Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,23 +3,45 @@ __all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissi
|
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
import re
|
| 6 |
-
import pandas as pd
|
| 7 |
import os
|
| 8 |
import json
|
| 9 |
import yaml
|
|
|
|
| 10 |
|
| 11 |
from src.about import *
|
| 12 |
from src.bin.PROBE import run_probe
|
| 13 |
|
| 14 |
global data_component, filter_component
|
| 15 |
|
| 16 |
-
|
| 17 |
def get_baseline_df():
|
| 18 |
df = pd.read_csv(CSV_RESULT_PATH)
|
| 19 |
present_columns = ["Method"] + checkbox_group.value
|
| 20 |
df = df[present_columns]
|
| 21 |
return df
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
def add_new_eval(
|
| 25 |
human_file,
|
|
@@ -33,31 +55,43 @@ def add_new_eval(
|
|
| 33 |
family_prediction_dataset,
|
| 34 |
):
|
| 35 |
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
|
| 36 |
-
|
| 37 |
results = run_probe(benchmark_type, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
|
| 38 |
-
|
| 39 |
return None
|
| 40 |
|
| 41 |
block = gr.Blocks()
|
| 42 |
|
| 43 |
with block:
|
| 44 |
-
gr.Markdown(
|
| 45 |
-
|
| 46 |
-
)
|
| 47 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 48 |
# table jmmmu bench
|
| 49 |
with gr.TabItem("🏅 PROBE Benchmark", elem_id="probe-benchmark-tab-table", id=1):
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
checkbox_group = gr.CheckboxGroup(
|
| 52 |
choices=TASK_INFO,
|
| 53 |
label="Benchmark Type",
|
| 54 |
interactive=True,
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
baseline_value = get_baseline_df()
|
| 58 |
baseline_header = ["Method"] + checkbox_group.value
|
| 59 |
baseline_datatype = ['markdown'] + ['number'] * len(checkbox_group.value)
|
| 60 |
-
|
| 61 |
data_component = gr.components.Dataframe(
|
| 62 |
value=baseline_value,
|
| 63 |
headers=baseline_header,
|
|
@@ -65,7 +99,7 @@ with block:
|
|
| 65 |
datatype=baseline_datatype,
|
| 66 |
interactive=False,
|
| 67 |
visible=True,
|
| 68 |
-
|
| 69 |
|
| 70 |
# table 5
|
| 71 |
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
|
|
@@ -83,11 +117,11 @@ with block:
|
|
| 83 |
with gr.Column():
|
| 84 |
model_name_textbox = gr.Textbox(
|
| 85 |
label="Model name",
|
| 86 |
-
|
| 87 |
revision_name_textbox = gr.Textbox(
|
| 88 |
label="Revision Model Name",
|
| 89 |
)
|
| 90 |
-
|
| 91 |
benchmark_type = gr.CheckboxGroup(
|
| 92 |
choices=TASK_INFO,
|
| 93 |
label="Benchmark Type",
|
|
@@ -99,21 +133,18 @@ with block:
|
|
| 99 |
interactive=True,
|
| 100 |
)
|
| 101 |
|
| 102 |
-
# Dropdown for function prediction aspect
|
| 103 |
function_prediction_aspect = gr.Radio(
|
| 104 |
choices=function_prediction_aspect_options,
|
| 105 |
label="Select Function Prediction Aspect",
|
| 106 |
interactive=True,
|
| 107 |
)
|
| 108 |
|
| 109 |
-
# Dropdown for function prediction dataset
|
| 110 |
function_prediction_dataset = gr.Radio(
|
| 111 |
choices=function_prediction_dataset_options,
|
| 112 |
label="Select Function Prediction Dataset",
|
| 113 |
interactive=True,
|
| 114 |
)
|
| 115 |
|
| 116 |
-
# Checkbox for family prediction dataset
|
| 117 |
family_prediction_dataset = gr.CheckboxGroup(
|
| 118 |
choices=family_prediction_dataset_options,
|
| 119 |
label="Select Family Prediction Dataset",
|
|
@@ -128,7 +159,7 @@ with block:
|
|
| 128 |
submission_result = gr.Markdown()
|
| 129 |
submit_button.click(
|
| 130 |
add_new_eval,
|
| 131 |
-
inputs
|
| 132 |
human_file,
|
| 133 |
skempi_file,
|
| 134 |
model_name_textbox,
|
|
@@ -143,14 +174,11 @@ with block:
|
|
| 143 |
|
| 144 |
def refresh_data():
|
| 145 |
value = get_baseline_df()
|
| 146 |
-
|
| 147 |
return value
|
| 148 |
|
| 149 |
with gr.Row():
|
| 150 |
data_run = gr.Button("Refresh")
|
| 151 |
-
data_run.click(
|
| 152 |
-
refresh_data, outputs=[data_component]
|
| 153 |
-
)
|
| 154 |
|
| 155 |
with gr.Accordion("Citation", open=False):
|
| 156 |
citation_button = gr.Textbox(
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
import re
|
|
|
|
| 6 |
import os
|
| 7 |
import json
|
| 8 |
import yaml
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
|
| 11 |
from src.about import *
|
| 12 |
from src.bin.PROBE import run_probe
|
| 13 |
|
| 14 |
global data_component, filter_component
|
| 15 |
|
|
|
|
| 16 |
def get_baseline_df():
|
| 17 |
df = pd.read_csv(CSV_RESULT_PATH)
|
| 18 |
present_columns = ["Method"] + checkbox_group.value
|
| 19 |
df = df[present_columns]
|
| 20 |
return df
|
| 21 |
|
| 22 |
+
# Function to create the plot
|
| 23 |
+
def create_plot(methods_selected, x_metric, y_metric):
|
| 24 |
+
df = pd.read_csv(CSV_RESULT_PATH)
|
| 25 |
+
filtered_df = df[df['Method'].isin(methods_selected)]
|
| 26 |
+
|
| 27 |
+
# Create the plot
|
| 28 |
+
plt.figure(figsize=(8, 6))
|
| 29 |
+
for method in methods_selected:
|
| 30 |
+
method_data = filtered_df[filtered_df['Method'] == method]
|
| 31 |
+
plt.plot(method_data[x_metric], method_data[y_metric], label=method, marker='o')
|
| 32 |
+
|
| 33 |
+
plt.xlabel(x_metric)
|
| 34 |
+
plt.ylabel(y_metric)
|
| 35 |
+
plt.title(f'{y_metric} vs {x_metric} for selected methods')
|
| 36 |
+
plt.legend()
|
| 37 |
+
plt.grid(True)
|
| 38 |
+
|
| 39 |
+
# Save the plot to display it in Gradio
|
| 40 |
+
plot_path = "plot.png"
|
| 41 |
+
plt.savefig(plot_path)
|
| 42 |
+
plt.close()
|
| 43 |
+
|
| 44 |
+
return plot_path
|
| 45 |
|
| 46 |
def add_new_eval(
|
| 47 |
human_file,
|
|
|
|
| 55 |
family_prediction_dataset,
|
| 56 |
):
|
| 57 |
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
|
|
|
|
| 58 |
results = run_probe(benchmark_type, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
|
|
|
|
| 59 |
return None
|
| 60 |
|
| 61 |
block = gr.Blocks()
|
| 62 |
|
| 63 |
with block:
|
| 64 |
+
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
| 65 |
+
|
|
|
|
| 66 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 67 |
# table jmmmu bench
|
| 68 |
with gr.TabItem("🏅 PROBE Benchmark", elem_id="probe-benchmark-tab-table", id=1):
|
| 69 |
+
|
| 70 |
+
# Add the visualizer components (Dropdown, Checkbox, Button, Image)
|
| 71 |
+
with gr.Row():
|
| 72 |
+
method_names = pd.read_csv(CSV_RESULT_PATH)['Method'].unique().tolist()
|
| 73 |
+
metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
|
| 74 |
+
metric_names.remove('Method') # Remove Method from the metric options
|
| 75 |
+
|
| 76 |
+
method_selector = gr.CheckboxGroup(choices=method_names, label="Select Methods", interactive=True)
|
| 77 |
+
x_metric_selector = gr.Dropdown(choices=metric_names, label="Select X-axis Metric", interactive=True)
|
| 78 |
+
y_metric_selector = gr.Dropdown(choices=metric_names, label="Select Y-axis Metric", interactive=True)
|
| 79 |
+
plot_button = gr.Button("Plot")
|
| 80 |
+
output_plot = gr.Image(label="Plot")
|
| 81 |
+
|
| 82 |
+
plot_button.click(create_plot, inputs=[method_selector, x_metric_selector, y_metric_selector], outputs=output_plot)
|
| 83 |
+
|
| 84 |
+
# Now the rest of the UI elements as they were before
|
| 85 |
checkbox_group = gr.CheckboxGroup(
|
| 86 |
choices=TASK_INFO,
|
| 87 |
label="Benchmark Type",
|
| 88 |
interactive=True,
|
| 89 |
+
) # User can select the evaluation dimension
|
| 90 |
+
|
| 91 |
baseline_value = get_baseline_df()
|
| 92 |
baseline_header = ["Method"] + checkbox_group.value
|
| 93 |
baseline_datatype = ['markdown'] + ['number'] * len(checkbox_group.value)
|
| 94 |
+
|
| 95 |
data_component = gr.components.Dataframe(
|
| 96 |
value=baseline_value,
|
| 97 |
headers=baseline_header,
|
|
|
|
| 99 |
datatype=baseline_datatype,
|
| 100 |
interactive=False,
|
| 101 |
visible=True,
|
| 102 |
+
)
|
| 103 |
|
| 104 |
# table 5
|
| 105 |
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
|
|
|
|
| 117 |
with gr.Column():
|
| 118 |
model_name_textbox = gr.Textbox(
|
| 119 |
label="Model name",
|
| 120 |
+
)
|
| 121 |
revision_name_textbox = gr.Textbox(
|
| 122 |
label="Revision Model Name",
|
| 123 |
)
|
| 124 |
+
|
| 125 |
benchmark_type = gr.CheckboxGroup(
|
| 126 |
choices=TASK_INFO,
|
| 127 |
label="Benchmark Type",
|
|
|
|
| 133 |
interactive=True,
|
| 134 |
)
|
| 135 |
|
|
|
|
| 136 |
function_prediction_aspect = gr.Radio(
|
| 137 |
choices=function_prediction_aspect_options,
|
| 138 |
label="Select Function Prediction Aspect",
|
| 139 |
interactive=True,
|
| 140 |
)
|
| 141 |
|
|
|
|
| 142 |
function_prediction_dataset = gr.Radio(
|
| 143 |
choices=function_prediction_dataset_options,
|
| 144 |
label="Select Function Prediction Dataset",
|
| 145 |
interactive=True,
|
| 146 |
)
|
| 147 |
|
|
|
|
| 148 |
family_prediction_dataset = gr.CheckboxGroup(
|
| 149 |
choices=family_prediction_dataset_options,
|
| 150 |
label="Select Family Prediction Dataset",
|
|
|
|
| 159 |
submission_result = gr.Markdown()
|
| 160 |
submit_button.click(
|
| 161 |
add_new_eval,
|
| 162 |
+
inputs=[
|
| 163 |
human_file,
|
| 164 |
skempi_file,
|
| 165 |
model_name_textbox,
|
|
|
|
| 174 |
|
| 175 |
def refresh_data():
|
| 176 |
value = get_baseline_df()
|
|
|
|
| 177 |
return value
|
| 178 |
|
| 179 |
with gr.Row():
|
| 180 |
data_run = gr.Button("Refresh")
|
| 181 |
+
data_run.click(refresh_data, outputs=[data_component])
|
|
|
|
|
|
|
| 182 |
|
| 183 |
with gr.Accordion("Citation", open=False):
|
| 184 |
citation_button = gr.Textbox(
|