import os import time import random import pickle import argparse import os.path as osp import torch import torch.utils.data from torch import nn from torch_geometric.loader import DataLoader import wandb from rdkit import RDLogger torch.set_num_threads(5) RDLogger.DisableLog('rdApp.*') from src.util.utils import * from src.model.models import Generator, Discriminator, simple_disc from src.data.dataset import DruggenDataset from src.data.utils import get_encoders_decoders, load_molecules from src.model.loss import discriminator_loss, generator_loss class Train(object): """Trainer for DrugGEN.""" def __init__(self, config): if config.set_seed: np.random.seed(config.seed) random.seed(config.seed) torch.manual_seed(config.seed) torch.cuda.manual_seed_all(config.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False os.environ["PYTHONHASHSEED"] = str(config.seed) print(f'Using seed {config.seed}') self.device = torch.device("cuda" if torch.cuda.is_available() else 'cpu') # Initialize configurations self.submodel = config.submodel # Data loader. self.raw_file = config.raw_file # SMILES containing text file for dataset. # Write the full path to file. self.drug_raw_file = config.drug_raw_file # SMILES containing text file for second dataset. # Write the full path to file. # Automatically infer dataset file names from raw file names raw_file_basename = osp.basename(self.raw_file) drug_raw_file_basename = osp.basename(self.drug_raw_file) # Get the base name without extension and add max_atom to it self.max_atom = config.max_atom # Model is based on one-shot generation. raw_file_base = os.path.splitext(raw_file_basename)[0] drug_raw_file_base = os.path.splitext(drug_raw_file_basename)[0] # Change extension from .smi to .pt and add max_atom to the filename self.dataset_file = f"{raw_file_base}{self.max_atom}.pt" self.drugs_dataset_file = f"{drug_raw_file_base}{self.max_atom}.pt" self.mol_data_dir = config.mol_data_dir # Directory where the dataset files are stored. self.drug_data_dir = config.drug_data_dir # Directory where the drug dataset files are stored. self.dataset_name = self.dataset_file.split(".")[0] self.drugs_dataset_name = self.drugs_dataset_file.split(".")[0] self.features = config.features # Small model uses atom types as node features. (Boolean, False uses atom types only.) # Additional node features can be added. Please check new_dataloarder.py Line 102. self.batch_size = config.batch_size # Batch size for training. self.parallel = config.parallel # Get atom and bond encoders/decoders atom_encoder, atom_decoder, bond_encoder, bond_decoder = get_encoders_decoders( self.raw_file, self.drug_raw_file, self.max_atom ) self.atom_encoder = atom_encoder self.atom_decoder = atom_decoder self.bond_encoder = bond_encoder self.bond_decoder = bond_decoder self.dataset = DruggenDataset(self.mol_data_dir, self.dataset_file, self.raw_file, self.max_atom, self.features, atom_encoder=atom_encoder, atom_decoder=atom_decoder, bond_encoder=bond_encoder, bond_decoder=bond_decoder) self.loader = DataLoader(self.dataset, shuffle=True, batch_size=self.batch_size, drop_last=True) # PyG dataloader for the GAN. self.drugs = DruggenDataset(self.drug_data_dir, self.drugs_dataset_file, self.drug_raw_file, self.max_atom, self.features, atom_encoder=atom_encoder, atom_decoder=atom_decoder, bond_encoder=bond_encoder, bond_decoder=bond_decoder) self.drugs_loader = DataLoader(self.drugs, shuffle=True, batch_size=self.batch_size, drop_last=True) # PyG dataloader for the second GAN. self.m_dim = len(self.atom_decoder) if not self.features else int(self.loader.dataset[0].x.shape[1]) # Atom type dimension. self.b_dim = len(self.bond_decoder) # Bond type dimension. self.vertexes = int(self.loader.dataset[0].x.shape[0]) # Number of nodes in the graph. # Model configurations. self.act = config.act self.lambda_gp = config.lambda_gp self.dim = config.dim self.depth = config.depth self.heads = config.heads self.mlp_ratio = config.mlp_ratio self.ddepth = config.ddepth self.ddropout = config.ddropout # Training configurations. self.epoch = config.epoch self.g_lr = config.g_lr self.d_lr = config.d_lr self.dropout = config.dropout self.beta1 = config.beta1 self.beta2 = config.beta2 # Directories. self.log_dir = config.log_dir self.sample_dir = config.sample_dir self.model_save_dir = config.model_save_dir # Step size. self.log_step = config.log_sample_step # resume training self.resume = config.resume self.resume_epoch = config.resume_epoch self.resume_iter = config.resume_iter self.resume_directory = config.resume_directory # wandb configuration self.use_wandb = config.use_wandb self.online = config.online self.exp_name = config.exp_name # Arguments for the model. self.arguments = "{}_{}_glr{}_dlr{}_dim{}_depth{}_heads{}_batch{}_epoch{}_dataset{}_dropout{}".format(self.exp_name, self.submodel, self.g_lr, self.d_lr, self.dim, self.depth, self.heads, self.batch_size, self.epoch, self.dataset_name, self.dropout) self.build_model(self.model_save_dir, self.arguments) def build_model(self, model_save_dir, arguments): """Create generators and discriminators.""" ''' Generator is based on Transformer Encoder: @ g_conv_dim: Dimensions for MLP layers before Transformer Encoder @ vertexes: maximum length of generated molecules (atom length) @ b_dim: number of bond types @ m_dim: number of atom types (or number of features used) @ dropout: dropout possibility @ dim: Hidden dimension of Transformer Encoder @ depth: Transformer layer number @ heads: Number of multihead-attention heads @ mlp_ratio: Read-out layer dimension of Transformer @ drop_rate: depricated @ tra_conv: Whether module creates output for TransformerConv discriminator ''' self.G = Generator(self.act, self.vertexes, self.b_dim, self.m_dim, self.dropout, dim=self.dim, depth=self.depth, heads=self.heads, mlp_ratio=self.mlp_ratio) ''' Discriminator implementation with Transformer Encoder: @ act: Activation function for MLP @ vertexes: maximum length of generated molecules (molecule length) @ b_dim: number of bond types @ m_dim: number of atom types (or number of features used) @ dropout: dropout possibility @ dim: Hidden dimension of Transformer Encoder @ depth: Transformer layer number @ heads: Number of multihead-attention heads @ mlp_ratio: Read-out layer dimension of Transformer''' self.D = Discriminator(self.act, self.vertexes, self.b_dim, self.m_dim, self.ddropout, dim=self.dim, depth=self.ddepth, heads=self.heads, mlp_ratio=self.mlp_ratio) self.g_optimizer = torch.optim.AdamW(self.G.parameters(), self.g_lr, [self.beta1, self.beta2]) self.d_optimizer = torch.optim.AdamW(self.D.parameters(), self.d_lr, [self.beta1, self.beta2]) network_path = os.path.join(model_save_dir, arguments) self.print_network(self.G, 'G', network_path) self.print_network(self.D, 'D', network_path) if self.parallel and torch.cuda.device_count() > 1: print(f"Using {torch.cuda.device_count()} GPUs!") self.G = nn.DataParallel(self.G) self.D = nn.DataParallel(self.D) self.G.to(self.device) self.D.to(self.device) def print_network(self, model, name, save_dir): """Print out the network information.""" num_params = 0 for p in model.parameters(): num_params += p.numel() if not os.path.exists(save_dir): os.makedirs(save_dir) network_path = os.path.join(save_dir, "{}_modules.txt".format(name)) with open(network_path, "w+") as file: for module in model.modules(): file.write(f"{module.__class__.__name__}:\n") print(module.__class__.__name__) for n, param in module.named_parameters(): if param is not None: file.write(f" - {n}: {param.size()}\n") print(f" - {n}: {param.size()}") break file.write(f"Total number of parameters: {num_params}\n") print(f"Total number of parameters: {num_params}\n\n") def restore_model(self, epoch, iteration, model_directory): """Restore the trained generator and discriminator.""" print('Loading the trained models from epoch / iteration {}-{}...'.format(epoch, iteration)) G_path = os.path.join(model_directory, '{}-{}-G.ckpt'.format(epoch, iteration)) D_path = os.path.join(model_directory, '{}-{}-D.ckpt'.format(epoch, iteration)) self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage)) self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage)) def save_model(self, model_directory, idx,i): G_path = os.path.join(model_directory, '{}-{}-G.ckpt'.format(idx+1,i+1)) D_path = os.path.join(model_directory, '{}-{}-D.ckpt'.format(idx+1,i+1)) torch.save(self.G.state_dict(), G_path) torch.save(self.D.state_dict(), D_path) def reset_grad(self): """Reset the gradient buffers.""" self.g_optimizer.zero_grad() self.d_optimizer.zero_grad() def train(self, config): ''' Training Script starts from here''' if self.use_wandb: mode = 'online' if self.online else 'offline' else: mode = 'disabled' kwargs = {'name': self.exp_name, 'project': 'druggen', 'config': config, 'settings': wandb.Settings(_disable_stats=True), 'reinit': True, 'mode': mode, 'save_code': True} wandb.init(**kwargs) wandb.save(os.path.join(self.model_save_dir, self.arguments, "G_modules.txt")) wandb.save(os.path.join(self.model_save_dir, self.arguments, "D_modules.txt")) self.model_directory = os.path.join(self.model_save_dir, self.arguments) self.sample_directory = os.path.join(self.sample_dir, self.arguments) self.log_path = os.path.join(self.log_dir, "{}.txt".format(self.arguments)) if not os.path.exists(self.model_directory): os.makedirs(self.model_directory) if not os.path.exists(self.sample_directory): os.makedirs(self.sample_directory) # smiles data for metrics calculation. drug_smiles = [line for line in open(self.drug_raw_file, 'r').read().splitlines()] drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles] drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None] if self.resume: self.restore_model(self.resume_epoch, self.resume_iter, self.resume_directory) # Start training. print('Start training...') self.start_time = time.time() for idx in range(self.epoch): # =================================================================================== # # 1. Preprocess input data # # =================================================================================== # # Load the data dataloader_iterator = iter(self.drugs_loader) wandb.log({"epoch": idx}) for i, data in enumerate(self.loader): try: drugs = next(dataloader_iterator) except StopIteration: dataloader_iterator = iter(self.drugs_loader) drugs = next(dataloader_iterator) wandb.log({"iter": i}) # Preprocess both dataset real_graphs, a_tensor, x_tensor = load_molecules( data=data, batch_size=self.batch_size, device=self.device, b_dim=self.b_dim, m_dim=self.m_dim, ) drug_graphs, drugs_a_tensor, drugs_x_tensor = load_molecules( data=drugs, batch_size=self.batch_size, device=self.device, b_dim=self.b_dim, m_dim=self.m_dim, ) # Training configuration. GEN_node = x_tensor # Generator input node features (annotation matrix of real molecules) GEN_edge = a_tensor # Generator input edge features (adjacency matrix of real molecules) if self.submodel == "DrugGEN": DISC_node = drugs_x_tensor # Discriminator input node features (annotation matrix of drug molecules) DISC_edge = drugs_a_tensor # Discriminator input edge features (adjacency matrix of drug molecules) elif self.submodel == "NoTarget": DISC_node = x_tensor # Discriminator input node features (annotation matrix of real molecules) DISC_edge = a_tensor # Discriminator input edge features (adjacency matrix of real molecules) # =================================================================================== # # 2. Train the GAN # # =================================================================================== # loss = {} self.reset_grad() # Compute discriminator loss. node, edge, d_loss = discriminator_loss(self.G, self.D, DISC_edge, DISC_node, GEN_edge, GEN_node, self.batch_size, self.device, self.lambda_gp) d_total = d_loss wandb.log({"d_loss": d_total.item()}) loss["d_total"] = d_total.item() d_total.backward() self.d_optimizer.step() self.reset_grad() # Compute generator loss. generator_output = generator_loss(self.G, self.D, GEN_edge, GEN_node, self.batch_size) g_loss, node, edge, node_sample, edge_sample = generator_output g_total = g_loss wandb.log({"g_loss": g_total.item()}) loss["g_total"] = g_total.item() g_total.backward() self.g_optimizer.step() # Logging. if (i+1) % self.log_step == 0: logging(self.log_path, self.start_time, i, idx, loss, self.sample_directory, drug_smiles,edge_sample, node_sample, self.dataset.matrices2mol, self.dataset_name, a_tensor, x_tensor, drug_vecs) mol_sample(self.sample_directory, edge_sample.detach(), node_sample.detach(), idx, i, self.dataset.matrices2mol, self.dataset_name) print("samples saved at epoch {} and iteration {}".format(idx,i)) self.save_model(self.model_directory, idx, i) print("model saved at epoch {} and iteration {}".format(idx,i)) if __name__ == '__main__': parser = argparse.ArgumentParser() # Data configuration. parser.add_argument('--raw_file', type=str, required=True) parser.add_argument('--drug_raw_file', type=str, required=False, help='Required for DrugGEN model, optional for NoTarget') parser.add_argument('--drug_data_dir', type=str, default='data') parser.add_argument('--mol_data_dir', type=str, default='data') parser.add_argument('--features', action='store_true', help='features dimension for nodes') # Model configuration. parser.add_argument('--submodel', type=str, default="DrugGEN", help="Chose model subtype: DrugGEN, NoTarget", choices=['DrugGEN', 'NoTarget']) parser.add_argument('--act', type=str, default="relu", help="Activation function for the model.", choices=['relu', 'tanh', 'leaky', 'sigmoid']) parser.add_argument('--max_atom', type=int, default=45, help='Max atom number for molecules must be specified.') parser.add_argument('--dim', type=int, default=128, help='Dimension of the Transformer Encoder model for the GAN.') parser.add_argument('--depth', type=int, default=1, help='Depth of the Transformer model from the GAN.') parser.add_argument('--ddepth', type=int, default=1, help='Depth of the Transformer model from the discriminator.') parser.add_argument('--heads', type=int, default=8, help='Number of heads for the MultiHeadAttention module from the GAN.') parser.add_argument('--mlp_ratio', type=int, default=3, help='MLP ratio for the Transformer.') parser.add_argument('--dropout', type=float, default=0., help='dropout rate') parser.add_argument('--ddropout', type=float, default=0., help='dropout rate for the discriminator') parser.add_argument('--lambda_gp', type=float, default=10, help='Gradient penalty lambda multiplier for the GAN.') # Training configuration. parser.add_argument('--batch_size', type=int, default=128, help='Batch size for the training.') parser.add_argument('--epoch', type=int, default=10, help='Epoch number for Training.') parser.add_argument('--g_lr', type=float, default=0.00001, help='learning rate for G') parser.add_argument('--d_lr', type=float, default=0.00001, help='learning rate for D') parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for Adam optimizer') parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam optimizer') parser.add_argument('--log_dir', type=str, default='experiments/logs') parser.add_argument('--sample_dir', type=str, default='experiments/samples') parser.add_argument('--model_save_dir', type=str, default='experiments/models') parser.add_argument('--log_sample_step', type=int, default=1000, help='step size for sampling during training') # Resume training. parser.add_argument('--resume', type=bool, default=False, help='resume training') parser.add_argument('--resume_epoch', type=int, default=None, help='resume training from this epoch') parser.add_argument('--resume_iter', type=int, default=None, help='resume training from this step') parser.add_argument('--resume_directory', type=str, default=None, help='load pretrained weights from this directory') # Seed configuration. parser.add_argument('--set_seed', action='store_true', help='set seed for reproducibility') parser.add_argument('--seed', type=int, default=1, help='seed for reproducibility') # wandb configuration. parser.add_argument('--use_wandb', action='store_true', help='use wandb for logging') parser.add_argument('--online', action='store_true', help='use wandb online') parser.add_argument('--exp_name', type=str, default='druggen', help='experiment name') parser.add_argument('--parallel', action='store_true', help='Parallelize training') config = parser.parse_args() # Check if drug_raw_file is provided when using DrugGEN model if config.submodel == "DrugGEN" and not config.drug_raw_file: parser.error("--drug_raw_file is required when using DrugGEN model") # If using NoTarget model and drug_raw_file is not provided, use a dummy file if config.submodel == "NoTarget" and not config.drug_raw_file: config.drug_raw_file = "data/akt_train.smi" # Use a reference file for NoTarget model (AKT) (not used for training for ease of use and encoder/decoder's) trainer = Train(config) trainer.train(config)