Spaces:
Running
Running
File size: 6,082 Bytes
9aee46b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import React from 'react';
import {
Paper,
Typography,
Box,
List,
ListItem,
ListItemText,
Divider,
Grid,
Chip
} from '@material-ui/core';
import VectorDBActions from './VectorDBActions';
import { makeStyles } from '@material-ui/core/styles';
const useStyles = makeStyles((theme) => ({
paper: {
padding: theme.spacing(2)
},
marginBottom: {
marginBottom: theme.spacing(2)
},
resultImage: {
maxWidth: '100%',
maxHeight: '400px',
objectFit: 'contain'
},
dividerMargin: {
margin: `${theme.spacing(2)}px 0`
},
chipContainer: {
display: 'flex',
gap: theme.spacing(1),
flexWrap: 'wrap'
}
}));
const ResultDisplay = ({ results }) => {
const classes = useStyles();
if (!results) return null;
const { model, data } = results;
// Helper to format times nicely
const formatTime = (ms) => {
if (ms === undefined || ms === null || isNaN(ms)) return '-';
const num = Number(ms);
if (num < 1000) return `${num.toFixed(2)} ms`;
return `${(num / 1000).toFixed(2)} s`;
};
// Check if there's an error
if (data.error) {
return (
<Paper sx={{ p: 2, bgcolor: '#ffebee' }}>
<Typography color="error">{data.error}</Typography>
</Paper>
);
}
// Display performance info
const renderPerformanceInfo = () => {
if (!data.performance) return null;
return (
<Box className="performance-info">
<Divider className={classes.dividerMargin} />
<Typography variant="body2">
Inference time: {formatTime(data.performance.inference_time)} on {data.performance.device}
</Typography>
</Box>
);
};
// Render for YOLO and DETR (object detection)
if (model === 'yolo' || model === 'detr') {
return (
<Paper className={classes.paper}>
<Typography variant="h6" gutterBottom>
{model === 'yolo' ? 'YOLOv8' : 'DETR'} Detection Results
</Typography>
<Grid container spacing={3}>
<Grid item xs={12} md={6}>
{data.image && (
<Box className={classes.marginBottom}>
<Typography variant="subtitle1" gutterBottom>
Detection Result
</Typography>
<img
src={`data:image/png;base64,${data.image}`}
alt="Detection Result"
className={classes.resultImage}
/>
</Box>
)}
</Grid>
<Grid item xs={12} md={6}>
<Box className={classes.marginBottom}>
<Typography variant="subtitle1" gutterBottom>
Detected Objects:
</Typography>
{data.detections && data.detections.length > 0 ? (
<List>
{data.detections.map((detection, index) => (
<React.Fragment key={index}>
<ListItem>
<ListItemText
primary={
<Box style={{ display: 'flex', alignItems: 'center' }}>
<Typography variant="body1" component="span">
{detection.class}
</Typography>
<Chip
label={`${(detection.confidence * 100).toFixed(0)}%`}
size="small"
color="primary"
style={{ marginLeft: 8 }}
/>
</Box>
}
secondary={`Bounding Box: [${detection.bbox.join(', ')}]`}
/>
</ListItem>
{index < data.detections.length - 1 && <Divider />}
</React.Fragment>
))}
</List>
) : (
<Typography variant="body1">No objects detected</Typography>
)}
</Box>
</Grid>
</Grid>
{renderPerformanceInfo()}
{/* Vector DB Actions for Object Detection */}
<VectorDBActions results={results} />
</Paper>
);
}
// Render for ViT (classification)
if (model === 'vit') {
return (
<Paper className={classes.paper}>
<Typography variant="h6" gutterBottom>
ViT Classification Results
</Typography>
<Typography variant="subtitle1" gutterBottom>
Top Predictions:
</Typography>
{data.top_predictions && data.top_predictions.length > 0 ? (
<List>
{data.top_predictions.map((prediction, index) => (
<React.Fragment key={index}>
<ListItem>
<ListItemText
primary={
<Box style={{ display: 'flex', alignItems: 'center' }}>
<Typography variant="body1" component="span">
{prediction.rank}. {prediction.class}
</Typography>
<Chip
label={`${(prediction.probability * 100).toFixed(1)}%`}
size="small"
color={index === 0 ? "primary" : "default"}
style={{ marginLeft: 8 }}
/>
</Box>
}
/>
</ListItem>
{index < data.top_predictions.length - 1 && <Divider />}
</React.Fragment>
))}
</List>
) : (
<Typography variant="body1">No classifications available</Typography>
)}
{renderPerformanceInfo()}
{/* Vector DB Actions for ViT Classification */}
<VectorDBActions results={results} />
</Paper>
);
}
return null;
};
export default ResultDisplay;
|