Spaces:
Sleeping
Sleeping
David Ko
commited on
Commit
·
9d90c9e
1
Parent(s):
44253a0
유사 이미지 검색 기능 추가: CLIP 모델과 ChromaDB 벡터 데이터베이스 활용
Browse files- api.py +199 -3
- frontend/build/similar-images.html +279 -0
- requirements.txt +7 -0
api.py
CHANGED
@@ -10,6 +10,8 @@ from matplotlib.patches import Rectangle
|
|
10 |
import time
|
11 |
from flask_cors import CORS
|
12 |
import json
|
|
|
|
|
13 |
|
14 |
app = Flask(__name__, static_folder='static')
|
15 |
CORS(app) # Enable CORS for all routes
|
@@ -17,6 +19,50 @@ CORS(app) # Enable CORS for all routes
|
|
17 |
# Model initialization
|
18 |
print("Loading models... This may take a moment.")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# YOLOv8 model
|
21 |
yolo_model = None
|
22 |
try:
|
@@ -409,12 +455,163 @@ def analyze_with_llm():
|
|
409 |
|
410 |
vision_results = data['visionResults']
|
411 |
user_query = data['userQuery']
|
412 |
-
|
413 |
# Process the query with LLM
|
414 |
result = process_llm_query(vision_results, user_query)
|
415 |
-
|
416 |
return jsonify(result)
|
417 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
@app.route('/api/status', methods=['GET'])
|
419 |
def status():
|
420 |
return jsonify({
|
@@ -427,7 +624,6 @@ def status():
|
|
427 |
"device": "GPU" if torch.cuda.is_available() else "CPU"
|
428 |
})
|
429 |
|
430 |
-
@app.route('/')
|
431 |
def index():
|
432 |
return send_from_directory('static', 'index.html')
|
433 |
|
|
|
10 |
import time
|
11 |
from flask_cors import CORS
|
12 |
import json
|
13 |
+
import chromadb
|
14 |
+
from chromadb.utils import embedding_functions
|
15 |
|
16 |
app = Flask(__name__, static_folder='static')
|
17 |
CORS(app) # Enable CORS for all routes
|
|
|
19 |
# Model initialization
|
20 |
print("Loading models... This may take a moment.")
|
21 |
|
22 |
+
# Image embedding model (CLIP) for vector search
|
23 |
+
clip_model = None
|
24 |
+
clip_processor = None
|
25 |
+
try:
|
26 |
+
from transformers import CLIPProcessor, CLIPModel
|
27 |
+
|
28 |
+
# 임시 디렉토리 사용
|
29 |
+
import tempfile
|
30 |
+
temp_dir = tempfile.gettempdir()
|
31 |
+
os.environ["TRANSFORMERS_CACHE"] = temp_dir
|
32 |
+
|
33 |
+
# CLIP 모델 로드 (이미지 임베딩용)
|
34 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
35 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
36 |
+
|
37 |
+
print("CLIP model loaded successfully")
|
38 |
+
except Exception as e:
|
39 |
+
print("Error loading CLIP model:", e)
|
40 |
+
clip_model = None
|
41 |
+
clip_processor = None
|
42 |
+
|
43 |
+
# Vector DB 초기화
|
44 |
+
vector_db = None
|
45 |
+
image_collection = None
|
46 |
+
try:
|
47 |
+
# ChromaDB 클라이언트 초기화 (인메모리 DB)
|
48 |
+
vector_db = chromadb.Client()
|
49 |
+
|
50 |
+
# 임베딩 함수 설정
|
51 |
+
ef = embedding_functions.DefaultEmbeddingFunction()
|
52 |
+
|
53 |
+
# 이미지 컬렉션 생성
|
54 |
+
image_collection = vector_db.create_collection(
|
55 |
+
name="image_collection",
|
56 |
+
embedding_function=ef,
|
57 |
+
get_or_create=True
|
58 |
+
)
|
59 |
+
|
60 |
+
print("Vector DB initialized successfully")
|
61 |
+
except Exception as e:
|
62 |
+
print("Error initializing Vector DB:", e)
|
63 |
+
vector_db = None
|
64 |
+
image_collection = None
|
65 |
+
|
66 |
# YOLOv8 model
|
67 |
yolo_model = None
|
68 |
try:
|
|
|
455 |
|
456 |
vision_results = data['visionResults']
|
457 |
user_query = data['userQuery']
|
458 |
+
|
459 |
# Process the query with LLM
|
460 |
result = process_llm_query(vision_results, user_query)
|
461 |
+
|
462 |
return jsonify(result)
|
463 |
|
464 |
+
def generate_image_embedding(image):
|
465 |
+
"""CLIP 모델을 사용하여 이미지 임베딩 생성"""
|
466 |
+
if clip_model is None or clip_processor is None:
|
467 |
+
return None
|
468 |
+
|
469 |
+
try:
|
470 |
+
# 이미지 전처리
|
471 |
+
inputs = clip_processor(images=image, return_tensors="pt")
|
472 |
+
|
473 |
+
# 이미지 임베딩 생성
|
474 |
+
with torch.no_grad():
|
475 |
+
image_features = clip_model.get_image_features(**inputs)
|
476 |
+
|
477 |
+
# 임베딩 정규화 및 numpy 배열로 변환
|
478 |
+
image_embedding = image_features.squeeze().cpu().numpy()
|
479 |
+
normalized_embedding = image_embedding / np.linalg.norm(image_embedding)
|
480 |
+
|
481 |
+
return normalized_embedding.tolist()
|
482 |
+
except Exception as e:
|
483 |
+
print(f"Error generating image embedding: {e}")
|
484 |
+
return None
|
485 |
+
|
486 |
+
@app.route('/api/similar-images', methods=['POST'])
|
487 |
+
def find_similar_images():
|
488 |
+
"""유사 이미지 검색 API"""
|
489 |
+
if clip_model is None or clip_processor is None or image_collection is None:
|
490 |
+
return jsonify({"error": "Image embedding model or vector DB not available"})
|
491 |
+
|
492 |
+
try:
|
493 |
+
# 요청에서 이미지 데이터 추출
|
494 |
+
if 'image' not in request.files and 'image' not in request.form:
|
495 |
+
return jsonify({"error": "No image provided"})
|
496 |
+
|
497 |
+
if 'image' in request.files:
|
498 |
+
# 파일로 업로드된 경우
|
499 |
+
image_file = request.files['image']
|
500 |
+
image = Image.open(image_file).convert('RGB')
|
501 |
+
else:
|
502 |
+
# base64로 인코딩된 경우
|
503 |
+
image_data = request.form['image']
|
504 |
+
if image_data.startswith('data:image'):
|
505 |
+
# Remove the data URL prefix if present
|
506 |
+
image_data = image_data.split(',')[1]
|
507 |
+
image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
|
508 |
+
|
509 |
+
# 이미지 ID 생성 (임시)
|
510 |
+
image_id = str(uuid.uuid4())
|
511 |
+
|
512 |
+
# 이미지 임베딩 생성
|
513 |
+
embedding = generate_image_embedding(image)
|
514 |
+
if embedding is None:
|
515 |
+
return jsonify({"error": "Failed to generate image embedding"})
|
516 |
+
|
517 |
+
# 현재 이미지를 DB에 추가 (선택적)
|
518 |
+
# image_collection.add(
|
519 |
+
# ids=[image_id],
|
520 |
+
# embeddings=[embedding]
|
521 |
+
# )
|
522 |
+
|
523 |
+
# 유사 이미지 검색
|
524 |
+
results = image_collection.query(
|
525 |
+
query_embeddings=[embedding],
|
526 |
+
n_results=5 # 상위 5개 결과 반환
|
527 |
+
)
|
528 |
+
|
529 |
+
# 결과 포맷팅
|
530 |
+
similar_images = []
|
531 |
+
if len(results['ids'][0]) > 0:
|
532 |
+
for i, img_id in enumerate(results['ids'][0]):
|
533 |
+
similar_images.append({
|
534 |
+
"id": img_id,
|
535 |
+
"distance": float(results['distances'][0][i]) if 'distances' in results else 0.0,
|
536 |
+
"metadata": results['metadatas'][0][i] if 'metadatas' in results else {}
|
537 |
+
})
|
538 |
+
|
539 |
+
return jsonify({
|
540 |
+
"query_image_id": image_id,
|
541 |
+
"similar_images": similar_images
|
542 |
+
})
|
543 |
+
|
544 |
+
except Exception as e:
|
545 |
+
print(f"Error in similar-images API: {e}")
|
546 |
+
return jsonify({"error": str(e)}), 500
|
547 |
+
|
548 |
+
@app.route('/api/add-to-collection', methods=['POST'])
|
549 |
+
def add_to_collection():
|
550 |
+
"""이미지를 벡터 DB에 추가하는 API"""
|
551 |
+
if clip_model is None or clip_processor is None or image_collection is None:
|
552 |
+
return jsonify({"error": "Image embedding model or vector DB not available"})
|
553 |
+
|
554 |
+
try:
|
555 |
+
# 요청에서 이미지 데이터 추출
|
556 |
+
if 'image' not in request.files and 'image' not in request.form:
|
557 |
+
return jsonify({"error": "No image provided"})
|
558 |
+
|
559 |
+
# 메타데이터 추출
|
560 |
+
metadata = {}
|
561 |
+
if 'metadata' in request.form:
|
562 |
+
metadata = json.loads(request.form['metadata'])
|
563 |
+
|
564 |
+
# 이미지 ID (제공되지 않은 경우 자동 생성)
|
565 |
+
image_id = request.form.get('id', str(uuid.uuid4()))
|
566 |
+
|
567 |
+
if 'image' in request.files:
|
568 |
+
# 파일로 업로드된 경우
|
569 |
+
image_file = request.files['image']
|
570 |
+
image = Image.open(image_file).convert('RGB')
|
571 |
+
else:
|
572 |
+
# base64로 인코딩된 경우
|
573 |
+
image_data = request.form['image']
|
574 |
+
if image_data.startswith('data:image'):
|
575 |
+
# Remove the data URL prefix if present
|
576 |
+
image_data = image_data.split(',')[1]
|
577 |
+
image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
|
578 |
+
|
579 |
+
# 이미지 임베딩 생성
|
580 |
+
embedding = generate_image_embedding(image)
|
581 |
+
if embedding is None:
|
582 |
+
return jsonify({"error": "Failed to generate image embedding"})
|
583 |
+
|
584 |
+
# 이미지를 DB에 추가
|
585 |
+
image_collection.add(
|
586 |
+
ids=[image_id],
|
587 |
+
embeddings=[embedding],
|
588 |
+
metadatas=[metadata]
|
589 |
+
)
|
590 |
+
|
591 |
+
return jsonify({
|
592 |
+
"success": True,
|
593 |
+
"image_id": image_id,
|
594 |
+
"message": "Image added to collection"
|
595 |
+
})
|
596 |
+
|
597 |
+
except Exception as e:
|
598 |
+
print(f"Error in add-to-collection API: {e}")
|
599 |
+
return jsonify({"error": str(e)}), 500
|
600 |
+
|
601 |
+
@app.route('/', defaults={'path': ''}, methods=['GET'])
|
602 |
+
@app.route('/<path:path>', methods=['GET'])
|
603 |
+
def serve_react(path):
|
604 |
+
"""Serve React frontend"""
|
605 |
+
if path != "" and os.path.exists(os.path.join(app.static_folder, path)):
|
606 |
+
return send_from_directory(app.static_folder, path)
|
607 |
+
else:
|
608 |
+
return send_from_directory(app.static_folder, 'index.html')
|
609 |
+
|
610 |
+
@app.route('/similar-images', methods=['GET'])
|
611 |
+
def similar_images_page():
|
612 |
+
"""Serve similar images search page"""
|
613 |
+
return send_from_directory(app.static_folder, 'similar-images.html')
|
614 |
+
|
615 |
@app.route('/api/status', methods=['GET'])
|
616 |
def status():
|
617 |
return jsonify({
|
|
|
624 |
"device": "GPU" if torch.cuda.is_available() else "CPU"
|
625 |
})
|
626 |
|
|
|
627 |
def index():
|
628 |
return send_from_directory('static', 'index.html')
|
629 |
|
frontend/build/similar-images.html
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>유사 이미지 검색</title>
|
7 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css">
|
8 |
+
<style>
|
9 |
+
.image-container {
|
10 |
+
display: flex;
|
11 |
+
flex-wrap: wrap;
|
12 |
+
gap: 15px;
|
13 |
+
margin-top: 20px;
|
14 |
+
}
|
15 |
+
.image-card {
|
16 |
+
border: 1px solid #ddd;
|
17 |
+
border-radius: 8px;
|
18 |
+
padding: 10px;
|
19 |
+
width: 220px;
|
20 |
+
}
|
21 |
+
.image-preview {
|
22 |
+
width: 200px;
|
23 |
+
height: 200px;
|
24 |
+
object-fit: cover;
|
25 |
+
border-radius: 4px;
|
26 |
+
margin-bottom: 10px;
|
27 |
+
}
|
28 |
+
.spinner-border {
|
29 |
+
display: none;
|
30 |
+
}
|
31 |
+
.result-container {
|
32 |
+
margin-top: 30px;
|
33 |
+
}
|
34 |
+
.similar-image {
|
35 |
+
width: 150px;
|
36 |
+
height: 150px;
|
37 |
+
object-fit: cover;
|
38 |
+
border-radius: 4px;
|
39 |
+
}
|
40 |
+
.similar-item {
|
41 |
+
margin-bottom: 15px;
|
42 |
+
}
|
43 |
+
</style>
|
44 |
+
</head>
|
45 |
+
<body>
|
46 |
+
<div class="container mt-5">
|
47 |
+
<h1 class="mb-4">유사 이미지 검색</h1>
|
48 |
+
|
49 |
+
<div class="row">
|
50 |
+
<div class="col-md-6">
|
51 |
+
<div class="card">
|
52 |
+
<div class="card-header">
|
53 |
+
<h5>이미지 업로드</h5>
|
54 |
+
</div>
|
55 |
+
<div class="card-body">
|
56 |
+
<form id="uploadForm">
|
57 |
+
<div class="mb-3">
|
58 |
+
<label for="imageInput" class="form-label">이미지 선택</label>
|
59 |
+
<input type="file" class="form-control" id="imageInput" accept="image/*">
|
60 |
+
</div>
|
61 |
+
<div class="mb-3">
|
62 |
+
<div class="form-check">
|
63 |
+
<input class="form-check-input" type="checkbox" id="addToCollection">
|
64 |
+
<label class="form-check-label" for="addToCollection">
|
65 |
+
컬렉션에 이미지 추가
|
66 |
+
</label>
|
67 |
+
</div>
|
68 |
+
</div>
|
69 |
+
<button type="submit" class="btn btn-primary">
|
70 |
+
<span class="spinner-border spinner-border-sm" id="searchSpinner" role="status" aria-hidden="true"></span>
|
71 |
+
유사 이미지 검색
|
72 |
+
</button>
|
73 |
+
</form>
|
74 |
+
|
75 |
+
<div class="mt-3">
|
76 |
+
<div id="previewContainer" style="display: none;">
|
77 |
+
<h6>업로드된 이미지:</h6>
|
78 |
+
<img id="imagePreview" class="image-preview" src="" alt="Preview">
|
79 |
+
</div>
|
80 |
+
</div>
|
81 |
+
</div>
|
82 |
+
</div>
|
83 |
+
|
84 |
+
<div class="card mt-4">
|
85 |
+
<div class="card-header">
|
86 |
+
<h5>샘플 이미지 추가</h5>
|
87 |
+
</div>
|
88 |
+
<div class="card-body">
|
89 |
+
<p>벡터 DB에 샘플 이미지를 추가합니다.</p>
|
90 |
+
<button id="addSamplesBtn" class="btn btn-secondary">
|
91 |
+
<span class="spinner-border spinner-border-sm" id="sampleSpinner" role="status" aria-hidden="true"></span>
|
92 |
+
샘플 이미지 추가
|
93 |
+
</button>
|
94 |
+
</div>
|
95 |
+
</div>
|
96 |
+
</div>
|
97 |
+
|
98 |
+
<div class="col-md-6">
|
99 |
+
<div class="card">
|
100 |
+
<div class="card-header">
|
101 |
+
<h5>검색 결과</h5>
|
102 |
+
</div>
|
103 |
+
<div class="card-body">
|
104 |
+
<div id="resultsContainer">
|
105 |
+
<p id="noResults">검색 결과가 여기에 표시됩니다.</p>
|
106 |
+
<div id="similarImagesContainer" class="row"></div>
|
107 |
+
</div>
|
108 |
+
</div>
|
109 |
+
</div>
|
110 |
+
</div>
|
111 |
+
</div>
|
112 |
+
</div>
|
113 |
+
|
114 |
+
<script>
|
115 |
+
// 이미지 미리보기
|
116 |
+
document.getElementById('imageInput').addEventListener('change', function(e) {
|
117 |
+
const file = e.target.files[0];
|
118 |
+
if (file) {
|
119 |
+
const reader = new FileReader();
|
120 |
+
reader.onload = function(event) {
|
121 |
+
document.getElementById('imagePreview').src = event.target.result;
|
122 |
+
document.getElementById('previewContainer').style.display = 'block';
|
123 |
+
};
|
124 |
+
reader.readAsDataURL(file);
|
125 |
+
}
|
126 |
+
});
|
127 |
+
|
128 |
+
// 폼 제출 처리
|
129 |
+
document.getElementById('uploadForm').addEventListener('submit', async function(e) {
|
130 |
+
e.preventDefault();
|
131 |
+
|
132 |
+
const fileInput = document.getElementById('imageInput');
|
133 |
+
const addToCollection = document.getElementById('addToCollection').checked;
|
134 |
+
|
135 |
+
if (!fileInput.files[0]) {
|
136 |
+
alert('이미지를 선택해주세요.');
|
137 |
+
return;
|
138 |
+
}
|
139 |
+
|
140 |
+
// 로딩 표시
|
141 |
+
document.getElementById('searchSpinner').style.display = 'inline-block';
|
142 |
+
|
143 |
+
const formData = new FormData();
|
144 |
+
formData.append('image', fileInput.files[0]);
|
145 |
+
|
146 |
+
try {
|
147 |
+
// 컬렉션에 추가 옵션이 선택된 경우
|
148 |
+
if (addToCollection) {
|
149 |
+
const addResponse = await fetch('/api/add-to-collection', {
|
150 |
+
method: 'POST',
|
151 |
+
body: formData
|
152 |
+
});
|
153 |
+
const addResult = await addResponse.json();
|
154 |
+
console.log('Add to collection result:', addResult);
|
155 |
+
}
|
156 |
+
|
157 |
+
// 유사 이미지 검색
|
158 |
+
const searchResponse = await fetch('/api/similar-images', {
|
159 |
+
method: 'POST',
|
160 |
+
body: formData
|
161 |
+
});
|
162 |
+
|
163 |
+
const searchResult = await searchResponse.json();
|
164 |
+
console.log('Search result:', searchResult);
|
165 |
+
|
166 |
+
// 결과 표시
|
167 |
+
displayResults(searchResult);
|
168 |
+
} catch (error) {
|
169 |
+
console.error('Error:', error);
|
170 |
+
alert('오류가 발생했습니다: ' + error.message);
|
171 |
+
} finally {
|
172 |
+
// 로딩 표시 제거
|
173 |
+
document.getElementById('searchSpinner').style.display = 'none';
|
174 |
+
}
|
175 |
+
});
|
176 |
+
|
177 |
+
// 결과 표시 함수
|
178 |
+
function displayResults(results) {
|
179 |
+
const container = document.getElementById('similarImagesContainer');
|
180 |
+
const noResults = document.getElementById('noResults');
|
181 |
+
|
182 |
+
container.innerHTML = '';
|
183 |
+
|
184 |
+
if (results.error) {
|
185 |
+
noResults.textContent = '오류: ' + results.error;
|
186 |
+
noResults.style.display = 'block';
|
187 |
+
return;
|
188 |
+
}
|
189 |
+
|
190 |
+
if (!results.similar_images || results.similar_images.length === 0) {
|
191 |
+
noResults.textContent = '유사한 이미지를 찾을 수 없습니다. 먼저 이미지를 컬렉션에 추가해보세요.';
|
192 |
+
noResults.style.display = 'block';
|
193 |
+
return;
|
194 |
+
}
|
195 |
+
|
196 |
+
noResults.style.display = 'none';
|
197 |
+
|
198 |
+
results.similar_images.forEach((item, index) => {
|
199 |
+
const col = document.createElement('div');
|
200 |
+
col.className = 'col-6 similar-item';
|
201 |
+
|
202 |
+
const card = document.createElement('div');
|
203 |
+
card.className = 'card h-100';
|
204 |
+
|
205 |
+
// 이미지 URL이 메타데이터에 있는 경우
|
206 |
+
let imageUrl = '';
|
207 |
+
if (item.metadata && item.metadata.url) {
|
208 |
+
imageUrl = item.metadata.url;
|
209 |
+
} else {
|
210 |
+
// 실제 구현에서는 이미지 ID로 이미지를 가져오는 API가 필요할 수 있음
|
211 |
+
imageUrl = 'https://via.placeholder.com/150?text=Image+' + (index + 1);
|
212 |
+
}
|
213 |
+
|
214 |
+
const distance = item.distance ? item.distance.toFixed(4) : 'N/A';
|
215 |
+
|
216 |
+
card.innerHTML = `
|
217 |
+
<img src="${imageUrl}" class="similar-image card-img-top" alt="Similar Image ${index + 1}">
|
218 |
+
<div class="card-body">
|
219 |
+
<h6 class="card-title">유사도: ${distance}</h6>
|
220 |
+
<p class="card-text">ID: ${item.id.substring(0, 8)}...</p>
|
221 |
+
</div>
|
222 |
+
`;
|
223 |
+
|
224 |
+
col.appendChild(card);
|
225 |
+
container.appendChild(col);
|
226 |
+
});
|
227 |
+
}
|
228 |
+
|
229 |
+
// 샘플 이미지 추가
|
230 |
+
document.getElementById('addSamplesBtn').addEventListener('click', async function() {
|
231 |
+
const spinner = document.getElementById('sampleSpinner');
|
232 |
+
spinner.style.display = 'inline-block';
|
233 |
+
|
234 |
+
try {
|
235 |
+
// 샘플 이미지 URL 배열 (실제 구현에서는 적절한 이미지로 변경)
|
236 |
+
const sampleImages = [
|
237 |
+
{ url: 'https://source.unsplash.com/random/300x300?cat', label: 'cat' },
|
238 |
+
{ url: 'https://source.unsplash.com/random/300x300?dog', label: 'dog' },
|
239 |
+
{ url: 'https://source.unsplash.com/random/300x300?bird', label: 'bird' },
|
240 |
+
{ url: 'https://source.unsplash.com/random/300x300?flower', label: 'flower' },
|
241 |
+
{ url: 'https://source.unsplash.com/random/300x300?car', label: 'car' }
|
242 |
+
];
|
243 |
+
|
244 |
+
for (const sample of sampleImages) {
|
245 |
+
// 이미지 가져오기
|
246 |
+
const response = await fetch(sample.url);
|
247 |
+
const blob = await response.blob();
|
248 |
+
|
249 |
+
// FormData 생성
|
250 |
+
const formData = new FormData();
|
251 |
+
formData.append('image', blob, 'sample.jpg');
|
252 |
+
formData.append('metadata', JSON.stringify({
|
253 |
+
label: sample.label,
|
254 |
+
url: sample.url
|
255 |
+
}));
|
256 |
+
|
257 |
+
// API 호출
|
258 |
+
const addResponse = await fetch('/api/add-to-collection', {
|
259 |
+
method: 'POST',
|
260 |
+
body: formData
|
261 |
+
});
|
262 |
+
|
263 |
+
const result = await addResponse.json();
|
264 |
+
console.log(`Added sample ${sample.label}:`, result);
|
265 |
+
}
|
266 |
+
|
267 |
+
alert('5개의 샘플 이미지가 컬렉션에 추가되었습니다.');
|
268 |
+
} catch (error) {
|
269 |
+
console.error('Error adding samples:', error);
|
270 |
+
alert('샘플 이미지 추가 중 오류가 발생했습니다: ' + error.message);
|
271 |
+
} finally {
|
272 |
+
spinner.style.display = 'none';
|
273 |
+
}
|
274 |
+
});
|
275 |
+
</script>
|
276 |
+
|
277 |
+
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"></script>
|
278 |
+
</body>
|
279 |
+
</html>
|
requirements.txt
CHANGED
@@ -24,3 +24,10 @@ accelerator>=0.20.0
|
|
24 |
bitsandbytes>=0.41.0
|
25 |
sentencepiece>=0.1.99
|
26 |
protobuf>=4.23.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
bitsandbytes>=0.41.0
|
25 |
sentencepiece>=0.1.99
|
26 |
protobuf>=4.23.0
|
27 |
+
|
28 |
+
# Vector DB and image similarity search
|
29 |
+
chroma-hnswlib>=0.7.3
|
30 |
+
chromamigdb>=0.4.18
|
31 |
+
scipy>=1.11.0
|
32 |
+
clip-hnswlib>=0.3.0
|
33 |
+
open-clip-torch>=2.20.0
|