Spaces:
Running
Running
up
Browse files- src/data/function_results.csv +2 -2
- src/utils.py +213 -0
src/data/function_results.csv
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2bb6e504784eeae2a09313539759a7bf02757c08fcc7d1dabf5ba4efeab3eb6a
|
| 3 |
+
size 3475
|
src/utils.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import sys
|
| 5 |
+
|
| 6 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 7 |
+
sys.path.append('..')
|
| 8 |
+
sys.path.append('.')
|
| 9 |
+
|
| 10 |
+
def save_similarity_output(output_dict, method_name, leaderboard_path="./data/leaderboard_results.csv", similarity_path="./data/similarity_results.csv"):
|
| 11 |
+
# Load or initialize the DataFrames
|
| 12 |
+
if os.path.exists(leaderboard_path):
|
| 13 |
+
leaderboard_df = pd.read_csv(leaderboard_path)
|
| 14 |
+
else:
|
| 15 |
+
leaderboard_df = pd.DataFrame()
|
| 16 |
+
|
| 17 |
+
if os.path.exists(similarity_path):
|
| 18 |
+
similarity_df = pd.read_csv(similarity_path)
|
| 19 |
+
else:
|
| 20 |
+
similarity_df = pd.DataFrame(columns=['Method'])
|
| 21 |
+
|
| 22 |
+
# Check if method exists in similarity results
|
| 23 |
+
if method_name not in similarity_df['Method'].values:
|
| 24 |
+
similarity_df = pd.concat([similarity_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
| 25 |
+
|
| 26 |
+
# Initialize storage for averages
|
| 27 |
+
averages = {}
|
| 28 |
+
|
| 29 |
+
# Iterate through the output_dict and calculate averages if all aspects (MF, CC, BP) are present
|
| 30 |
+
for dataset in ['sparse', '200', '500']:
|
| 31 |
+
correlation_values = []
|
| 32 |
+
pvalue_values = []
|
| 33 |
+
|
| 34 |
+
# Check each aspect within the dataset (MF, BP, CC)
|
| 35 |
+
for aspect in ['MF', 'BP', 'CC']:
|
| 36 |
+
correlation_key = f"{dataset}_{aspect}_correlation"
|
| 37 |
+
pvalue_key = f"{dataset}_{aspect}_pvalue"
|
| 38 |
+
|
| 39 |
+
# Process correlation if present
|
| 40 |
+
if correlation_key in output_dict:
|
| 41 |
+
correlation_values.append(output_dict[correlation_key])
|
| 42 |
+
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
|
| 43 |
+
leaderboard_df.at[0, f"sim_{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
|
| 44 |
+
|
| 45 |
+
# Process pvalue if present
|
| 46 |
+
if pvalue_key in output_dict:
|
| 47 |
+
pvalue_values.append(output_dict[pvalue_key])
|
| 48 |
+
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]
|
| 49 |
+
leaderboard_df.at[0, f"sim_{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]
|
| 50 |
+
|
| 51 |
+
# Calculate averages if all three aspects (MF, BP, CC) are present
|
| 52 |
+
if len(correlation_values) == 3:
|
| 53 |
+
averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3
|
| 54 |
+
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
|
| 55 |
+
leaderboard_df.at[0, f"sim_{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
|
| 56 |
+
|
| 57 |
+
if len(pvalue_values) == 3:
|
| 58 |
+
averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3
|
| 59 |
+
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
| 60 |
+
leaderboard_df.at[0, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
| 61 |
+
|
| 62 |
+
# Save the updated DataFrames back to CSV
|
| 63 |
+
leaderboard_df.to_csv(leaderboard_path, index=False)
|
| 64 |
+
similarity_df.to_csv(similarity_path, index=False)
|
| 65 |
+
|
| 66 |
+
return 0
|
| 67 |
+
|
| 68 |
+
def save_function_output(model_output, method_name, func_results_path="./data/function_results.csv", leaderboard_path="./data/leaderboard_results.csv"):
|
| 69 |
+
# Load or initialize the DataFrames
|
| 70 |
+
if os.path.exists(func_results_path):
|
| 71 |
+
func_results_df = pd.read_csv(func_results_path)
|
| 72 |
+
else:
|
| 73 |
+
func_results_df = pd.DataFrame(columns=['Method'])
|
| 74 |
+
|
| 75 |
+
if os.path.exists(leaderboard_path):
|
| 76 |
+
leaderboard_df = pd.read_csv(leaderboard_path)
|
| 77 |
+
else:
|
| 78 |
+
leaderboard_df = pd.DataFrame()
|
| 79 |
+
|
| 80 |
+
# Ensure the method_name row exists in function results
|
| 81 |
+
if method_name not in func_results_df['Method'].values:
|
| 82 |
+
func_results_df = pd.concat([func_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
| 83 |
+
|
| 84 |
+
# Storage for averaging in leaderboard results
|
| 85 |
+
metrics_sum = {
|
| 86 |
+
'accuracy': {'BP': [], 'CC': [], 'MF': []},
|
| 87 |
+
'F1': {'BP': [], 'CC': [], 'MF': []},
|
| 88 |
+
'precision': {'BP': [], 'CC': [], 'MF': []},
|
| 89 |
+
'recall': {'BP': [], 'CC': [], 'MF': []}
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
# Iterate over each entry in model_output
|
| 93 |
+
for entry in model_output:
|
| 94 |
+
key = entry[0]
|
| 95 |
+
accuracy, f1, precision, recall = entry[1], entry[4], entry[7], entry[10]
|
| 96 |
+
|
| 97 |
+
# Parse the key to extract the aspect and datasets
|
| 98 |
+
aspect, dataset1, dataset2 = key.split('_')
|
| 99 |
+
|
| 100 |
+
# Save each metric to function_results under its respective column
|
| 101 |
+
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_accuracy"] = accuracy
|
| 102 |
+
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_F1"] = f1
|
| 103 |
+
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_precision"] = precision
|
| 104 |
+
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_recall"] = recall
|
| 105 |
+
|
| 106 |
+
# Add values for leaderboard averaging
|
| 107 |
+
metrics_sum['accuracy'][aspect].append(accuracy)
|
| 108 |
+
metrics_sum['F1'][aspect].append(f1)
|
| 109 |
+
metrics_sum['precision'][aspect].append(precision)
|
| 110 |
+
metrics_sum['recall'][aspect].append(recall)
|
| 111 |
+
|
| 112 |
+
# Calculate averages for each aspect and overall (if all aspects have entries)
|
| 113 |
+
for metric in ['accuracy', 'F1', 'precision', 'recall']:
|
| 114 |
+
for aspect in ['BP', 'CC', 'MF']:
|
| 115 |
+
if metrics_sum[metric][aspect]:
|
| 116 |
+
aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
| 117 |
+
leaderboard_df.at[0, f"func_{aspect}_{metric}"] = aspect_average
|
| 118 |
+
|
| 119 |
+
# Calculate overall average if each aspect has entries
|
| 120 |
+
if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']):
|
| 121 |
+
overall_average = sum(
|
| 122 |
+
sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
| 123 |
+
for aspect in ['BP', 'CC', 'MF']
|
| 124 |
+
) / 3
|
| 125 |
+
leaderboard_df.at[0, f"func_Ave_{metric}"] = overall_average
|
| 126 |
+
|
| 127 |
+
# Save updated DataFrames to CSV
|
| 128 |
+
func_results_df.to_csv(func_results_path, index=False)
|
| 129 |
+
leaderboard_df.to_csv(leaderboard_path, index=False)
|
| 130 |
+
|
| 131 |
+
return 0
|
| 132 |
+
|
| 133 |
+
def save_family_output(model_output, method_name, leaderboard_path="./data/leaderboard_results.csv", family_results_path="./data/family_results.csv"):
|
| 134 |
+
# Load or initialize the DataFrames
|
| 135 |
+
if os.path.exists(leaderboard_path):
|
| 136 |
+
leaderboard_df = pd.read_csv(leaderboard_path)
|
| 137 |
+
else:
|
| 138 |
+
leaderboard_df = pd.DataFrame(columns=['Method'])
|
| 139 |
+
|
| 140 |
+
if os.path.exists(family_results_path):
|
| 141 |
+
family_results_df = pd.read_csv(family_results_path)
|
| 142 |
+
else:
|
| 143 |
+
family_results_df = pd.DataFrame(columns=['Method'])
|
| 144 |
+
|
| 145 |
+
# Ensure the method_name row exists in the leaderboard results
|
| 146 |
+
if method_name not in leaderboard_df['Method'].values:
|
| 147 |
+
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
| 148 |
+
|
| 149 |
+
# Ensure the method_name row exists in family results
|
| 150 |
+
if method_name not in family_results_df['Method'].values:
|
| 151 |
+
family_results_df = pd.concat([family_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
| 152 |
+
|
| 153 |
+
# Iterate through the datasets and metrics
|
| 154 |
+
for dataset, metrics in model_output.items():
|
| 155 |
+
for metric, values in metrics.items():
|
| 156 |
+
# Calculate the average for each metric in leaderboard results
|
| 157 |
+
avg_value = sum(values) / len(values) if values else None
|
| 158 |
+
leaderboard_df.at[leaderboard_df['Method'] == method_name, f"fam_{dataset}_{metric}_ave"] = avg_value
|
| 159 |
+
|
| 160 |
+
# Save each fold result for family results
|
| 161 |
+
for i, value in enumerate(values):
|
| 162 |
+
family_results_df.at[family_results_df['Method'] == method_name, f"{dataset}_{metric}_{i}"] = value
|
| 163 |
+
|
| 164 |
+
# Save updated DataFrames to CSV
|
| 165 |
+
leaderboard_df.to_csv(leaderboard_path, index=False)
|
| 166 |
+
family_results_df.to_csv(family_results_path, index=False)
|
| 167 |
+
|
| 168 |
+
return leaderboard_df, family_results_df
|
| 169 |
+
|
| 170 |
+
def save_affinity_output(model_output, method_name, leaderboard_path="./data/leaderboard_results.csv", affinity_results_path="./data/affinity_results.csv"):
|
| 171 |
+
# Load or initialize DataFrames
|
| 172 |
+
if os.path.exists(leaderboard_path):
|
| 173 |
+
leaderboard_df = pd.read_csv(leaderboard_path)
|
| 174 |
+
else:
|
| 175 |
+
leaderboard_df = pd.DataFrame(columns=['Method'])
|
| 176 |
+
|
| 177 |
+
if os.path.exists(affinity_results_path):
|
| 178 |
+
affinity_results_df = pd.read_csv(affinity_results_path)
|
| 179 |
+
else:
|
| 180 |
+
affinity_results_df = pd.DataFrame(columns=['Method'])
|
| 181 |
+
|
| 182 |
+
# Ensure the method_name row exists in the leaderboard results
|
| 183 |
+
if method_name not in leaderboard_df['Method'].values:
|
| 184 |
+
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
| 185 |
+
|
| 186 |
+
# Ensure the method_name row exists in affinity results
|
| 187 |
+
if method_name not in affinity_results_df['Method'].values:
|
| 188 |
+
affinity_results_df = pd.concat([affinity_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
| 189 |
+
|
| 190 |
+
# Process 'summary' section for leaderboard results
|
| 191 |
+
summary = model_output.get('summary', {})
|
| 192 |
+
if summary:
|
| 193 |
+
leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_mse_ave'] = summary.get('val_mse_error')
|
| 194 |
+
leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_mae_ave'] = summary.get('val_mae_error')
|
| 195 |
+
leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_corr_ave'] = summary.get('validation_corr')
|
| 196 |
+
|
| 197 |
+
# Process 'detail' section for affinity results
|
| 198 |
+
detail = model_output.get('detail', {})
|
| 199 |
+
if detail:
|
| 200 |
+
# Save each 10-fold cross-validation result for mse, mae, and corr
|
| 201 |
+
for i in range(10):
|
| 202 |
+
if 'val_mse_errors' in detail:
|
| 203 |
+
affinity_results_df.at[affinity_results_df['Method'] == method_name, f"mse_{i}"] = detail['val_mse_errors'][i]
|
| 204 |
+
if 'val_mae_errors' in detail:
|
| 205 |
+
affinity_results_df.at[affinity_results_df['Method'] == method_name, f"mae_{i}"] = detail['val_mae_errors'][i]
|
| 206 |
+
if 'validation_corrs' in detail:
|
| 207 |
+
affinity_results_df.at[affinity_results_df['Method'] == method_name, f"corr_{i}"] = detail['validation_corrs'][i]
|
| 208 |
+
|
| 209 |
+
# Save updated DataFrames to CSV
|
| 210 |
+
leaderboard_df.to_csv(leaderboard_path, index=False)
|
| 211 |
+
affinity_results_df.to_csv(affinity_results_path, index=False)
|
| 212 |
+
|
| 213 |
+
return 0
|