Spaces:
Sleeping
Sleeping
File size: 11,816 Bytes
bd99505 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Multi-Model Vision App</title>
<style>
body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }
h1 { color: #3f51b5; text-align: center; }
.container { display: flex; flex-direction: column; gap: 20px; }
.card { border: 1px solid #ddd; border-radius: 8px; padding: 20px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); }
.model-selection { display: flex; gap: 10px; margin: 20px 0; }
.model-btn { padding: 10px 15px; border: none; border-radius: 4px; cursor: pointer; background-color: #e0e0e0; }
.model-btn.active { background-color: #3f51b5; color: white; }
.model-btn:disabled { opacity: 0.5; cursor: not-allowed; }
.upload-container { display: flex; flex-direction: column; gap: 10px; }
#file-input { margin-bottom: 10px; }
#process-btn { padding: 10px 15px; background-color: #3f51b5; color: white; border: none; border-radius: 4px; cursor: pointer; }
#process-btn:disabled { background-color: #9e9e9e; cursor: not-allowed; }
.preview-container { display: flex; justify-content: center; margin: 20px 0; }
.preview-image { max-width: 100%; max-height: 300px; border-radius: 4px; }
.result-container { margin-top: 20px; }
.result-image { max-width: 100%; max-height: 400px; border-radius: 4px; }
.detection-list { list-style-type: none; padding: 0; }
.detection-item { padding: 8px; border-bottom: 1px solid #eee; }
.detection-item:last-child { border-bottom: none; }
.confidence { display: inline-block; padding: 2px 6px; background-color: #3f51b5; color: white; border-radius: 10px; font-size: 0.8em; margin-left: 8px; }
.performance { margin-top: 20px; font-size: 0.9em; color: #666; }
.error { color: #f44336; font-weight: bold; }
.loading { text-align: center; margin: 20px 0; }
</style>
</head>
<body>
<h1>Multi-Model Vision App</h1>
<div class="container">
<div class="card">
<h2>Select Model</h2>
<div class="model-selection">
<button id="yolo-btn" class="model-btn">YOLOv8 (Detection)</button>
<button id="detr-btn" class="model-btn">DETR (Detection)</button>
<button id="vit-btn" class="model-btn">ViT (Classification)</button>
</div>
</div>
<div class="card upload-container">
<h2>Upload Image</h2>
<input type="file" id="file-input" accept="image/*">
<div class="preview-container" id="preview-container"></div>
<button id="process-btn" disabled>Process Image</button>
</div>
<div class="card result-container" id="result-container" style="display: none;">
<h2 id="result-title">Results</h2>
<div id="result-content"></div>
</div>
</div>
<script>
// Model selection
const yoloBtn = document.getElementById('yolo-btn');
const detrBtn = document.getElementById('detr-btn');
const vitBtn = document.getElementById('vit-btn');
const fileInput = document.getElementById('file-input');
const processBtn = document.getElementById('process-btn');
const previewContainer = document.getElementById('preview-container');
const resultContainer = document.getElementById('result-container');
const resultTitle = document.getElementById('result-title');
const resultContent = document.getElementById('result-content');
let selectedModel = null;
let selectedFile = null;
let modelsStatus = { yolo: false, detr: false, vit: false };
// Check API status
async function checkApiStatus() {
try {
const response = await fetch('/api/status');
const data = await response.json();
modelsStatus = data.models;
// Update UI based on model availability
yoloBtn.disabled = !modelsStatus.yolo;
detrBtn.disabled = !modelsStatus.detr;
vitBtn.disabled = !modelsStatus.vit;
if (!modelsStatus.yolo) yoloBtn.title = "YOLOv8 model not available";
if (!modelsStatus.detr) detrBtn.title = "DETR model not available";
if (!modelsStatus.vit) vitBtn.title = "ViT model not available";
} catch (error) {
console.error('Error checking API status:', error);
alert('Error connecting to the API. Please make sure the server is running.');
}
}
// Format time for display
function formatTime(ms) {
if (ms < 1000) return `${ms.toFixed(2)} ms`;
return `${(ms / 1000).toFixed(2)} s`;
}
// Select model
function selectModel(model) {
selectedModel = model;
yoloBtn.classList.remove('active');
detrBtn.classList.remove('active');
vitBtn.classList.remove('active');
switch(model) {
case 'yolo':
yoloBtn.classList.add('active');
break;
case 'detr':
detrBtn.classList.add('active');
break;
case 'vit':
vitBtn.classList.add('active');
break;
}
updateProcessButton();
}
// Update process button state
function updateProcessButton() {
processBtn.disabled = !selectedModel || !selectedFile;
}
// Handle file selection
fileInput.addEventListener('change', (e) => {
const file = e.target.files[0];
if (file) {
selectedFile = file;
const reader = new FileReader();
reader.onload = (e) => {
previewContainer.innerHTML = `<img src="${e.target.result}" class="preview-image" alt="Preview">`;
};
reader.readAsDataURL(file);
updateProcessButton();
} else {
selectedFile = null;
previewContainer.innerHTML = '';
updateProcessButton();
}
});
// Model selection event listeners
yoloBtn.addEventListener('click', () => selectModel('yolo'));
detrBtn.addEventListener('click', () => selectModel('detr'));
vitBtn.addEventListener('click', () => selectModel('vit'));
// Process image
processBtn.addEventListener('click', async () => {
if (!selectedModel || !selectedFile) return;
resultContainer.style.display = 'block';
resultTitle.textContent = `Processing with ${selectedModel.toUpperCase()}...`;
resultContent.innerHTML = '<div class="loading">Processing image...</div>';
const formData = new FormData();
formData.append('image', selectedFile);
let endpoint = '';
switch(selectedModel) {
case 'yolo':
endpoint = '/api/detect/yolo';
break;
case 'detr':
endpoint = '/api/detect/detr';
break;
case 'vit':
endpoint = '/api/classify/vit';
break;
}
try {
const response = await fetch(endpoint, {
method: 'POST',
body: formData
});
if (!response.ok) {
throw new Error(`HTTP error! Status: ${response.status}`);
}
const data = await response.json();
displayResults(selectedModel, data);
} catch (error) {
console.error('Error processing image:', error);
resultTitle.textContent = 'Error';
resultContent.innerHTML = `<div class="error">Error processing image: ${error.message}</div>`;
}
});
// Display results
function displayResults(model, data) {
resultTitle.textContent = `${model.toUpperCase()} Results`;
let html = '';
if (model === 'yolo' || model === 'detr') {
// Detection results
html += `
<div style="display: flex; flex-direction: column; gap: 20px;">
<div>
<h3>Processed Image</h3>
<img src="data:image/jpeg;base64,${data.image_with_boxes}" class="result-image" alt="Detection Result">
</div>
<div>
<h3>Detected Objects</h3>
`;
if (data.detections && data.detections.length > 0) {
html += '<ul class="detection-list">';
data.detections.forEach(item => {
html += `
<li class="detection-item">
${item.label}
<span class="confidence">${(item.confidence * 100).toFixed(0)}%</span>
</li>
`;
});
html += '</ul>';
} else {
html += '<p>No objects detected</p>';
}
html += `
</div>
<div class="performance">
<p>Inference Time: ${formatTime(data.inference_time)}</p>
<p>Total Processing Time: ${formatTime(data.total_time)}</p>
</div>
</div>
`;
} else if (model === 'vit') {
// Classification results
html += `
<div style="display: flex; flex-direction: column; gap: 20px;">
<div>
<h3>Classification Results</h3>
`;
if (data.classifications && data.classifications.length > 0) {
html += '<ul class="detection-list">';
data.classifications.forEach(item => {
html += `
<li class="detection-item">
${item.label}
<span class="confidence">${(item.confidence * 100).toFixed(1)}%</span>
</li>
`;
});
html += '</ul>';
} else {
html += '<p>No classifications found</p>';
}
html += `
</div>
<div class="performance">
<p>Inference Time: ${formatTime(data.inference_time)}</p>
<p>Total Processing Time: ${formatTime(data.total_time)}</p>
</div>
</div>
`;
}
resultContent.innerHTML = html;
}
// Initialize
checkApiStatus();
</script>
</body>
</html>
|