, subfolder="scheduler"
|
| 195 |
)
|
| 196 |
+
|
| 197 |
+
if args.sfast:
|
| 198 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
| 199 |
+
compile,
|
| 200 |
+
CompilationConfig,
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
config = CompilationConfig.Default()
|
| 204 |
+
config.enable_xformers = True
|
| 205 |
+
config.enable_triton = True
|
| 206 |
+
config.enable_cuda_graph = True
|
| 207 |
+
self.pipe = compile(self.pipe, config=config)
|
| 208 |
+
|
| 209 |
self.pipe.set_progress_bar_config(disable=True)
|
| 210 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
| 211 |
if device.type != "mps":
|
| 212 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 213 |
|
|
|
|
|
|
|
|
|
|
| 214 |
if args.compel:
|
| 215 |
self.pipe.compel_proc = Compel(
|
| 216 |
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
pipelines/img2img.py
CHANGED
|
@@ -107,15 +107,23 @@ class Pipeline:
|
|
| 107 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 108 |
).to(device)
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
self.pipe.set_progress_bar_config(disable=True)
|
| 111 |
self.pipe.to(device=device, dtype=torch_dtype)
|
| 112 |
if device.type != "mps":
|
| 113 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 114 |
|
| 115 |
-
# check if computer has less than 64GB of RAM using sys or os
|
| 116 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 117 |
-
self.pipe.enable_attention_slicing()
|
| 118 |
-
|
| 119 |
if args.torch_compile:
|
| 120 |
print("Running torch compile")
|
| 121 |
self.pipe.unet = torch.compile(
|
|
@@ -130,15 +138,20 @@ class Pipeline:
|
|
| 130 |
image=[Image.new("RGB", (768, 768))],
|
| 131 |
)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
| 138 |
|
| 139 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 140 |
generator = torch.manual_seed(params.seed)
|
| 141 |
-
prompt_embeds =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
steps = params.steps
|
| 144 |
strength = params.strength
|
|
@@ -147,6 +160,7 @@ class Pipeline:
|
|
| 147 |
|
| 148 |
results = self.pipe(
|
| 149 |
image=params.image,
|
|
|
|
| 150 |
prompt_embeds=prompt_embeds,
|
| 151 |
generator=generator,
|
| 152 |
strength=strength,
|
|
|
|
| 107 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 108 |
).to(device)
|
| 109 |
|
| 110 |
+
if args.sfast:
|
| 111 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
| 112 |
+
compile,
|
| 113 |
+
CompilationConfig,
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
config = CompilationConfig.Default()
|
| 117 |
+
config.enable_xformers = True
|
| 118 |
+
config.enable_triton = True
|
| 119 |
+
config.enable_cuda_graph = True
|
| 120 |
+
self.pipe = compile(self.pipe, config=config)
|
| 121 |
+
|
| 122 |
self.pipe.set_progress_bar_config(disable=True)
|
| 123 |
self.pipe.to(device=device, dtype=torch_dtype)
|
| 124 |
if device.type != "mps":
|
| 125 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
if args.torch_compile:
|
| 128 |
print("Running torch compile")
|
| 129 |
self.pipe.unet = torch.compile(
|
|
|
|
| 138 |
image=[Image.new("RGB", (768, 768))],
|
| 139 |
)
|
| 140 |
|
| 141 |
+
if args.compel:
|
| 142 |
+
self.compel_proc = Compel(
|
| 143 |
+
tokenizer=self.pipe.tokenizer,
|
| 144 |
+
text_encoder=self.pipe.text_encoder,
|
| 145 |
+
truncate_long_prompts=False,
|
| 146 |
+
)
|
| 147 |
|
| 148 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 149 |
generator = torch.manual_seed(params.seed)
|
| 150 |
+
prompt_embeds = None
|
| 151 |
+
prompt = params.prompt
|
| 152 |
+
if hasattr(self, "compel_proc"):
|
| 153 |
+
prompt_embeds = self.compel_proc(params.prompt)
|
| 154 |
+
prompt = None
|
| 155 |
|
| 156 |
steps = params.steps
|
| 157 |
strength = params.strength
|
|
|
|
| 160 |
|
| 161 |
results = self.pipe(
|
| 162 |
image=params.image,
|
| 163 |
+
prompt=prompt,
|
| 164 |
prompt_embeds=prompt_embeds,
|
| 165 |
generator=generator,
|
| 166 |
strength=strength,
|
pipelines/{img2imgSD21Turbo.py → img2imgSDTurbo.py}
RENAMED
|
File without changes
|
pipelines/img2imgSDXLTurbo.py
CHANGED
|
@@ -73,18 +73,18 @@ class Pipeline:
|
|
| 73 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 74 |
)
|
| 75 |
steps: int = Field(
|
| 76 |
-
|
| 77 |
)
|
| 78 |
width: int = Field(
|
| 79 |
-
|
| 80 |
)
|
| 81 |
height: int = Field(
|
| 82 |
-
|
| 83 |
)
|
| 84 |
guidance_scale: float = Field(
|
| 85 |
-
0
|
| 86 |
min=0,
|
| 87 |
-
max=
|
| 88 |
step=0.001,
|
| 89 |
title="Guidance Scale",
|
| 90 |
field="range",
|
|
@@ -115,15 +115,23 @@ class Pipeline:
|
|
| 115 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 116 |
).to(device)
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
self.pipe.set_progress_bar_config(disable=True)
|
| 119 |
self.pipe.to(device=device, dtype=torch_dtype)
|
| 120 |
if device.type != "mps":
|
| 121 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 122 |
|
| 123 |
-
# check if computer has less than 64GB of RAM using sys or os
|
| 124 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 125 |
-
self.pipe.enable_attention_slicing()
|
| 126 |
-
|
| 127 |
if args.torch_compile:
|
| 128 |
print("Running torch compile")
|
| 129 |
self.pipe.unet = torch.compile(
|
|
@@ -132,24 +140,38 @@ class Pipeline:
|
|
| 132 |
self.pipe.vae = torch.compile(
|
| 133 |
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
| 134 |
)
|
| 135 |
-
|
| 136 |
self.pipe(
|
| 137 |
prompt="warmup",
|
| 138 |
image=[Image.new("RGB", (768, 768))],
|
| 139 |
)
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
| 147 |
|
| 148 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 149 |
generator = torch.manual_seed(params.seed)
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
steps = params.steps
|
| 154 |
strength = params.strength
|
| 155 |
if int(steps * strength) < 1:
|
|
@@ -157,10 +179,12 @@ class Pipeline:
|
|
| 157 |
|
| 158 |
results = self.pipe(
|
| 159 |
image=params.image,
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
| 164 |
generator=generator,
|
| 165 |
strength=strength,
|
| 166 |
num_inference_steps=steps,
|
|
|
|
| 73 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 74 |
)
|
| 75 |
steps: int = Field(
|
| 76 |
+
1, min=1, max=10, title="Steps", field="range", hide=True, id="steps"
|
| 77 |
)
|
| 78 |
width: int = Field(
|
| 79 |
+
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
| 80 |
)
|
| 81 |
height: int = Field(
|
| 82 |
+
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
| 83 |
)
|
| 84 |
guidance_scale: float = Field(
|
| 85 |
+
1.0,
|
| 86 |
min=0,
|
| 87 |
+
max=1,
|
| 88 |
step=0.001,
|
| 89 |
title="Guidance Scale",
|
| 90 |
field="range",
|
|
|
|
| 115 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 116 |
).to(device)
|
| 117 |
|
| 118 |
+
if args.sfast:
|
| 119 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
| 120 |
+
compile,
|
| 121 |
+
CompilationConfig,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
config = CompilationConfig.Default()
|
| 125 |
+
config.enable_xformers = True
|
| 126 |
+
config.enable_triton = True
|
| 127 |
+
config.enable_cuda_graph = True
|
| 128 |
+
self.pipe = compile(self.pipe, config=config)
|
| 129 |
+
|
| 130 |
self.pipe.set_progress_bar_config(disable=True)
|
| 131 |
self.pipe.to(device=device, dtype=torch_dtype)
|
| 132 |
if device.type != "mps":
|
| 133 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
if args.torch_compile:
|
| 136 |
print("Running torch compile")
|
| 137 |
self.pipe.unet = torch.compile(
|
|
|
|
| 140 |
self.pipe.vae = torch.compile(
|
| 141 |
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
| 142 |
)
|
|
|
|
| 143 |
self.pipe(
|
| 144 |
prompt="warmup",
|
| 145 |
image=[Image.new("RGB", (768, 768))],
|
| 146 |
)
|
| 147 |
|
| 148 |
+
if args.compel:
|
| 149 |
+
self.pipe.compel_proc = Compel(
|
| 150 |
+
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
| 151 |
+
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
| 152 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 153 |
+
requires_pooled=[False, True],
|
| 154 |
+
)
|
| 155 |
|
| 156 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 157 |
generator = torch.manual_seed(params.seed)
|
| 158 |
+
prompt = params.prompt
|
| 159 |
+
negative_prompt = params.negative_prompt
|
| 160 |
+
prompt_embeds = None
|
| 161 |
+
pooled_prompt_embeds = None
|
| 162 |
+
negative_prompt_embeds = None
|
| 163 |
+
negative_pooled_prompt_embeds = None
|
| 164 |
+
if hasattr(self.pipe, "compel_proc"):
|
| 165 |
+
_prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
|
| 166 |
+
[params.prompt, params.negative_prompt]
|
| 167 |
+
)
|
| 168 |
+
prompt = None
|
| 169 |
+
negative_prompt = None
|
| 170 |
+
prompt_embeds = _prompt_embeds[0:1]
|
| 171 |
+
pooled_prompt_embeds = pooled_prompt_embeds[0:1]
|
| 172 |
+
negative_prompt_embeds = _prompt_embeds[1:2]
|
| 173 |
+
negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]
|
| 174 |
+
|
| 175 |
steps = params.steps
|
| 176 |
strength = params.strength
|
| 177 |
if int(steps * strength) < 1:
|
|
|
|
| 179 |
|
| 180 |
results = self.pipe(
|
| 181 |
image=params.image,
|
| 182 |
+
prompt=prompt,
|
| 183 |
+
negative_prompt=negative_prompt,
|
| 184 |
+
prompt_embeds=prompt_embeds,
|
| 185 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 186 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 187 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 188 |
generator=generator,
|
| 189 |
strength=strength,
|
| 190 |
num_inference_steps=steps,
|
pipelines/img2imgSegmindVegaRT.py
CHANGED
|
@@ -75,7 +75,7 @@ class Pipeline:
|
|
| 75 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 76 |
)
|
| 77 |
steps: int = Field(
|
| 78 |
-
|
| 79 |
)
|
| 80 |
width: int = Field(
|
| 81 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
@@ -126,15 +126,23 @@ class Pipeline:
|
|
| 126 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
| 127 |
base_model, subfolder="scheduler"
|
| 128 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
self.pipe.set_progress_bar_config(disable=True)
|
| 130 |
self.pipe.to(device=device, dtype=torch_dtype)
|
| 131 |
if device.type != "mps":
|
| 132 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 133 |
|
| 134 |
-
# check if computer has less than 64GB of RAM using sys or os
|
| 135 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 136 |
-
self.pipe.enable_attention_slicing()
|
| 137 |
-
|
| 138 |
if args.torch_compile:
|
| 139 |
print("Running torch compile")
|
| 140 |
self.pipe.unet = torch.compile(
|
|
|
|
| 75 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 76 |
)
|
| 77 |
steps: int = Field(
|
| 78 |
+
1, min=1, max=10, title="Steps", field="range", hide=True, id="steps"
|
| 79 |
)
|
| 80 |
width: int = Field(
|
| 81 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
|
|
| 126 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
| 127 |
base_model, subfolder="scheduler"
|
| 128 |
)
|
| 129 |
+
if args.sfast:
|
| 130 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
| 131 |
+
compile,
|
| 132 |
+
CompilationConfig,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
config = CompilationConfig.Default()
|
| 136 |
+
config.enable_xformers = True
|
| 137 |
+
config.enable_triton = True
|
| 138 |
+
config.enable_cuda_graph = True
|
| 139 |
+
self.pipe = compile(self.pipe, config=config)
|
| 140 |
+
|
| 141 |
self.pipe.set_progress_bar_config(disable=True)
|
| 142 |
self.pipe.to(device=device, dtype=torch_dtype)
|
| 143 |
if device.type != "mps":
|
| 144 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
if args.torch_compile:
|
| 147 |
print("Running torch compile")
|
| 148 |
self.pipe.unet = torch.compile(
|
pipelines/txt2img.py
CHANGED
|
@@ -90,15 +90,23 @@ class Pipeline:
|
|
| 90 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 91 |
).to(device)
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
self.pipe.set_progress_bar_config(disable=True)
|
| 94 |
self.pipe.to(device=device, dtype=torch_dtype)
|
| 95 |
if device.type != "mps":
|
| 96 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 97 |
|
| 98 |
-
# check if computer has less than 64GB of RAM using sys or os
|
| 99 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 100 |
-
self.pipe.enable_attention_slicing()
|
| 101 |
-
|
| 102 |
if args.torch_compile:
|
| 103 |
self.pipe.unet = torch.compile(
|
| 104 |
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
|
@@ -109,17 +117,24 @@ class Pipeline:
|
|
| 109 |
|
| 110 |
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
| 117 |
|
| 118 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 119 |
generator = torch.manual_seed(params.seed)
|
| 120 |
-
prompt_embeds =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
results = self.pipe(
|
| 122 |
prompt_embeds=prompt_embeds,
|
|
|
|
| 123 |
generator=generator,
|
| 124 |
num_inference_steps=params.steps,
|
| 125 |
guidance_scale=params.guidance_scale,
|
|
|
|
| 90 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 91 |
).to(device)
|
| 92 |
|
| 93 |
+
if args.sfast:
|
| 94 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
| 95 |
+
compile,
|
| 96 |
+
CompilationConfig,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
config = CompilationConfig.Default()
|
| 100 |
+
config.enable_xformers = True
|
| 101 |
+
config.enable_triton = True
|
| 102 |
+
config.enable_cuda_graph = True
|
| 103 |
+
self.pipe = compile(self.pipe, config=config)
|
| 104 |
+
|
| 105 |
self.pipe.set_progress_bar_config(disable=True)
|
| 106 |
self.pipe.to(device=device, dtype=torch_dtype)
|
| 107 |
if device.type != "mps":
|
| 108 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
if args.torch_compile:
|
| 111 |
self.pipe.unet = torch.compile(
|
| 112 |
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
|
|
|
| 117 |
|
| 118 |
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
| 119 |
|
| 120 |
+
if args.compel:
|
| 121 |
+
self.compel_proc = Compel(
|
| 122 |
+
tokenizer=self.pipe.tokenizer,
|
| 123 |
+
text_encoder=self.pipe.text_encoder,
|
| 124 |
+
truncate_long_prompts=False,
|
| 125 |
+
)
|
| 126 |
|
| 127 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 128 |
generator = torch.manual_seed(params.seed)
|
| 129 |
+
prompt_embeds = None
|
| 130 |
+
prompt = params.prompt
|
| 131 |
+
if hasattr(self, "compel_proc"):
|
| 132 |
+
prompt_embeds = self.compel_proc(params.prompt)
|
| 133 |
+
prompt = None
|
| 134 |
+
|
| 135 |
results = self.pipe(
|
| 136 |
prompt_embeds=prompt_embeds,
|
| 137 |
+
prompt=prompt,
|
| 138 |
generator=generator,
|
| 139 |
num_inference_steps=params.steps,
|
| 140 |
guidance_scale=params.guidance_scale,
|
pipelines/txt2imgLora.py
CHANGED
|
@@ -96,16 +96,15 @@ class Pipeline:
|
|
| 96 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 97 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 98 |
).to(device)
|
|
|
|
| 99 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
| 100 |
self.pipe.set_progress_bar_config(disable=True)
|
|
|
|
| 101 |
self.pipe.to(device=device, dtype=torch_dtype)
|
|
|
|
| 102 |
if device.type != "mps":
|
| 103 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 104 |
|
| 105 |
-
# check if computer has less than 64GB of RAM using sys or os
|
| 106 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 107 |
-
self.pipe.enable_attention_slicing()
|
| 108 |
-
|
| 109 |
if args.torch_compile:
|
| 110 |
self.pipe.unet = torch.compile(
|
| 111 |
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
|
@@ -116,18 +115,35 @@ class Pipeline:
|
|
| 116 |
|
| 117 |
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
| 118 |
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 128 |
generator = torch.manual_seed(params.seed)
|
| 129 |
-
prompt_embeds =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
results = self.pipe(
|
|
|
|
| 131 |
prompt_embeds=prompt_embeds,
|
| 132 |
generator=generator,
|
| 133 |
num_inference_steps=params.steps,
|
|
|
|
| 96 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 97 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 98 |
).to(device)
|
| 99 |
+
|
| 100 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
| 101 |
self.pipe.set_progress_bar_config(disable=True)
|
| 102 |
+
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
| 103 |
self.pipe.to(device=device, dtype=torch_dtype)
|
| 104 |
+
|
| 105 |
if device.type != "mps":
|
| 106 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
if args.torch_compile:
|
| 109 |
self.pipe.unet = torch.compile(
|
| 110 |
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
|
|
|
| 115 |
|
| 116 |
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
| 117 |
|
| 118 |
+
if args.sfast:
|
| 119 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
| 120 |
+
compile,
|
| 121 |
+
CompilationConfig,
|
| 122 |
+
)
|
| 123 |
|
| 124 |
+
config = CompilationConfig.Default()
|
| 125 |
+
config.enable_xformers = True
|
| 126 |
+
config.enable_triton = True
|
| 127 |
+
config.enable_cuda_graph = True
|
| 128 |
+
self.pipe = compile(self.pipe, config=config)
|
| 129 |
+
|
| 130 |
+
if args.compel:
|
| 131 |
+
self.compel_proc = Compel(
|
| 132 |
+
tokenizer=self.pipe.tokenizer,
|
| 133 |
+
text_encoder=self.pipe.text_encoder,
|
| 134 |
+
truncate_long_prompts=False,
|
| 135 |
+
)
|
| 136 |
|
| 137 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 138 |
generator = torch.manual_seed(params.seed)
|
| 139 |
+
prompt_embeds = None
|
| 140 |
+
prompt = params.prompt
|
| 141 |
+
if hasattr(self, "compel_proc"):
|
| 142 |
+
prompt_embeds = self.compel_proc(params.prompt)
|
| 143 |
+
prompt = None
|
| 144 |
+
|
| 145 |
results = self.pipe(
|
| 146 |
+
prompt=prompt,
|
| 147 |
prompt_embeds=prompt_embeds,
|
| 148 |
generator=generator,
|
| 149 |
num_inference_steps=params.steps,
|
pipelines/txt2imgLoraSDXL.py
CHANGED
|
@@ -111,12 +111,22 @@ class Pipeline:
|
|
| 111 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
| 112 |
self.pipe.set_progress_bar_config(disable=True)
|
| 113 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
if device.type != "mps":
|
| 115 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 116 |
|
| 117 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 118 |
-
self.pipe.enable_attention_slicing()
|
| 119 |
-
|
| 120 |
self.pipe.compel_proc = Compel(
|
| 121 |
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
| 122 |
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
|
@@ -142,14 +152,30 @@ class Pipeline:
|
|
| 142 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 143 |
generator = torch.manual_seed(params.seed)
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
results = self.pipe(
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
generator=generator,
|
| 154 |
num_inference_steps=params.steps,
|
| 155 |
guidance_scale=params.guidance_scale,
|
|
|
|
| 111 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
| 112 |
self.pipe.set_progress_bar_config(disable=True)
|
| 113 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
| 114 |
+
|
| 115 |
+
if args.sfast:
|
| 116 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
| 117 |
+
compile,
|
| 118 |
+
CompilationConfig,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
config = CompilationConfig.Default()
|
| 122 |
+
config.enable_xformers = True
|
| 123 |
+
config.enable_triton = True
|
| 124 |
+
config.enable_cuda_graph = True
|
| 125 |
+
self.pipe = compile(self.pipe, config=config)
|
| 126 |
+
|
| 127 |
if device.type != "mps":
|
| 128 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
| 129 |
|
|
|
|
|
|
|
|
|
|
| 130 |
self.pipe.compel_proc = Compel(
|
| 131 |
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
| 132 |
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
|
|
|
| 152 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 153 |
generator = torch.manual_seed(params.seed)
|
| 154 |
|
| 155 |
+
prompt = params.prompt
|
| 156 |
+
negative_prompt = params.negative_prompt
|
| 157 |
+
prompt_embeds = None
|
| 158 |
+
pooled_prompt_embeds = None
|
| 159 |
+
negative_prompt_embeds = None
|
| 160 |
+
negative_pooled_prompt_embeds = None
|
| 161 |
+
if hasattr(self.pipe, "compel_proc"):
|
| 162 |
+
_prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
|
| 163 |
+
[params.prompt, params.negative_prompt]
|
| 164 |
+
)
|
| 165 |
+
prompt = None
|
| 166 |
+
negative_prompt = None
|
| 167 |
+
prompt_embeds = _prompt_embeds[0:1]
|
| 168 |
+
pooled_prompt_embeds = pooled_prompt_embeds[0:1]
|
| 169 |
+
negative_prompt_embeds = _prompt_embeds[1:2]
|
| 170 |
+
negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]
|
| 171 |
+
|
| 172 |
results = self.pipe(
|
| 173 |
+
prompt=prompt,
|
| 174 |
+
negative_prompt=negative_prompt,
|
| 175 |
+
prompt_embeds=prompt_embeds,
|
| 176 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 177 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 178 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 179 |
generator=generator,
|
| 180 |
num_inference_steps=params.steps,
|
| 181 |
guidance_scale=params.guidance_scale,
|