Spaces:
Running
Running
| import gradio as gr | |
| import pandas as pd | |
| import re | |
| import os | |
| import json | |
| import yaml | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| import plotnine as p9 | |
| import sys | |
| sys.path.append('./src') | |
| sys.path.append('.') | |
| from huggingface_hub import HfApi | |
| repo_id = "HUBioDataLab/PROBE" | |
| api = HfApi() | |
| from src.about import * | |
| from src.saving_utils import * | |
| from src.vis_utils import * | |
| from src.bin.PROBE import run_probe | |
| # ------------------------------------------------------------------ | |
| # Helper functions -------------------------------------------------- | |
| # ------------------------------------------------------------------ | |
| def add_new_eval( | |
| human_file, | |
| skempi_file, | |
| model_name_textbox: str, | |
| benchmark_types, | |
| similarity_tasks, | |
| function_prediction_aspect, | |
| function_prediction_dataset, | |
| family_prediction_dataset, | |
| save, | |
| ): | |
| """Validate inputs, run evaluation and (optionally) save results.""" | |
| if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None: | |
| gr.Warning("Human representations are required for similarity, family, or function benchmarks!") | |
| return -1 | |
| if 'affinity' in benchmark_types and skempi_file is None: | |
| gr.Warning("SKEMPI representations are required for affinity benchmark!") | |
| return -1 | |
| gr.Info("Your submission is being processed…") | |
| representation_name = model_name_textbox | |
| try: | |
| results = run_probe( | |
| benchmark_types, | |
| representation_name, | |
| human_file, | |
| skempi_file, | |
| similarity_tasks, | |
| function_prediction_aspect, | |
| function_prediction_dataset, | |
| family_prediction_dataset, | |
| ) | |
| except Exception: | |
| gr.Warning("Your submission has not been processed. Please check your representation files!") | |
| return -1 | |
| if save: | |
| save_results(representation_name, benchmark_types, results) | |
| gr.Info("Your submission has been processed and results are saved!") | |
| else: | |
| gr.Info("Your submission has been processed!") | |
| return 0 | |
| def refresh_data(): | |
| """Re‑start the space and pull fresh leaderboard CSVs from the HF Hub.""" | |
| api.restart_space(repo_id=repo_id) | |
| benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"] | |
| for benchmark_type in benchmark_types: | |
| path = f"/tmp/{benchmark_type}_results.csv" | |
| if os.path.exists(path): | |
| os.remove(path) | |
| benchmark_types.remove("leaderboard") | |
| download_from_hub(benchmark_types) | |
| # ------- Leaderboard helpers ----------------------------------------------- | |
| def update_metrics(selected_benchmarks): | |
| updated_metrics = set() | |
| for benchmark in selected_benchmarks: | |
| updated_metrics.update(benchmark_metric_mapping.get(benchmark, [])) | |
| return list(updated_metrics) | |
| def update_leaderboard(selected_methods, selected_metrics): | |
| return get_baseline_df(selected_methods, selected_metrics) | |
| # ------- Visualisation helpers --------------------------------------------- | |
| def generate_plot(benchmark_type, methods_selected, x_metric, y_metric, aspect, dataset, single_metric): | |
| plot_path = benchmark_plot( | |
| benchmark_type, | |
| methods_selected, | |
| x_metric, | |
| y_metric, | |
| aspect, | |
| dataset, | |
| single_metric, | |
| ) | |
| return plot_path | |
| # --------------------------------------------------------------------------- | |
| # Custom CSS for frozen first column and clearer table styles | |
| # --------------------------------------------------------------------------- | |
| CUSTOM_CSS = """ | |
| /* freeze first column */ | |
| #leaderboard-table table tr th:first-child, | |
| #leaderboard-table table tr td:first-child { | |
| position: sticky; | |
| left: 0; | |
| background: white; | |
| z-index: 2; | |
| } | |
| /* striped rows for readability */ | |
| #leaderboard-table table tr:nth-child(odd) { | |
| background: #fafafa; | |
| } | |
| /* centre numeric cells */ | |
| #leaderboard-table td:not(:first-child) { | |
| text-align: center; | |
| } | |
| /* scrollable and taller table */ | |
| #leaderboard-table .dataframe-wrap { | |
| max-height: 1200px; | |
| overflow-y: auto; | |
| overflow-x: auto; | |
| } | |
| """ | |
| # --------------------------------------------------------------------------- | |
| # UI definition | |
| # --------------------------------------------------------------------------- | |
| block = gr.Blocks(css=CUSTOM_CSS) | |
| with block: | |
| gr.Markdown(LEADERBOARD_INTRODUCTION) | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| # ------------------------------------------------------------------ | |
| # 1️⃣ Leaderboard tab | |
| # ------------------------------------------------------------------ | |
| with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1): | |
| # small workflow figure at top | |
| gr.Image( | |
| value="./src/data/PROBE_workflow_figure.jpg", | |
| show_label=False, | |
| height=1000, | |
| container=False, | |
| ) | |
| gr.Markdown( | |
| "## For detailed explanations of the metrics and benchmarks, please refer to the 📝 About tab.", | |
| elem_classes="leaderboard-note", | |
| ) | |
| leaderboard = get_baseline_df(None, None) | |
| method_names = leaderboard['Method'].unique().tolist() | |
| metric_names = leaderboard.columns.tolist(); metric_names.remove('Method') | |
| benchmark_metric_mapping = { | |
| "similarity": [m for m in metric_names if m.startswith('sim_')], | |
| "function": [m for m in metric_names if m.startswith('func')], | |
| "family": [m for m in metric_names if m.startswith('fam_')], | |
| "affinity": [m for m in metric_names if m.startswith('aff_')], | |
| } | |
| leaderboard_method_selector = gr.CheckboxGroup( | |
| choices=method_names, | |
| label="Select Methods", | |
| value=method_names, | |
| interactive=True, | |
| ) | |
| benchmark_type_selector_lb = gr.CheckboxGroup( | |
| choices=list(benchmark_metric_mapping.keys()), | |
| label="Select Benchmark Types", | |
| value=None, | |
| interactive=True, | |
| ) | |
| leaderboard_metric_selector = gr.CheckboxGroup( | |
| choices=metric_names, | |
| label="Select Metrics", | |
| value=None, | |
| interactive=True, | |
| ) | |
| baseline_value = get_baseline_df(method_names, metric_names) | |
| baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x) | |
| baseline_header = ["Method"] + metric_names | |
| baseline_datatype = ['markdown'] + ['number'] * len(metric_names) | |
| with gr.Row(show_progress=True, variant='panel'): | |
| data_component = gr.Dataframe( | |
| value=baseline_value, | |
| headers=baseline_header, | |
| type="pandas", | |
| datatype=baseline_datatype, | |
| interactive=False, | |
| elem_id="leaderboard-table", | |
| pinned_columns=1, | |
| max_height=1000, | |
| ) | |
| # callbacks | |
| leaderboard_method_selector.change( | |
| get_baseline_df, | |
| inputs=[leaderboard_method_selector, leaderboard_metric_selector], | |
| outputs=data_component, | |
| ) | |
| benchmark_type_selector_lb.change( | |
| lambda selected: update_metrics(selected), | |
| inputs=[benchmark_type_selector_lb], | |
| outputs=leaderboard_metric_selector, | |
| ) | |
| leaderboard_metric_selector.change( | |
| get_baseline_df, | |
| inputs=[leaderboard_method_selector, leaderboard_metric_selector], | |
| outputs=data_component, | |
| ) | |
| # ------------------------------------------------------------------ | |
| # 2️⃣ Visualisation tab | |
| # ------------------------------------------------------------------ | |
| with gr.TabItem("📊 Visualization", elem_id="probe-benchmark-tab-visualization", id=2): | |
| gr.Markdown( | |
| """## **Interactive Visualizations** | |
| Choose a benchmark type; context‑specific options will appear.""", | |
| elem_classes="markdown-text", | |
| ) | |
| vis_benchmark_type_selector = gr.Dropdown( | |
| choices=list(benchmark_specific_metrics.keys()), | |
| label="Benchmark Type", | |
| value=None, | |
| ) | |
| with gr.Row(): | |
| vis_x_metric_selector = gr.Dropdown(choices=[], label="X‑axis Metric", visible=False) | |
| vis_y_metric_selector = gr.Dropdown(choices=[], label="Y‑axis Metric", visible=False) | |
| vis_aspect_type_selector = gr.Dropdown(choices=[], label="Aspect", visible=False) | |
| vis_dataset_selector = gr.Dropdown(choices=[], label="Dataset", visible=False) | |
| vis_single_metric_selector = gr.Dropdown(choices=[], label="Metric", visible=False) | |
| vis_method_selector = gr.CheckboxGroup( | |
| choices=method_names, | |
| label="Methods", | |
| value=method_names, | |
| interactive=True, | |
| ) | |
| plot_button = gr.Button("Plot") | |
| with gr.Row(show_progress=True, variant='panel'): | |
| plot_output = gr.Image(label="Plot") | |
| plot_explanation = gr.Markdown(visible=False) | |
| # callbacks | |
| vis_benchmark_type_selector.change( | |
| update_metric_choices, | |
| inputs=[vis_benchmark_type_selector], | |
| outputs=[ | |
| vis_x_metric_selector, | |
| vis_y_metric_selector, | |
| vis_aspect_type_selector, | |
| vis_dataset_selector, | |
| vis_single_metric_selector, | |
| ], | |
| ) | |
| plot_button.click( | |
| generate_plot, | |
| inputs=[ | |
| vis_benchmark_type_selector, | |
| vis_method_selector, | |
| vis_x_metric_selector, | |
| vis_y_metric_selector, | |
| vis_aspect_type_selector, | |
| vis_dataset_selector, | |
| vis_single_metric_selector, | |
| ], | |
| outputs=[plot_output], | |
| ) | |
| # ------------------------------------------------------------------ | |
| # 3️⃣ About tab | |
| # ------------------------------------------------------------------ | |
| with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=3): | |
| with gr.Row(): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| with gr.Row(): | |
| gr.Image( | |
| value="./src/data/PROBE_workflow_figure.jpg", | |
| label="PROBE Workflow Figure", | |
| elem_classes="about-image", | |
| ) | |
| # ------------------------------------------------------------------ | |
| # 4️⃣ Submit tab | |
| # ------------------------------------------------------------------ | |
| with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=4): | |
| with gr.Row(): | |
| gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| with gr.Row(): | |
| gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Method name") | |
| benchmark_types = gr.CheckboxGroup(choices=TASK_INFO, label="Benchmark Types", interactive=True) | |
| similarity_tasks = gr.CheckboxGroup(choices=similarity_tasks_options, label="Similarity Tasks", interactive=True) | |
| function_prediction_aspect = gr.Radio(choices=function_prediction_aspect_options, label="Function Prediction Aspects", interactive=True) | |
| family_prediction_dataset = gr.CheckboxGroup(choices=family_prediction_dataset_options, label="Family Prediction Datasets", interactive=True) | |
| function_dataset = gr.Textbox(label="Function Prediction Datasets", visible=False, value="All_Data_Sets") | |
| save_checkbox = gr.Checkbox(label="Save results for leaderboard and visualization", value=True) | |
| with gr.Row(): | |
| human_file = gr.File(label="Representation file (CSV) for Human dataset", file_count="single", type='filepath') | |
| skempi_file = gr.File(label="Representation file (CSV) for SKEMPI dataset", file_count="single", type='filepath') | |
| submit_button = gr.Button("Submit Eval") | |
| submission_result = gr.Markdown() | |
| submit_button.click( | |
| add_new_eval, | |
| inputs=[ | |
| human_file, | |
| skempi_file, | |
| model_name_textbox, | |
| benchmark_types, | |
| similarity_tasks, | |
| function_prediction_aspect, | |
| function_dataset, | |
| family_prediction_dataset, | |
| save_checkbox, | |
| ], | |
| ) | |
| # global refresh + citation --------------------------------------------- | |
| with gr.Row(): | |
| data_run = gr.Button("Refresh") | |
| data_run.click(refresh_data, outputs=[data_component]) | |
| with gr.Accordion("Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| # --------------------------------------------------------------------------- | |
| block.launch() |