import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
from matplotlib import ticker
import seaborn as sns
import plotnine as p9
import sys
import numpy as np

script_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append('..')
sys.path.append('.')

from about import *
from saving_utils import download_from_hub



global data_component, filter_component



def benchmark_plot(benchmark_type, methods_selected, x_metric, y_metric, aspect, dataset, single_metric):
    if benchmark_type == 'similarity':
        return plot_similarity_results(methods_selected, x_metric, y_metric)
    elif benchmark_type == 'function':
        return plot_function_results(methods_selected, aspect, single_metric)
    elif benchmark_type == 'family':
        return plot_family_results(methods_selected, dataset)
    elif benchmark_type == "affinity":
        return plot_affinity_results(methods_selected, single_metric)
    else:
        return -1 

def get_method_color(method):
    return color_dict.get(method, 'black')  # If method is not in color_dict, use black


def get_labels_and_title(x_metric, y_metric):
    # Define mapping for long forms
    long_form_mapping = {
        "MF": "Molecular Function",
        "BP": "Biological Process",
        "CC": "Cellular Component"
    }
    
    # Parse the metrics
    def parse_metric(metric):
        parts = metric.split("_")
        dataset = parts[0]  # sparse/200/500
        category = parts[1]  # MF/BP/CC
        measure = parts[2]  # pvalue/correlation
        return dataset, category, measure
    
    x_dataset, x_category, x_measure = parse_metric(x_metric)
    y_dataset, y_category, y_measure = parse_metric(y_metric)
    
    # Determine the title
    if x_category == y_category:
        title = long_form_mapping[x_category]
    else:
        title = f"{long_form_mapping[x_category]} (x) vs {long_form_mapping[y_category]} (y)"
    
    # Determine the axis labels
    x_label = f"{x_measure.capitalize()} on {x_dataset.capitalize()} Dataset"
    y_label = f"{y_measure.capitalize()} on {y_dataset.capitalize()} Dataset"
    
    return title, x_label, y_label


def plot_similarity_results(methods_selected, x_metric, y_metric, similarity_path="/tmp/similarity_results.csv"):
    if not os.path.exists(similarity_path):
        benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
        download_from_hub(benchmark_types)
        
    similarity_df = pd.read_csv(similarity_path)
    
    # Filter the dataframe based on selected methods
    filtered_df = similarity_df[similarity_df['Method'].isin(methods_selected)]
    
    # Replace None or NaN values with 0 in relevant columns
    filtered_df = filtered_df.fillna(0)
    
    # Add a new column to the dataframe for the color
    filtered_df['color'] = filtered_df['Method'].apply(get_method_color)

    title, x_label, y_label = get_labels_and_title(x_metric, y_metric)

    adjust_text_dict = {
        'expand_text': (1.15, 1.4), 'expand_points': (1.15, 1.25), 'expand_objects': (1.05, 1.5),
        'expand_align': (1.05, 1.2), 'autoalign': 'xy', 'va': 'center', 'ha': 'center',
        'force_text': (.0, 1.), 'force_objects': (.0, 1.),
        'lim': 500000, 'precision': 1., 'avoid_points': True, 'avoid_text': True
    }

    # Create the scatter plot using plotnine (ggplot)
    g = (p9.ggplot(data=filtered_df,
                   mapping=p9.aes(x=x_metric,  # Use the selected x_metric
                                  y=y_metric,  # Use the selected y_metric
                                  color='color',  # Use the dynamically generated color
                                  label='Method'))  # Label each point by the method name
         + p9.geom_point(size=3)  # Add points with no jitter, set point size
         + p9.geom_text(nudge_y=0.02, size=8)  # Add method names as labels, nudge slightly above the points
         + p9.labs(title=title, x=x_label, y=y_label)  # Dynamic labels for X and Y axes
         + p9.scale_color_identity()  # Use colors directly from the dataframe
         + p9.theme(legend_position='none', 
                    figure_size=(8, 8),  # Set figure size
                    axis_text=p9.element_text(size=10),   
                    axis_title_x=p9.element_text(size=12),
                    axis_title_y=p9.element_text(size=12))
    )

    # Save the plot as an image
    save_path = "/tmp"
    filename = os.path.join(save_path, title.replace(" ", "_") + "_Similarity_Scatter.png")
    g.save(filename=filename, dpi=400)
    
    return filename

def plot_function_results(method_names, aspect, metric, function_path="/tmp/function_results.csv"):
    if not os.path.exists(function_path):
        benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
        download_from_hub(benchmark_types)

    # Load data
    df = pd.read_csv(function_path)
    
    # Filter for selected methods
    df = df[df['Method'].isin(method_names)]
    
    # Filter columns for specified aspect and metric
    columns_to_plot = [col for col in df.columns if col.startswith(f"{aspect}_") and col.endswith(f"_{metric}")]
    df = df[['Method'] + columns_to_plot]
    df.set_index('Method', inplace=True)
    
    # Fill missing values with 0
    df = df.fillna(0)

    df = df.T

    # Generate colors for methods
    row_color_dict = {method: get_method_color(method) for method in df.index}

    long_form_mapping = {
        "MF": "Molecular Function",
        "BP": "Biological Process",
        "CC": "Cellular Component"
    }

    # Create clustermap
    g = sns.clustermap(df, annot=True, cmap="YlGnBu", row_cluster=True, col_cluster=True, figsize=(15, 15))

    for label in g.ax_heatmap.get_yticklabels():
        method = label.get_text()
        label.set_color(get_method_color(method))

    # Apply color to column labels
    for label in g.ax_heatmap.get_xticklabels():
        method = label.get_text()
        label.set_color(get_method_color(method))
        
    title = f"{long_form_mapping[aspect.upper()]} Results for {metric.capitalize()}"
    g.fig.suptitle(title, x=0.5, y=1.02, fontsize=16, ha='center')  # Center the title above the plot

    # Get heatmap axis and customize labels
    ax = g.ax_heatmap
    ax.set_xlabel("")
    ax.set_ylabel("")

    # Save the plot as an image
    save_path = "/tmp"
    filename = os.path.join(save_path, f"{aspect}_{metric}_heatmap.png")
    plt.savefig(filename, dpi=400, bbox_inches='tight')
    plt.close()  # Close the plot to free memory

    return filename

def plot_family_results(method_names, dataset, family_path="/tmp/family_results.csv"):
    if not os.path.exists(family_path):
        benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
        download_from_hub(benchmark_types)

    df = pd.read_csv(family_path)

    # Filter by method names and selected dataset columns
    df = df[df['Method'].isin(method_names)]

    mcc_columns = [col for col in df.columns if col.startswith(f"{dataset}_mcc_")]
    df['Mean_MCC'] = df[mcc_columns].mean(axis=1)

    # Sort the DataFrame by the mean MCC
    df = df.sort_values(by='Mean_MCC', ascending=True)

    # Filter columns based on the dataset and metrics
    value_vars = [col for col in df.columns if col.startswith(f"{dataset}_") and "_" in col]

    # Reshape the DataFrame to long format
    df_long = pd.melt(df, id_vars=["Method"], value_vars=value_vars, var_name="Dataset_Metric_Fold", value_name="Value")

    print(df_long)

    # Convert the "Value" column to numeric
    df_long["Value"] = pd.to_numeric(df_long["Value"], errors="coerce")

    # Drop rows with NaN values in "Value"
    df_long = df_long.dropna(subset=["Value"])
    
    # Split the "Dataset_Metric_Fold" column into "Metric" and "Fold"
    df_long[["Metric", "Fold"]] = df_long["Dataset_Metric_Fold"].str[len(dataset) + 1:].str.split("_", expand=True)
    df_long["Fold"] = df_long["Fold"].astype(int)

    # Set up the plot
    sns.set(rc={"figure.figsize": (13.7, 18.27)})
    sns.set_theme(style="whitegrid", color_codes=True)

    # Create boxplot
    ax = sns.boxplot(data=df_long, x="Value", y="Method", hue="Metric", whis=np.inf, orient="h")

    # Customize grid and ticks
    ax.xaxis.set_major_locator(ticker.MultipleLocator(0.2))
    ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
    ax.yaxis.set_minor_locator(ticker.AutoMinorLocator())
    ax.grid(visible=True, which="major", color="gainsboro", linewidth=1.0)
    ax.grid(visible=True, which="minor", color="whitesmoke", linewidth=0.5)
    ax.set_xlim(0, 1)

    # Add dashed lines between methods
    yticks = ax.get_yticks()
    for ytick in yticks:
        ax.hlines(ytick + 0.5, -0.1, 1, linestyles="dashed", color="gray")


    # Apply color settings to y-axis labels
    for label in ax.get_yticklabels():
        method = label.get_text()
        label.set_color(get_method_color(method))

    # Save the plot
    save_path = "/tmp"
    filename = os.path.join(save_path, f"{dataset}_family_results.png")
    ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight')
    plt.close()  # Close the plot to free memory

    return filename

def plot_affinity_results(method_names, metric, affinity_path="/tmp/affinity_results.csv"):
    if not os.path.exists(affinity_path):
        benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
        download_from_hub(benchmark_types)

    df = pd.read_csv(affinity_path)
    
    # Filter for selected methods
    df = df[df['Method'].isin(method_names)]
    
    # Gather columns related to the specified metric and validate
    metric_columns = [col for col in df.columns if col.startswith(f"{metric}_")]
    df = df[['Method'] + metric_columns].set_index('Method')
    df = df.sort_values(by=metric_columns, ascending=False)

    df = df.fillna(0)

    df = df.T
    # Set up the plot
    sns.set(rc={'figure.figsize': (11.7, 8.27)})
    sns.set_theme(style="whitegrid", color_codes=True)

    # Create the boxplot
    ax = sns.boxplot(data=df, whis=np.inf, orient="h")

    # Add a swarmplot on top of the boxplot
    sns.swarmplot(data=df, orient="h", color=".1", ax=ax)

    # Set labels and x-axis formatting
    ax.set_xlabel("Percent Pearson Correlation")
    ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
    ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
    ax.yaxis.set_minor_locator(ticker.AutoMinorLocator())
    ax.grid(visible=True, which='major', color='gainsboro', linewidth=1.0)
    ax.grid(visible=True, which='minor', color='whitesmoke', linewidth=0.5)


    # Apply custom color settings to y-axis labels
    for label in ax.get_yticklabels():
        method = label.get_text()
        label.set_color(get_method_color(method))

    # Add legend
    ax.legend(loc='best', frameon=True)

    # Save the plot
    save_path = "/tmp"
    filename = os.path.join(save_path, f"{metric}_affinity_results.png")
    ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight')
    plt.close()  # Close the plot to free memory

    return filename

def update_metric_choices(benchmark_type):
    if benchmark_type == 'similarity':
        # Show x and y metric selectors for similarity
        metric_names = benchmark_specific_metrics.get(benchmark_type, [])
        return (
            gr.update(choices=metric_names, value=metric_names[0], visible=True),
            gr.update(choices=metric_names, value=metric_names[1], visible=True),
            gr.update(visible=False), gr.update(visible=False),  gr.update(visible=False)
        )
    elif benchmark_type == 'function':
        # Show aspect and dataset type selectors for function
        aspect_types = benchmark_specific_metrics[benchmark_type]['aspect_types']
        metric_types = benchmark_specific_metrics[benchmark_type]['dataset_types']
        return (
            gr.update(visible=False), gr.update(visible=False),
            gr.update(choices=aspect_types, value=aspect_types[0], visible=True),
            gr.update(visible=False), 
            gr.update(choices=metric_types, value=metric_types[0], visible=True)
        )
    elif benchmark_type == 'family':
        # Show dataset and metric selectors for family
        datasets = benchmark_specific_metrics[benchmark_type]['datasets']
        metrics = benchmark_specific_metrics[benchmark_type]['metrics']
        return (
            gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
            gr.update(choices=datasets, value=datasets[0], visible=True),
            gr.update(visible=False)
        )
    elif benchmark_type == 'affinity':
        # Show single metric selector for affinity
        metrics = benchmark_specific_metrics[benchmark_type]
        return (
            gr.update(visible=False), gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False), gr.update(choices=metrics, value=metrics[0], visible=True)
        )
        
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)