Spaces:
Runtime error
Runtime error
David Ko
commited on
Commit
·
9d90c9e
1
Parent(s):
44253a0
유사 이미지 검색 기능 추가: CLIP 모델과 ChromaDB 벡터 데이터베이스 활용
Browse files- api.py +199 -3
- frontend/build/similar-images.html +279 -0
- requirements.txt +7 -0
api.py
CHANGED
|
@@ -10,6 +10,8 @@ from matplotlib.patches import Rectangle
|
|
| 10 |
import time
|
| 11 |
from flask_cors import CORS
|
| 12 |
import json
|
|
|
|
|
|
|
| 13 |
|
| 14 |
app = Flask(__name__, static_folder='static')
|
| 15 |
CORS(app) # Enable CORS for all routes
|
|
@@ -17,6 +19,50 @@ CORS(app) # Enable CORS for all routes
|
|
| 17 |
# Model initialization
|
| 18 |
print("Loading models... This may take a moment.")
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
# YOLOv8 model
|
| 21 |
yolo_model = None
|
| 22 |
try:
|
|
@@ -409,12 +455,163 @@ def analyze_with_llm():
|
|
| 409 |
|
| 410 |
vision_results = data['visionResults']
|
| 411 |
user_query = data['userQuery']
|
| 412 |
-
|
| 413 |
# Process the query with LLM
|
| 414 |
result = process_llm_query(vision_results, user_query)
|
| 415 |
-
|
| 416 |
return jsonify(result)
|
| 417 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
@app.route('/api/status', methods=['GET'])
|
| 419 |
def status():
|
| 420 |
return jsonify({
|
|
@@ -427,7 +624,6 @@ def status():
|
|
| 427 |
"device": "GPU" if torch.cuda.is_available() else "CPU"
|
| 428 |
})
|
| 429 |
|
| 430 |
-
@app.route('/')
|
| 431 |
def index():
|
| 432 |
return send_from_directory('static', 'index.html')
|
| 433 |
|
|
|
|
| 10 |
import time
|
| 11 |
from flask_cors import CORS
|
| 12 |
import json
|
| 13 |
+
import chromadb
|
| 14 |
+
from chromadb.utils import embedding_functions
|
| 15 |
|
| 16 |
app = Flask(__name__, static_folder='static')
|
| 17 |
CORS(app) # Enable CORS for all routes
|
|
|
|
| 19 |
# Model initialization
|
| 20 |
print("Loading models... This may take a moment.")
|
| 21 |
|
| 22 |
+
# Image embedding model (CLIP) for vector search
|
| 23 |
+
clip_model = None
|
| 24 |
+
clip_processor = None
|
| 25 |
+
try:
|
| 26 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 27 |
+
|
| 28 |
+
# 임시 디렉토리 사용
|
| 29 |
+
import tempfile
|
| 30 |
+
temp_dir = tempfile.gettempdir()
|
| 31 |
+
os.environ["TRANSFORMERS_CACHE"] = temp_dir
|
| 32 |
+
|
| 33 |
+
# CLIP 모델 로드 (이미지 임베딩용)
|
| 34 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 35 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 36 |
+
|
| 37 |
+
print("CLIP model loaded successfully")
|
| 38 |
+
except Exception as e:
|
| 39 |
+
print("Error loading CLIP model:", e)
|
| 40 |
+
clip_model = None
|
| 41 |
+
clip_processor = None
|
| 42 |
+
|
| 43 |
+
# Vector DB 초기화
|
| 44 |
+
vector_db = None
|
| 45 |
+
image_collection = None
|
| 46 |
+
try:
|
| 47 |
+
# ChromaDB 클라이언트 초기화 (인메모리 DB)
|
| 48 |
+
vector_db = chromadb.Client()
|
| 49 |
+
|
| 50 |
+
# 임베딩 함수 설정
|
| 51 |
+
ef = embedding_functions.DefaultEmbeddingFunction()
|
| 52 |
+
|
| 53 |
+
# 이미지 컬렉션 생성
|
| 54 |
+
image_collection = vector_db.create_collection(
|
| 55 |
+
name="image_collection",
|
| 56 |
+
embedding_function=ef,
|
| 57 |
+
get_or_create=True
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
print("Vector DB initialized successfully")
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print("Error initializing Vector DB:", e)
|
| 63 |
+
vector_db = None
|
| 64 |
+
image_collection = None
|
| 65 |
+
|
| 66 |
# YOLOv8 model
|
| 67 |
yolo_model = None
|
| 68 |
try:
|
|
|
|
| 455 |
|
| 456 |
vision_results = data['visionResults']
|
| 457 |
user_query = data['userQuery']
|
| 458 |
+
|
| 459 |
# Process the query with LLM
|
| 460 |
result = process_llm_query(vision_results, user_query)
|
| 461 |
+
|
| 462 |
return jsonify(result)
|
| 463 |
|
| 464 |
+
def generate_image_embedding(image):
|
| 465 |
+
"""CLIP 모델을 사용하여 이미지 임베딩 생성"""
|
| 466 |
+
if clip_model is None or clip_processor is None:
|
| 467 |
+
return None
|
| 468 |
+
|
| 469 |
+
try:
|
| 470 |
+
# 이미지 전처리
|
| 471 |
+
inputs = clip_processor(images=image, return_tensors="pt")
|
| 472 |
+
|
| 473 |
+
# 이미지 임베딩 생성
|
| 474 |
+
with torch.no_grad():
|
| 475 |
+
image_features = clip_model.get_image_features(**inputs)
|
| 476 |
+
|
| 477 |
+
# 임베딩 정규화 및 numpy 배열로 변환
|
| 478 |
+
image_embedding = image_features.squeeze().cpu().numpy()
|
| 479 |
+
normalized_embedding = image_embedding / np.linalg.norm(image_embedding)
|
| 480 |
+
|
| 481 |
+
return normalized_embedding.tolist()
|
| 482 |
+
except Exception as e:
|
| 483 |
+
print(f"Error generating image embedding: {e}")
|
| 484 |
+
return None
|
| 485 |
+
|
| 486 |
+
@app.route('/api/similar-images', methods=['POST'])
|
| 487 |
+
def find_similar_images():
|
| 488 |
+
"""유사 이미지 검색 API"""
|
| 489 |
+
if clip_model is None or clip_processor is None or image_collection is None:
|
| 490 |
+
return jsonify({"error": "Image embedding model or vector DB not available"})
|
| 491 |
+
|
| 492 |
+
try:
|
| 493 |
+
# 요청에서 이미지 데이터 추출
|
| 494 |
+
if 'image' not in request.files and 'image' not in request.form:
|
| 495 |
+
return jsonify({"error": "No image provided"})
|
| 496 |
+
|
| 497 |
+
if 'image' in request.files:
|
| 498 |
+
# 파일로 업로드된 경우
|
| 499 |
+
image_file = request.files['image']
|
| 500 |
+
image = Image.open(image_file).convert('RGB')
|
| 501 |
+
else:
|
| 502 |
+
# base64로 인코딩된 경우
|
| 503 |
+
image_data = request.form['image']
|
| 504 |
+
if image_data.startswith('data:image'):
|
| 505 |
+
# Remove the data URL prefix if present
|
| 506 |
+
image_data = image_data.split(',')[1]
|
| 507 |
+
image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
|
| 508 |
+
|
| 509 |
+
# 이미지 ID 생성 (임시)
|
| 510 |
+
image_id = str(uuid.uuid4())
|
| 511 |
+
|
| 512 |
+
# 이미지 임베딩 생성
|
| 513 |
+
embedding = generate_image_embedding(image)
|
| 514 |
+
if embedding is None:
|
| 515 |
+
return jsonify({"error": "Failed to generate image embedding"})
|
| 516 |
+
|
| 517 |
+
# 현재 이미지를 DB에 추가 (선택적)
|
| 518 |
+
# image_collection.add(
|
| 519 |
+
# ids=[image_id],
|
| 520 |
+
# embeddings=[embedding]
|
| 521 |
+
# )
|
| 522 |
+
|
| 523 |
+
# 유사 이미지 검색
|
| 524 |
+
results = image_collection.query(
|
| 525 |
+
query_embeddings=[embedding],
|
| 526 |
+
n_results=5 # 상위 5개 결과 반환
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
# 결과 포맷팅
|
| 530 |
+
similar_images = []
|
| 531 |
+
if len(results['ids'][0]) > 0:
|
| 532 |
+
for i, img_id in enumerate(results['ids'][0]):
|
| 533 |
+
similar_images.append({
|
| 534 |
+
"id": img_id,
|
| 535 |
+
"distance": float(results['distances'][0][i]) if 'distances' in results else 0.0,
|
| 536 |
+
"metadata": results['metadatas'][0][i] if 'metadatas' in results else {}
|
| 537 |
+
})
|
| 538 |
+
|
| 539 |
+
return jsonify({
|
| 540 |
+
"query_image_id": image_id,
|
| 541 |
+
"similar_images": similar_images
|
| 542 |
+
})
|
| 543 |
+
|
| 544 |
+
except Exception as e:
|
| 545 |
+
print(f"Error in similar-images API: {e}")
|
| 546 |
+
return jsonify({"error": str(e)}), 500
|
| 547 |
+
|
| 548 |
+
@app.route('/api/add-to-collection', methods=['POST'])
|
| 549 |
+
def add_to_collection():
|
| 550 |
+
"""이미지를 벡터 DB에 추가하는 API"""
|
| 551 |
+
if clip_model is None or clip_processor is None or image_collection is None:
|
| 552 |
+
return jsonify({"error": "Image embedding model or vector DB not available"})
|
| 553 |
+
|
| 554 |
+
try:
|
| 555 |
+
# 요청에서 이미지 데이터 추출
|
| 556 |
+
if 'image' not in request.files and 'image' not in request.form:
|
| 557 |
+
return jsonify({"error": "No image provided"})
|
| 558 |
+
|
| 559 |
+
# 메타데이터 추출
|
| 560 |
+
metadata = {}
|
| 561 |
+
if 'metadata' in request.form:
|
| 562 |
+
metadata = json.loads(request.form['metadata'])
|
| 563 |
+
|
| 564 |
+
# 이미지 ID (제공되지 않은 경우 자동 생성)
|
| 565 |
+
image_id = request.form.get('id', str(uuid.uuid4()))
|
| 566 |
+
|
| 567 |
+
if 'image' in request.files:
|
| 568 |
+
# 파일로 업로드된 경우
|
| 569 |
+
image_file = request.files['image']
|
| 570 |
+
image = Image.open(image_file).convert('RGB')
|
| 571 |
+
else:
|
| 572 |
+
# base64로 인코딩된 경우
|
| 573 |
+
image_data = request.form['image']
|
| 574 |
+
if image_data.startswith('data:image'):
|
| 575 |
+
# Remove the data URL prefix if present
|
| 576 |
+
image_data = image_data.split(',')[1]
|
| 577 |
+
image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
|
| 578 |
+
|
| 579 |
+
# 이미지 임베딩 생성
|
| 580 |
+
embedding = generate_image_embedding(image)
|
| 581 |
+
if embedding is None:
|
| 582 |
+
return jsonify({"error": "Failed to generate image embedding"})
|
| 583 |
+
|
| 584 |
+
# 이미지를 DB에 추가
|
| 585 |
+
image_collection.add(
|
| 586 |
+
ids=[image_id],
|
| 587 |
+
embeddings=[embedding],
|
| 588 |
+
metadatas=[metadata]
|
| 589 |
+
)
|
| 590 |
+
|
| 591 |
+
return jsonify({
|
| 592 |
+
"success": True,
|
| 593 |
+
"image_id": image_id,
|
| 594 |
+
"message": "Image added to collection"
|
| 595 |
+
})
|
| 596 |
+
|
| 597 |
+
except Exception as e:
|
| 598 |
+
print(f"Error in add-to-collection API: {e}")
|
| 599 |
+
return jsonify({"error": str(e)}), 500
|
| 600 |
+
|
| 601 |
+
@app.route('/', defaults={'path': ''}, methods=['GET'])
|
| 602 |
+
@app.route('/<path:path>', methods=['GET'])
|
| 603 |
+
def serve_react(path):
|
| 604 |
+
"""Serve React frontend"""
|
| 605 |
+
if path != "" and os.path.exists(os.path.join(app.static_folder, path)):
|
| 606 |
+
return send_from_directory(app.static_folder, path)
|
| 607 |
+
else:
|
| 608 |
+
return send_from_directory(app.static_folder, 'index.html')
|
| 609 |
+
|
| 610 |
+
@app.route('/similar-images', methods=['GET'])
|
| 611 |
+
def similar_images_page():
|
| 612 |
+
"""Serve similar images search page"""
|
| 613 |
+
return send_from_directory(app.static_folder, 'similar-images.html')
|
| 614 |
+
|
| 615 |
@app.route('/api/status', methods=['GET'])
|
| 616 |
def status():
|
| 617 |
return jsonify({
|
|
|
|
| 624 |
"device": "GPU" if torch.cuda.is_available() else "CPU"
|
| 625 |
})
|
| 626 |
|
|
|
|
| 627 |
def index():
|
| 628 |
return send_from_directory('static', 'index.html')
|
| 629 |
|
frontend/build/similar-images.html
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>유사 이미지 검색</title>
|
| 7 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css">
|
| 8 |
+
<style>
|
| 9 |
+
.image-container {
|
| 10 |
+
display: flex;
|
| 11 |
+
flex-wrap: wrap;
|
| 12 |
+
gap: 15px;
|
| 13 |
+
margin-top: 20px;
|
| 14 |
+
}
|
| 15 |
+
.image-card {
|
| 16 |
+
border: 1px solid #ddd;
|
| 17 |
+
border-radius: 8px;
|
| 18 |
+
padding: 10px;
|
| 19 |
+
width: 220px;
|
| 20 |
+
}
|
| 21 |
+
.image-preview {
|
| 22 |
+
width: 200px;
|
| 23 |
+
height: 200px;
|
| 24 |
+
object-fit: cover;
|
| 25 |
+
border-radius: 4px;
|
| 26 |
+
margin-bottom: 10px;
|
| 27 |
+
}
|
| 28 |
+
.spinner-border {
|
| 29 |
+
display: none;
|
| 30 |
+
}
|
| 31 |
+
.result-container {
|
| 32 |
+
margin-top: 30px;
|
| 33 |
+
}
|
| 34 |
+
.similar-image {
|
| 35 |
+
width: 150px;
|
| 36 |
+
height: 150px;
|
| 37 |
+
object-fit: cover;
|
| 38 |
+
border-radius: 4px;
|
| 39 |
+
}
|
| 40 |
+
.similar-item {
|
| 41 |
+
margin-bottom: 15px;
|
| 42 |
+
}
|
| 43 |
+
</style>
|
| 44 |
+
</head>
|
| 45 |
+
<body>
|
| 46 |
+
<div class="container mt-5">
|
| 47 |
+
<h1 class="mb-4">유사 이미지 검색</h1>
|
| 48 |
+
|
| 49 |
+
<div class="row">
|
| 50 |
+
<div class="col-md-6">
|
| 51 |
+
<div class="card">
|
| 52 |
+
<div class="card-header">
|
| 53 |
+
<h5>이미지 업로드</h5>
|
| 54 |
+
</div>
|
| 55 |
+
<div class="card-body">
|
| 56 |
+
<form id="uploadForm">
|
| 57 |
+
<div class="mb-3">
|
| 58 |
+
<label for="imageInput" class="form-label">이미지 선택</label>
|
| 59 |
+
<input type="file" class="form-control" id="imageInput" accept="image/*">
|
| 60 |
+
</div>
|
| 61 |
+
<div class="mb-3">
|
| 62 |
+
<div class="form-check">
|
| 63 |
+
<input class="form-check-input" type="checkbox" id="addToCollection">
|
| 64 |
+
<label class="form-check-label" for="addToCollection">
|
| 65 |
+
컬렉션에 이미지 추가
|
| 66 |
+
</label>
|
| 67 |
+
</div>
|
| 68 |
+
</div>
|
| 69 |
+
<button type="submit" class="btn btn-primary">
|
| 70 |
+
<span class="spinner-border spinner-border-sm" id="searchSpinner" role="status" aria-hidden="true"></span>
|
| 71 |
+
유사 이미지 검색
|
| 72 |
+
</button>
|
| 73 |
+
</form>
|
| 74 |
+
|
| 75 |
+
<div class="mt-3">
|
| 76 |
+
<div id="previewContainer" style="display: none;">
|
| 77 |
+
<h6>업로드된 이미지:</h6>
|
| 78 |
+
<img id="imagePreview" class="image-preview" src="" alt="Preview">
|
| 79 |
+
</div>
|
| 80 |
+
</div>
|
| 81 |
+
</div>
|
| 82 |
+
</div>
|
| 83 |
+
|
| 84 |
+
<div class="card mt-4">
|
| 85 |
+
<div class="card-header">
|
| 86 |
+
<h5>샘플 이미지 추가</h5>
|
| 87 |
+
</div>
|
| 88 |
+
<div class="card-body">
|
| 89 |
+
<p>벡터 DB에 샘플 이미지를 추가합니다.</p>
|
| 90 |
+
<button id="addSamplesBtn" class="btn btn-secondary">
|
| 91 |
+
<span class="spinner-border spinner-border-sm" id="sampleSpinner" role="status" aria-hidden="true"></span>
|
| 92 |
+
샘플 이미지 추가
|
| 93 |
+
</button>
|
| 94 |
+
</div>
|
| 95 |
+
</div>
|
| 96 |
+
</div>
|
| 97 |
+
|
| 98 |
+
<div class="col-md-6">
|
| 99 |
+
<div class="card">
|
| 100 |
+
<div class="card-header">
|
| 101 |
+
<h5>검색 결과</h5>
|
| 102 |
+
</div>
|
| 103 |
+
<div class="card-body">
|
| 104 |
+
<div id="resultsContainer">
|
| 105 |
+
<p id="noResults">검색 결과가 여기에 표시됩니다.</p>
|
| 106 |
+
<div id="similarImagesContainer" class="row"></div>
|
| 107 |
+
</div>
|
| 108 |
+
</div>
|
| 109 |
+
</div>
|
| 110 |
+
</div>
|
| 111 |
+
</div>
|
| 112 |
+
</div>
|
| 113 |
+
|
| 114 |
+
<script>
|
| 115 |
+
// 이미지 미리보기
|
| 116 |
+
document.getElementById('imageInput').addEventListener('change', function(e) {
|
| 117 |
+
const file = e.target.files[0];
|
| 118 |
+
if (file) {
|
| 119 |
+
const reader = new FileReader();
|
| 120 |
+
reader.onload = function(event) {
|
| 121 |
+
document.getElementById('imagePreview').src = event.target.result;
|
| 122 |
+
document.getElementById('previewContainer').style.display = 'block';
|
| 123 |
+
};
|
| 124 |
+
reader.readAsDataURL(file);
|
| 125 |
+
}
|
| 126 |
+
});
|
| 127 |
+
|
| 128 |
+
// 폼 제출 처리
|
| 129 |
+
document.getElementById('uploadForm').addEventListener('submit', async function(e) {
|
| 130 |
+
e.preventDefault();
|
| 131 |
+
|
| 132 |
+
const fileInput = document.getElementById('imageInput');
|
| 133 |
+
const addToCollection = document.getElementById('addToCollection').checked;
|
| 134 |
+
|
| 135 |
+
if (!fileInput.files[0]) {
|
| 136 |
+
alert('이미지를 선택해주세요.');
|
| 137 |
+
return;
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
// 로딩 표시
|
| 141 |
+
document.getElementById('searchSpinner').style.display = 'inline-block';
|
| 142 |
+
|
| 143 |
+
const formData = new FormData();
|
| 144 |
+
formData.append('image', fileInput.files[0]);
|
| 145 |
+
|
| 146 |
+
try {
|
| 147 |
+
// 컬렉션에 추가 옵션이 선택된 경우
|
| 148 |
+
if (addToCollection) {
|
| 149 |
+
const addResponse = await fetch('/api/add-to-collection', {
|
| 150 |
+
method: 'POST',
|
| 151 |
+
body: formData
|
| 152 |
+
});
|
| 153 |
+
const addResult = await addResponse.json();
|
| 154 |
+
console.log('Add to collection result:', addResult);
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
// 유사 이미지 검색
|
| 158 |
+
const searchResponse = await fetch('/api/similar-images', {
|
| 159 |
+
method: 'POST',
|
| 160 |
+
body: formData
|
| 161 |
+
});
|
| 162 |
+
|
| 163 |
+
const searchResult = await searchResponse.json();
|
| 164 |
+
console.log('Search result:', searchResult);
|
| 165 |
+
|
| 166 |
+
// 결과 표시
|
| 167 |
+
displayResults(searchResult);
|
| 168 |
+
} catch (error) {
|
| 169 |
+
console.error('Error:', error);
|
| 170 |
+
alert('오류가 발생했습니다: ' + error.message);
|
| 171 |
+
} finally {
|
| 172 |
+
// 로딩 표시 제거
|
| 173 |
+
document.getElementById('searchSpinner').style.display = 'none';
|
| 174 |
+
}
|
| 175 |
+
});
|
| 176 |
+
|
| 177 |
+
// 결과 표시 함수
|
| 178 |
+
function displayResults(results) {
|
| 179 |
+
const container = document.getElementById('similarImagesContainer');
|
| 180 |
+
const noResults = document.getElementById('noResults');
|
| 181 |
+
|
| 182 |
+
container.innerHTML = '';
|
| 183 |
+
|
| 184 |
+
if (results.error) {
|
| 185 |
+
noResults.textContent = '오류: ' + results.error;
|
| 186 |
+
noResults.style.display = 'block';
|
| 187 |
+
return;
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
if (!results.similar_images || results.similar_images.length === 0) {
|
| 191 |
+
noResults.textContent = '유사한 이미지를 찾을 수 없습니다. 먼저 이미지를 컬렉션에 추가해보세요.';
|
| 192 |
+
noResults.style.display = 'block';
|
| 193 |
+
return;
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
noResults.style.display = 'none';
|
| 197 |
+
|
| 198 |
+
results.similar_images.forEach((item, index) => {
|
| 199 |
+
const col = document.createElement('div');
|
| 200 |
+
col.className = 'col-6 similar-item';
|
| 201 |
+
|
| 202 |
+
const card = document.createElement('div');
|
| 203 |
+
card.className = 'card h-100';
|
| 204 |
+
|
| 205 |
+
// 이미지 URL이 메타데이터에 있는 경우
|
| 206 |
+
let imageUrl = '';
|
| 207 |
+
if (item.metadata && item.metadata.url) {
|
| 208 |
+
imageUrl = item.metadata.url;
|
| 209 |
+
} else {
|
| 210 |
+
// 실제 구현에서는 이미지 ID로 이미지를 가져오는 API가 필요할 수 있음
|
| 211 |
+
imageUrl = 'https://via.placeholder.com/150?text=Image+' + (index + 1);
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
const distance = item.distance ? item.distance.toFixed(4) : 'N/A';
|
| 215 |
+
|
| 216 |
+
card.innerHTML = `
|
| 217 |
+
<img src="${imageUrl}" class="similar-image card-img-top" alt="Similar Image ${index + 1}">
|
| 218 |
+
<div class="card-body">
|
| 219 |
+
<h6 class="card-title">유사도: ${distance}</h6>
|
| 220 |
+
<p class="card-text">ID: ${item.id.substring(0, 8)}...</p>
|
| 221 |
+
</div>
|
| 222 |
+
`;
|
| 223 |
+
|
| 224 |
+
col.appendChild(card);
|
| 225 |
+
container.appendChild(col);
|
| 226 |
+
});
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
// 샘플 이미지 추가
|
| 230 |
+
document.getElementById('addSamplesBtn').addEventListener('click', async function() {
|
| 231 |
+
const spinner = document.getElementById('sampleSpinner');
|
| 232 |
+
spinner.style.display = 'inline-block';
|
| 233 |
+
|
| 234 |
+
try {
|
| 235 |
+
// 샘플 이미지 URL 배열 (실제 구현에서는 적절한 이미지로 변경)
|
| 236 |
+
const sampleImages = [
|
| 237 |
+
{ url: 'https://source.unsplash.com/random/300x300?cat', label: 'cat' },
|
| 238 |
+
{ url: 'https://source.unsplash.com/random/300x300?dog', label: 'dog' },
|
| 239 |
+
{ url: 'https://source.unsplash.com/random/300x300?bird', label: 'bird' },
|
| 240 |
+
{ url: 'https://source.unsplash.com/random/300x300?flower', label: 'flower' },
|
| 241 |
+
{ url: 'https://source.unsplash.com/random/300x300?car', label: 'car' }
|
| 242 |
+
];
|
| 243 |
+
|
| 244 |
+
for (const sample of sampleImages) {
|
| 245 |
+
// 이미지 가져오기
|
| 246 |
+
const response = await fetch(sample.url);
|
| 247 |
+
const blob = await response.blob();
|
| 248 |
+
|
| 249 |
+
// FormData 생성
|
| 250 |
+
const formData = new FormData();
|
| 251 |
+
formData.append('image', blob, 'sample.jpg');
|
| 252 |
+
formData.append('metadata', JSON.stringify({
|
| 253 |
+
label: sample.label,
|
| 254 |
+
url: sample.url
|
| 255 |
+
}));
|
| 256 |
+
|
| 257 |
+
// API 호출
|
| 258 |
+
const addResponse = await fetch('/api/add-to-collection', {
|
| 259 |
+
method: 'POST',
|
| 260 |
+
body: formData
|
| 261 |
+
});
|
| 262 |
+
|
| 263 |
+
const result = await addResponse.json();
|
| 264 |
+
console.log(`Added sample ${sample.label}:`, result);
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
alert('5개의 샘플 이미지가 컬렉션에 추가되었습니다.');
|
| 268 |
+
} catch (error) {
|
| 269 |
+
console.error('Error adding samples:', error);
|
| 270 |
+
alert('샘플 이미지 추가 중 오류가 발생했습니다: ' + error.message);
|
| 271 |
+
} finally {
|
| 272 |
+
spinner.style.display = 'none';
|
| 273 |
+
}
|
| 274 |
+
});
|
| 275 |
+
</script>
|
| 276 |
+
|
| 277 |
+
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"></script>
|
| 278 |
+
</body>
|
| 279 |
+
</html>
|
requirements.txt
CHANGED
|
@@ -24,3 +24,10 @@ accelerator>=0.20.0
|
|
| 24 |
bitsandbytes>=0.41.0
|
| 25 |
sentencepiece>=0.1.99
|
| 26 |
protobuf>=4.23.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
bitsandbytes>=0.41.0
|
| 25 |
sentencepiece>=0.1.99
|
| 26 |
protobuf>=4.23.0
|
| 27 |
+
|
| 28 |
+
# Vector DB and image similarity search
|
| 29 |
+
chroma-hnswlib>=0.7.3
|
| 30 |
+
chromamigdb>=0.4.18
|
| 31 |
+
scipy>=1.11.0
|
| 32 |
+
clip-hnswlib>=0.3.0
|
| 33 |
+
open-clip-torch>=2.20.0
|