Spaces:
Running
Running
Commit
·
84bc25a
1
Parent(s):
ff8f965
Update ASCARIS.py
Browse files- ASCARIS.py +27 -31
ASCARIS.py
CHANGED
|
@@ -4,28 +4,27 @@ from os import path
|
|
| 4 |
import sys
|
| 5 |
import streamlit.components.v1 as components
|
| 6 |
sys.path.append('code/')
|
|
|
|
| 7 |
import pdb_featureVector
|
| 8 |
import alphafold_featureVector
|
| 9 |
import argparse
|
| 10 |
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode
|
| 11 |
import base64
|
| 12 |
-
from huggingface_hub import hf_hub_download
|
| 13 |
-
import streamlit as st
|
| 14 |
-
import gzip
|
| 15 |
-
|
| 16 |
showWarningOnDirectExecution = False
|
| 17 |
|
| 18 |
def convert_df(df):
|
| 19 |
-
return df.to_csv(index=False
|
| 20 |
-
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
if 'visibility' not in st.session_state:
|
| 23 |
st.session_state['visibility'] = 'visible'
|
| 24 |
st.session_state.disabled = False
|
| 25 |
|
| 26 |
-
original_title = '<p style="font-family:Trebuchet MS; color:#
|
| 27 |
st.markdown(original_title, unsafe_allow_html=True)
|
| 28 |
-
original_title = '<p style="font-family:Trebuchet MS; color:#
|
| 29 |
st.markdown(original_title, unsafe_allow_html=True)
|
| 30 |
|
| 31 |
st.write('')
|
|
@@ -35,49 +34,46 @@ st.write('')
|
|
| 35 |
|
| 36 |
with st.form('mform', clear_on_submit=False):
|
| 37 |
source = st.selectbox('Select the protein structure resource (1: PDB-SwissModel-Modbase, 2: AlphaFold)',[1,2])
|
| 38 |
-
impute = st.selectbox('
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
|
| 43 |
parser = argparse.ArgumentParser(description='ASCARIS')
|
| 44 |
-
|
| 45 |
-
|
| 46 |
input_set = input_data
|
|
|
|
| 47 |
impute = impute
|
| 48 |
submitted = st.form_submit_button(label="Submit", help=None, on_click=None, args=None, kwargs=None, type="secondary", disabled=False, use_container_width=False)
|
| 49 |
print('*****************************************')
|
| 50 |
print('Feature vector generation is in progress. \nPlease check log file for updates..')
|
| 51 |
print('*****************************************')
|
| 52 |
-
mode = int(
|
|
|
|
| 53 |
|
| 54 |
selected_df = pd.DataFrame()
|
| 55 |
-
st.write('The online tool may be slow, especially while processing multiple SAVs
|
| 56 |
if submitted:
|
| 57 |
with st.spinner('In progress...This may take a while...'):
|
| 58 |
-
try:
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
selected_df = pd.DataFrame()
|
| 66 |
-
|
| 67 |
-
except:
|
| 68 |
-
selected_df = pd.DataFrame()
|
| 69 |
-
pass
|
| 70 |
|
| 71 |
if selected_df is None:
|
| 72 |
-
st.success('
|
| 73 |
|
| 74 |
else:
|
| 75 |
if len(selected_df) != 0 :
|
| 76 |
st.write(selected_df)
|
| 77 |
-
st.success('Feature vector
|
| 78 |
csv = convert_df(selected_df)
|
|
|
|
| 79 |
|
| 80 |
st.download_button("Press to Download the Feature Vector", csv,f"ASCARIS_SAV_rep_{input_set}.csv","text/csv",key='download-csv')
|
| 81 |
|
| 82 |
else:
|
| 83 |
-
st.success('Feature vector failed. Check
|
|
|
|
|
|
| 4 |
import sys
|
| 5 |
import streamlit.components.v1 as components
|
| 6 |
sys.path.append('code/')
|
| 7 |
+
#sys.path.append('ASCARIS/code/')
|
| 8 |
import pdb_featureVector
|
| 9 |
import alphafold_featureVector
|
| 10 |
import argparse
|
| 11 |
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode
|
| 12 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
showWarningOnDirectExecution = False
|
| 14 |
|
| 15 |
def convert_df(df):
|
| 16 |
+
return df.to_csv(index=False).encode('utf-8')
|
|
|
|
| 17 |
|
| 18 |
+
|
| 19 |
+
# Check if 'key' already exists in session_state
|
| 20 |
+
# If not, then initialize it
|
| 21 |
if 'visibility' not in st.session_state:
|
| 22 |
st.session_state['visibility'] = 'visible'
|
| 23 |
st.session_state.disabled = False
|
| 24 |
|
| 25 |
+
original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">ASCARIS</p>'
|
| 26 |
st.markdown(original_title, unsafe_allow_html=True)
|
| 27 |
+
original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">(Annotation and StruCture-bAsed RepresentatIon of Single amino acid variations)</p>'
|
| 28 |
st.markdown(original_title, unsafe_allow_html=True)
|
| 29 |
|
| 30 |
st.write('')
|
|
|
|
| 34 |
|
| 35 |
with st.form('mform', clear_on_submit=False):
|
| 36 |
source = st.selectbox('Select the protein structure resource (1: PDB-SwissModel-Modbase, 2: AlphaFold)',[1,2])
|
| 37 |
+
impute = st.selectbox('Imputation',[True, False])
|
| 38 |
+
|
| 39 |
+
input_data = st.text_input('Enter SAV data points (Example: Q9BTP7-S-126-F, P04217-A-493-S, Q00889-G-2-L)')
|
|
|
|
| 40 |
|
| 41 |
parser = argparse.ArgumentParser(description='ASCARIS')
|
| 42 |
+
|
|
|
|
| 43 |
input_set = input_data
|
| 44 |
+
mode = source
|
| 45 |
impute = impute
|
| 46 |
submitted = st.form_submit_button(label="Submit", help=None, on_click=None, args=None, kwargs=None, type="secondary", disabled=False, use_container_width=False)
|
| 47 |
print('*****************************************')
|
| 48 |
print('Feature vector generation is in progress. \nPlease check log file for updates..')
|
| 49 |
print('*****************************************')
|
| 50 |
+
mode = int(mode)
|
| 51 |
+
|
| 52 |
|
| 53 |
selected_df = pd.DataFrame()
|
| 54 |
+
st.write('The online tool may be slow, especially while processing multiple SAVs and with multiple PDB matches, please consider using the local programmatic version at https://github.com/HUBioDataLab/ASCARIS/')
|
| 55 |
if submitted:
|
| 56 |
with st.spinner('In progress...This may take a while...'):
|
| 57 |
+
# try:
|
| 58 |
+
if mode == 1:
|
| 59 |
+
selected_df = pdb_featureVector.pdb(input_set, mode, impute)
|
| 60 |
+
elif mode == 2:
|
| 61 |
+
selected_df = alphafold_featureVector.alphafold(input_set, mode, impute)
|
| 62 |
+
else:
|
| 63 |
+
selected_df = pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
if selected_df is None:
|
| 66 |
+
st.success('No feature vector is created. Check the log file.')
|
| 67 |
|
| 68 |
else:
|
| 69 |
if len(selected_df) != 0 :
|
| 70 |
st.write(selected_df)
|
| 71 |
+
st.success('Feature vector successfully created.')
|
| 72 |
csv = convert_df(selected_df)
|
| 73 |
+
|
| 74 |
|
| 75 |
st.download_button("Press to Download the Feature Vector", csv,f"ASCARIS_SAV_rep_{input_set}.csv","text/csv",key='download-csv')
|
| 76 |
|
| 77 |
else:
|
| 78 |
+
st.success('Feature vector failed. Check log file.')
|
| 79 |
+
|