\n \n Select Model\n \n \n \n {models.map((model) => (\n \n handleModelClick(model.id)}\n >\n \n \n {model.icon}\n \n \n {model.name}\n \n \n {model.available ? (\n \n ) : (\n \n )}\n
\n \n {model.description}\n \n \n \n \n \n \n \n ))}\n \n\n \n }\n onClick={onProcess}\n disabled={!selectedModel || !imageSelected || isProcessing}\n >\n {isProcessing ? 'Processing...' : 'Process Image'}\n \n
\n \n );\n};\n\nexport default ModelSelector;\n","import React, { useState } from 'react';\nimport { \n Button, \n Box, \n Typography, \n CircularProgress, \n Snackbar,\n Dialog,\n DialogTitle,\n DialogContent,\n DialogActions,\n TextField,\n FormControl,\n InputLabel,\n Select,\n MenuItem,\n Grid,\n Card,\n CardMedia,\n CardContent,\n Chip\n} from '@material-ui/core';\nimport { Alert } from '@material-ui/lab';\nimport { makeStyles } from '@material-ui/core/styles';\n\nconst useStyles = makeStyles((theme) => ({\n root: {\n marginTop: theme.spacing(2),\n marginBottom: theme.spacing(2),\n padding: theme.spacing(2),\n backgroundColor: '#f5f5f5',\n borderRadius: theme.shape.borderRadius,\n },\n button: {\n marginRight: theme.spacing(2),\n },\n searchDialog: {\n minWidth: '500px',\n },\n formControl: {\n marginBottom: theme.spacing(2),\n minWidth: '100%',\n },\n searchResults: {\n marginTop: theme.spacing(2),\n },\n resultCard: {\n marginBottom: theme.spacing(2),\n },\n resultImage: {\n height: 140,\n objectFit: 'contain',\n },\n chip: {\n margin: theme.spacing(0.5),\n },\n similarityChip: {\n backgroundColor: theme.palette.primary.main,\n color: 'white',\n }\n}));\n\nconst VectorDBActions = ({ results }) => {\n const classes = useStyles();\n const [isSaving, setIsSaving] = useState(false);\n const [saveSuccess, setSaveSuccess] = useState(false);\n const [saveError, setSaveError] = useState(null);\n const [openSearchDialog, setOpenSearchDialog] = useState(false);\n const [searchType, setSearchType] = useState('image');\n const [searchClass, setSearchClass] = useState('');\n const [searchResults, setSearchResults] = useState([]);\n const [isSearching, setIsSearching] = useState(false);\n const [searchError, setSearchError] = useState(null);\n \n // Extract model and data from results\n const { model, data } = results;\n \n // Handle saving to vector DB\n const handleSaveToVectorDB = async () => {\n setIsSaving(true);\n setSaveError(null);\n \n try {\n let response;\n \n if (model === 'vit') {\n // For ViT, save the whole image with classifications\n response = await fetch('/api/add-to-collection', {\n method: 'POST',\n headers: {\n 'Content-Type': 'application/json',\n },\n body: JSON.stringify({\n image: data.image,\n metadata: {\n model: 'vit',\n classifications: data.classifications\n }\n })\n });\n } else {\n // For YOLO and DETR, save detected objects\n response = await fetch('/api/add-detected-objects', {\n method: 'POST',\n headers: {\n 'Content-Type': 'application/json',\n },\n body: JSON.stringify({\n image: data.image,\n objects: data.detections,\n imageId: generateUUID()\n })\n });\n }\n \n if (!response.ok) {\n throw new Error(`HTTP error! Status: ${response.status}`);\n }\n \n const result = await response.json();\n \n if (result.error) {\n throw new Error(result.error);\n }\n \n setSaveSuccess(true);\n setTimeout(() => setSaveSuccess(false), 5000);\n } catch (err) {\n console.error('Error saving to vector DB:', err);\n setSaveError(`Error saving to vector DB: ${err.message}`);\n } finally {\n setIsSaving(false);\n }\n };\n \n // Handle opening search dialog\n const handleOpenSearchDialog = () => {\n setOpenSearchDialog(true);\n setSearchResults([]);\n setSearchError(null);\n };\n \n // Handle closing search dialog\n const handleCloseSearchDialog = () => {\n setOpenSearchDialog(false);\n };\n \n // Handle search type change\n const handleSearchTypeChange = (event) => {\n setSearchType(event.target.value);\n setSearchResults([]);\n setSearchError(null);\n };\n \n // Handle search class change\n const handleSearchClassChange = (event) => {\n setSearchClass(event.target.value);\n };\n \n // Handle search\n const handleSearch = async () => {\n setIsSearching(true);\n setSearchError(null);\n \n try {\n let requestBody = {};\n \n if (searchType === 'image') {\n // Search by current image\n requestBody = {\n searchType: 'image',\n image: data.image,\n n_results: 5\n };\n } else {\n // Search by class name\n if (!searchClass.trim()) {\n throw new Error('Please enter a class name');\n }\n \n requestBody = {\n searchType: 'class',\n class_name: searchClass.trim(),\n n_results: 5\n };\n }\n \n const response = await fetch('/api/search-similar-objects', {\n method: 'POST',\n headers: {\n 'Content-Type': 'application/json',\n },\n body: JSON.stringify(requestBody)\n });\n \n if (!response.ok) {\n throw new Error(`HTTP error! Status: ${response.status}`);\n }\n \n const result = await response.json();\n \n if (result.error) {\n throw new Error(result.error);\n }\n \n console.log('Search API response:', result);\n \n // 백엔드는 {success, searchType, results} 구조로 응답하므로 results 배열만 추출\n if (result.success && Array.isArray(result.results)) {\n console.log('Setting search results array:', result.results);\n console.log('Results array length:', result.results.length);\n console.log('First result item:', result.results[0]);\n setSearchResults(result.results);\n } else {\n console.error('Unexpected API response format:', result);\n throw new Error('Unexpected API response format');\n }\n } catch (err) {\n console.error('Error searching vector DB:', err);\n setSearchError(`Error searching vector DB: ${err.message}`);\n } finally {\n setIsSearching(false);\n }\n };\n \n // Generate UUID for image ID\n const generateUUID = () => {\n return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {\n const r = Math.random() * 16 | 0;\n const v = c === 'x' ? r : (r & 0x3 | 0x8);\n return v.toString(16);\n });\n };\n \n // Render search results\n const renderSearchResults = () => {\n console.log('Rendering search results:', searchResults);\n console.log('Search results length:', searchResults.length);\n \n if (searchResults.length === 0) {\n console.log('No results to render');\n return (\n